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Abstract. It is shown that the greedy algorithm in the average case (in some
probabilistic model) finds almost minimum covers. It is shown also that in the average
case the ratio of the size of minimum cover to the size of minimum fractional cover
has logarithmic order in the size of the ground set.

1. Introduction
Set cover is one of the oldest and most studied NP-hard problems [7, 6, 8, 2, 4].
Given a ground set U of m elements, the goal is to cover U with the smallest
possible number of subsets from a given family S = {S1, . . . , Sn}, Si ⊆ U . A
cover is arbitrary subfamily S(I), I ⊆ [n] such that

U = ∪i∈ISi,

where [n] = {1, 2, . . . , n}.
The value |I| is called the size of a cover. A cover of the smallest size is called
minimum cover. The size of minimum cover is denoted by C(S).
One of the best polynomial time algorithms for approximating set cover is the
greedy algorithm: at each step choose the unused set from the family S which
covers the largest number of remaining elements.
R is called an approximation ratio of an algorithm A if for all input data S the
following holds

CA(S)
C(S)

≤ R,

where CA(S) denotes the size of a cover obtained by the algorithm A.
Lovasz [8] and Johnson [6] showed that the approximation ratio of the greedy
algorithm is no worse than H(m), where H(m) = 1 + 1/2 + . . . + 1/m is the
mth harmonic number, a value which is clearly between lnm and 1 + lnm.
Similar results were obtained in [9, 10]. These results were improved slightly
by Slavik [11] who showed that the approximation ratio of the greedy algo-
rithm is exactly lnm − ln lnm + Θ(1). Feige [3] proved that for any ε > 0 no
polynomial time algorithm can approximate set cover within (1 − ε) lnm unless
NP ⊆ DTIME[nO(log log n)].
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It is well-known that set cover forms an important class of integer programs

min cx| Ax ≥ b, x ∈ {0, 1}n, (1)

where c = (1, ..., 1), b = (1, ..., 1)T and A = (aij) is an arbitrary m × n (0, 1)-
matrix.
To see this it is sufficient to chose (0, 1)-matrix A = (aij) such that aij = 1
iff ui ∈ Sj , where U = {u1, . . . , um}. In such a way we correspond covering of
(0,1)-matrix to covering by a family of subsets. The size of minimum cover we
will denote by C(A) as well.
In particular, it is known (see, [10]) that for any (0,1)-matrix of size m × n with
at least k 1’s in each row the size of the minimum cover C(A) satisfies

C(A) ≤ 1 +
ln mk

n

ln n
n−k

. (2)

In fact, it is known that the size of any cover obtained by the greedy algorithm
satisfies (2).
But all these investigations were related to the worst case performance of the
greedy algorithm. In this paper we consider the average case and show that the
asymptotic approximation ratio of the greedy algorithm in the average case is
at most 1 + ε for arbitrary constant ε > 0. It is shown also that the ratio of
the size of minimum cover to the size of the fractional cover is approximately
lnmp in the average case.

2. Average case analysis of the greedy algorithm
In this section we consider a probabilistic model in which A = (aij) is a random
(0,1)-matrix such that P{aij = 1} = p and P{aij = 0} = 1 − p independently
for all i, j. Then, the value C(A) becomes a random variable.
Lemma 1 [1]. Let Y be a sum of n independent random variables each taking
the value 1 with probability p and 0 with probability 1 − p. Then

P{|Y − np| > δnp} ≤ 2 exp{−(δ2/3)np}.

Let L0 = − ln mp
ln(1−p) .

Theorem 1. Let the probability p be such that 0 < p < c < 1, where c is a
constant. Let

ln lnn

lnmp
→ 0 as n → ∞, (3)

lnm

np
→ 0 as n → ∞. (4)
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Then for any fixed ε > 0

P{(1 − ε)L0 ≤ C(A) ≤ (1 + ε)L0} → 1 (5)

as n → ∞.

Corollary 1. Let m = cn, where c is some constant and p be a constant.
Consider the problem (1) with a random A defined above. Then (4) holds.
Proof of Theorem 1. Lower bound. Let X(l) be the random variable equal
to the number of covers in A of size l. We have

EX(l) =
(

n

l

)
P (l),

where P (l) is the probability that fixed l columns form a cover in A. It is not
difficult to see that

P (l) =
(
1 − (1 − p)l

)m ≤ exp{−m(1 − p)l}.

Thus, using the inequality
(
n
k

) ≤ nk, we have

lnEX(l) ≤ l lnn − m(1 − p)l.

