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Abstract. In this paper we address the issue of defining security of program obfus-
cation. We argue that requirements to obfuscated programs may be different and are
dependent on potential applications. Therefore three distinct models are suggested
for studying the issues of obfuscation, namely obfuscation for software protection,
total obfuscation and constant hiding. We also introduce a definition of weak obfus-
cation based on “grey-box” paradigm and show this weak form of obfuscation to be
impossible.

1. Introduction
Obfuscation is a relatively new topic in computer science. To the best of our
knowledge there exists unique paper of Barak et al. [1] which provides math-
ematically rigorous treatment of this concept. However, an informal idea of
obfuscation emerges naturally from investigation of intelligibility of program
codes. It is mentioned (without using the term “obfuscation” ) already in the
seminal paper by Diffie and Hellman [2].
From theoretical point of view the concept of obfuscation is related to the
concept of learnability [3]. In the learning theory setting learner has access
to some partial information about an unknown particular concept chosen in
a predetermined class of concepts and is required to identify it more or less
accurately. It is evident that obfuscated program has to be unlearnable in a
certain sense, but this condition is by no means sufficient. Any reasonable
definition of secure obfuscation should be based on stronger requirements.
It is also obvious that obfuscation is related to cryptography. Obfuscation can
be considered as a special case of encryption. One minor difference is that plain-
text (original program) needs not be efficiently extractable from cryptogram
(obfuscated program). The main difference seems to be decisive: cryptogram
itself must be executable code equivalent to original program.
If secure obfuscation were possible it could be used for protecting software as
intellectual property, i. e. for hiding principal ideas behind the algorithm as
opposed to protecting program code only against unauthorized copying.
In our opinion, however, the main challenge to obfuscation has its origin in phi-
losophy: can one human being produce useful program code that is practically
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unintelligible to any other human being?
In section 3 of the present paper we briefly overview main definitions and results
of Barak et al. [1]. Reader, familiar with the paper [1] may skip this section.
In section 4 we examine the notion of obfuscation. We argue that require-
ments to obfuscated programs may be different and are dependent on potential
applications. Therefore we suggest two novel definitions of secure obfuscation.
Strong impossibility results [1] leave open the following question: whether there
exist weaker forms of universal (i. e. applicable to any program) obfuscators.
In section 5 we introduce a definition of secure obfuscator based on “grey-box”
paradigm. Namely, an adversary, trying to extract some information from
obfuscated program O(P ) is compared with simulating machine having access
to an oracle that on input x returns not only output P (x) but also a trace of
execution of P on this input. We show this weak form of obfuscation to be
impossible as well.

2. Some notation
We use TM as a shorthand for Turing machine. PPT denotes probabilistic
polynomial-time Turing machine. For PPT A and any input x, A(x) is a random
variable. When we write “for any A(x)” we mean a universal quantifier over the
support of A(x).
For a pair of TMs A and B, A ≈ B denotes their equivalence, i. e. for any
input x, A(x) = B(x).
Function ν : N → [0, 1] is negligible if it decreases faster than any inverse
polynomial, i. e. for any k ∈ N there exists n0 such that for all n ≥ n0,
ν(n) < 1/nk.

3. Definitions and main results of Barak et al [1]
In computer science there is a number of definitions of a program. Two of them
can be regarded as commonly accepted ones. The first says that program is a
Turing machine (TM), while the second defines program as a Boolean circuit.
Accordingly, in Barak et al [1] there are two definitions of secure obfuscation.
Definition 1 [1]. A probabilistic algorithm O is a TM obfuscator if the fol-
lowing holds:
— For every TM M any output O(M) of O on input M describes a TM that
computes the same function as M .
— The description length and running time of any TM O(M) are at most
polynomially larger than that of M . I. e., there exists a polynomial p such that
for every TM M and any O(M), |O(M)| ≤ p(|M |) and if M halts in t steps on
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some input x then O(M) halts within p(t) steps on x.
— For any PPT A there is a PPT S and a negligible function ν such that for
all TMs M

|Pr{A(O(M)) = 1} − Pr{SM (1|M|) = 1}| = ν(|M |).

Definition 2 [1]. A probabilistic algorithm O is a circuit obfuscator if the
following holds:
— For every circuit C any output O(C) of O on input C describes a circuit
that computes the same function as C.
— There is a polynomial p such that for every circuit C and any O(C), |O(C)| ≤
p(|C|).
— For any PPT A there is a PPT S and a negligible function ν such that for
all circuits C

|Pr{A(O(C)) = 1} − Pr{SC(1|C|) = 1}| = ν(|C|).

The main result of Barak et al [1] is negative: secure obfuscation is impossible.
To state this precisely one needs the next definition.
Definition 3 [1]. An unobfuscatable function ensemble is an ensemble
{Hk}k∈N of distributions Hk on finite functions (from, say, {0, 1}n(k) to
{0, 1}m(k)) satisfying:
— there exists polynomial Q such that every function in the support of Hk is
computable by a circuit of size at most Q(k). Moreover, there exists a proba-
bilistic polynomial time algorithm that samples uniformly from the distribution
on circuits consistent with Hk.
— There exists a function π : ∪k∈NSupp(Hk) → {0, 1} such that
1. π(f) is hard to compute with black-box access to f : for any PPT S

Pr{Sf (1k) = π(f)} ≤ 1/2 + ν(k),

where ν is a negligible function.
2. π(f) is easy to compute with access to any circuit that computes f : there
exists a PPT A such that for any f ∈ ∪k∈NSupp(Hk) and for any circuit C
that computes f , A(C) = π(f).
Theorem 1 [1]. If one-way functions exist, then there exists an unobfuscatable
function ensemble
This result is essentially a corollary to the next theorem.
Theorem 2 [1]. If one-way functions exist then circuit obfuscators (in the
sense of definition 2) do not exist.
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In the case of Turing machines an analogous result is proven unconditionally
Theorem 3 [1]. Turing machine obfuscators (in the sense of definition 1) do
not exist.