Taking l = l0 = −	(1 − δ) lnmp/ ln(1 − p)
 we get

lnEX(l0) ≤ − lnmp/ ln(1 − p) lnn −−m exp{−(1 − δ) ln(1 − p)
lnmp

ln(1 − p)
}

≤ − (lnmp/ ln(1 − p)) ln n − mm−1mδp−1+δ

= − (lnmp/ ln(1 − p)) ln n − (mp)δ 1
p
.

Considering two cases (p is a constant, and p → 0) it is not difficult to see that
for any fixed 0 < δ < 1 under the condition (3) the last expression tends to −∞
as n tends to infinity.
Thus, the probability that there are no covers of size l0 in a random (0, 1)-matrix
A tends to 1, because

P{X(l0) ≥ 1} ≤ EX(l0) → 0.

Clearly, if there are no covers of size l0 in A then there are no covers of size
smaller than l0 as well. Therefore,

P{C(A) ≥ l0} → 1.
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Upper bound. We use the upper bound (2).
By Lemma 1, in a random (0,1)-matrix for any δ > 0 with probability tend-
ing to 1 each row contains k 1’s where (1 + δ)pn ≥ k ≥ (1 − δ)pn. Indeed,
Lemma 1 implies that the probability that some fixed column contains k 1’s
with (1 + δ)pn ≥ k ≥ (1 − δ)pn is

Pbad ≤ 2 exp{−(δ2/3)np},
and the expectation of the number of such rows is at most mPbad. It is not
difficult to see that

mPbad ≤ 2 exp{lnm − (δ2/3)np} = 2 exp{lnm − O(np)} → 0, as n → ∞,

by the condition (lnm)/np → 0 as n → ∞. Hence, Markov’s inequality
P{X ≥ 1} ≤ EX implies that the probability of the event ’each row contains
k 1’s where (1 + δ)pn ≥ k ≥ (1 − δ)pn tends to 1.
Thus, we obtain

C(A) ≤ ln mk
n

ln n
n−k

≤ ln(mp(1 + δ))
ln n

n−np(1−δ)

≤ − ln(mp(1 + δ))
ln(1 − p(1 − δ))

.

Simplifying we get

− ln(mp(1 + δ))
ln(1 − p(1 − δ))

= − ln(mp) + ln(1 + δ)
ln(1 − p(1 − δ))

.

For any constant ε > 0 there exists a constant δ > 0 such that the latter ex-
pression is at most

−(1 + ε)
ln(mp)

ln(1 − p)
.

Combining the inequality with the lower bound of C(A) we arrive at the desired
inequality. The proof of Theorem 1 is complete.
We can reformulate our result in other words. Let us define an asymptotic
approximation ratio of an algorithm as the limit of approximation ratio when n
goes to infinity. Then Theorem 1 gives the conditions guaranteeing the asymp-
totic approximation ratio of the greedy algorithm is equal to 1 in the average
case.

3. Integral and fractional covers
In this section we consider the same probabilistic model in which A = (aij) is
a random (0,1)-matrix such that P{aij = 1} = p and P{aij = 0} = 1 − p inde-
pendently for all i, j. In the previous section we have estimated the value of
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C(A) for almost all matrices. In this section we find the value of the optimum
of the linear relaxation of (1).
Recall that the linear relaxation of (1) is the same program where the restriction
x ∈ {0, 1}n is replaced by 0 ≤ xj ≤ 1, j = 1, . . . , n. We denote the optimum
value of the linear relaxation by q(A).
Theorem 2. Let

lnm

np
→ 0,

lnn

mp
→ 0 as n → ∞.

Then for any fixed ε > 0

P{(1 − ε)/p ≤ q(A) ≤ (1 + ε)/p} → 1

as n → ∞.
Proof. We have already shown that the condition (lnm)/np → 0 as n → ∞
implies that the probability of the event “each row contains k 1’s” where
(1 + δ)pn ≥ k ≥ (1 − δ)pn tends to 1.
Similarly we can show that the condition (lnm)/np → 0 as n → ∞ im-
plies that the probability of the event “each column contains t 1’s” where
(1 + δ)pm ≥ t ≥ (1 − δ)pm tends to 1.
Proof of Claim 1. Let x = (x1, . . . , xn)T be an optimal solution of the linear
relaxation of (1). We have

m∑
i=1

n∑
j=1

aijxj ≥
m∑

i=1

1 = m.

On the other hand,
m∑

i=1

n∑
j=1

aijxj =
n∑

j=1

m∑
i=1

aijxj =
n∑

j=1

xj

m∑
i=1

aij ≤
n∑

j=1

xj(1 + δ)pm = q(1 + δ)mp.

Therefore, q ≥ ((1 + δ)p)−1. Furthermore,

x = (
1

(1 − δ)np
, . . . ,

1
(1 − δ)np

)

is a feasible solution to the linear relaxation of (1) because
n∑

j=1

aijxj =
n∑

j=1

aij
1

(1 − δ)np
=

1
(1 − δ)np

n∑
j=1

aij ≥

(
1

(1 − δ)np
) · (1 − δ)pn = 1.
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This implies
∑n

j=1
1

(1−δ)np ≥ q, that is, 1/(1 − δ)p ≥ q. We have

((1 + δ)p)−1 ≤ q ≤ ((1 − δ)p)−1.

This implies the assertion of Theorem 2.
Corollary 2. Let all the conditions of Theorem 1 and 2 hold. Then for any
fixed ε > 0

P{(1 − ε) lnmp ≤ C(A)
q(A)

≤ (1 + ε) lnmp} → 1

as n → ∞.

4. Average case analysis: towards the general case
It seems interesting to extend our technique to the general distribution where
P{aij = 1} = pij . The main ingredient of this technique was obtaining lower
bounds for the size of minimum cover of random matrices.
In this section we do the first step towards this goal. We consider a probabilistic
model in which A = (aij) is a random (0,1)-matrix such that P{aij = 1} = pi

and P{aij = 0} = 1 − pi independently for all i, j. The difference between
this model and the one from the previous section is that we allow here different
probabilities for different rows.
Let

p = m−1 ·
m∑

i=1

pi, pmax = max
i

pi.

Theorem 3. Let pmax → 0 as n → ∞, and
ln lnn

ln(mp)
→ 0 as n → ∞.

Then for any fixed ε > 0

P{(1 − ε)
ln(mp)

p
≤ C(A)} → 1

as n → ∞.
Proof of Theorem 3. Let X(L) be the random variable equal to the number
of covers in A of size L.

EX(L) =
(

n

L

)
P (L),

where P (L) is the probability that arbitrary fixed L columns form a cover in A.
Using the inequality 1 − x < e−x, it is not difficult to see that

P (L) =
m∏

i=1

(
1 − (1 − pi)L

) ≤ exp{−
m∑

i=1

(1 − pi)L}.
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Thus, taking into account that
(
n
k

) ≤ nk, we get

lnEX(L) ≤ L lnn − m

m∑
i=1

(1 − pi)L.

Using the fact that the arithmetic mean is always at least as the geometric
mean we can estimate the sum as follows:

m∑
i=1

(1 − pi)L = m

(
1
m

m∑
i=1

(1 − pi)L

)
≥

(
m∏

i=1

(1 − pi)L

)1/m

=
m∏

i=1

(1 − pi)L/m.

Taking this into account we get

lnEX(L) ≤ L lnn − m

m∏
i=1

(1 − pi)L/m.

Using the inequality

1 − x > e−
x

1−x , 0 < x < 1,

we have

lnEX(L) ≤ L lnn − m exp{−
m∑

i=1

L

m

pi

1 − pi
} ≤ L lnn − m exp{−Lp(1 + o(1))}.

Let
L1 = (1 − ε)

ln(mp)
p

.

The inequality above implies

lnEX(L1) ≤ ln(mp)
p

lnn − m exp{−(1 − ε)
ln(mp)

p
p(1 + o(1))}

≤ lnm

p
lnn − m exp{−(1 − ε) ln(mp)(1 + o(1))}

=
1
p

lnm lnn − mp−(1−ε)(1+o(1))m−(1−ε)(1+o(1))

=
1
p

(
lnm lnn − m(mp)ε(1+o(1))−o(1)

)
.

For any fixed ε > 0 this expression tends to −∞ when n goes to infinity in view
of the conditions of Theorem 3.
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Thus, the probability that there are no covers of size L1 in a random
(0, 1)–matrix A tends to 1, because by Markov’s inequality

P{X(L1) ≥ 1} ≤ EX(L1) → 0.

Clearly, if there are no covers of size L1 in A then there are also no covers of
size smaller than L1. Therefore, with probability tending to 1

C(A) ≥ L1 = (1 − ε)
ln(mp)

p
.
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