4. Discussion
4.1. Motivating examples

Any mathematically correct definition is useless unless one keeps in mind some
potential applications of the notion being defined. In the paper [1] the authors
list several possible applications of obfuscators. The first one is in software
protection. Suppose one party invents a fast algorithm for factoring integers and
wishes to sell to another party a program for breaking the RSA cryptosystem.
The goal is to have this program transformed in such a way that it will be hard
to derive factorization algorithm from the text of transformed program.
Another particularly challenging potential application is obfuscation of encryp-
tion programs of private-key cryptosystems. This would allow to transform
private-key cryptosystems, e. g. DES, into public-key ones.
However the “virtual black-box” paradigm underlying the definitions 1 and 2
does not seem to be well-suited for these intended applications. Indeed, it is
hardly possible to find a client who will buy a black-box as a piece of software.
Instead, any program product on the market must have a user guide specifying
its functionality.

4.2. Classification

We suggest the following three models for studying the issues of obfuscation.
Obfuscation for software protection. In this setting an adversary knows the
function computed by the program in question. The most straightforward way
to formalize this is to fix some program P0 equivalent to the original program
P and give P0 to the adversary as an additional input.
E. g., if P is a program totally breaking the RSA cryptosystem, i. e. finding
its private key given a public one, then P0 might be an easy-to-understand
program which accomplishes the same task by exhaustive search.
The simulating machine S guaranteed by definitions 1 and 2 also has access to
the text of the program P0. The modified definition 1 is as follows.
Definition 4. A probabilistic algorithm O is a TM obfuscator if the following
holds:
— For every TM M any output O(M) of O on input M describes a TM that
computes the same function as M .

130



— The description length and running time of any TM O(M) are at most
polynomially larger than that of M . I. e., there exists a polynomial p such that
for every TM M and any O(M), |O(M)| ≤ p(|M |) and if M halts in t steps on
some input x then O(M) halts within p(t) steps on x.
— For any PPT A there is a PPT S and a negligible function ν such that for
all pairs of TMs (M, ˜M), M ≈ ˜M ,

|Pr{A(O(M), ˜M ) = 1} − Pr{SM (1|M|, ˜M) = 1}| = ν(|M |).

The machines A and S are polynomial in the lengths of their first inputs, O(M)
and 1|M| respectively.
Note that in the case when algorithm ˜M is efficient simulating machine S needs
no access to the oracle M .
Remark. There exist program properties (predicates) π invariant under equiv-
alent program transformations. I. e., for any program P ′ functionally equivalent
to P , π(P ′) = π(P ). Under our definition such properties are only trivially ob-
fuscatable. Note, however, that from the practical point of view obfuscating
invariant properties is useless.
Impossibility results of Barak et al. [1] do not apply in this setting. Moreover,
our definition has the following peculiar feature. If one manages to extend the
proof technique of the paper [1] to show that secure obfuscation in the sense of
definition 4 is impossible, then this will immediately imply that some weak form
of obfuscation does exist! Indeed, counterexample of Barak et al. is based on
a specific invariant property of a particular family of programs. Suppose there
exists an infinite sequence of pairs (M, ˜M) of TMs such that some invariant
property π is learnable efficiently given the text of the program O(M) but is
unlearnable when we have the text of the program ˜M and black-box access to
M . But this means that ˜M is a (provably) secure obfuscation of O(M) with
respect to the property π.
We pose the question of existence of secure obfuscation in the sense of definition
4 as the main research problem in the theory of obfuscation.
Total obfuscation. This is just the concept of Barak et al [1]. An example
of potential application of this brand of obfuscation is given in [1], namely
removing random oracles from cryptographic schemes. Note, however, that in
this case obfuscation is not completely total. Adversary knows a priori that
random oracle has to compute some function from, say, {0, 1}2n to {0, 1}n

which looks random. Therefore the method of constructing counterexamples to
secure obfuscation suggested by Barak et al [1] does not work in the case being
considered. This method is based on asking the adversary to guess whether the
function computed by obfuscated program is constant. For random oracles the
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answer is always “no”. This means that at least when application in removing
random oracles is concerned, security requirements to obfuscation are weaker
and impossibility results of [1] do not rule out such an application. However,
the most obvious approach to this problem, namely one based on obfuscating
pseudorandom function families does not work [1].
As another possible application of total obfuscation consider the following sce-
nario. An abonent of computer network runs on her PC certain programs and
does not want to let hackers to know what kind of data processing these pro-
grams do.
Constant hiding. In this setting everything to be hidden from adversary is
certain constant c0 used by a program P . This constant is assumed to be chosen
randomly in sufficiently large set C. One can safely assume that the original
program P is completely known to the adversary except for the constant c0.
It is easy to see that constant hiding is essentially a particular case of obfusca-
tion for software protection. Definition 4 can be easily adopted to the present
case by setting ˜M to be the same TM as M except for the constant c0 replaced
by a constant c chosen randomly and independently in C.
Details follow. Let P be a program which uses a constant c. For simplicity we
assume that this constant is chosen uniformly at random in the set {0, 1}n. For
any given constant value c0 ∈ {0, 1}n we denote by P (c0) the corresponding
instantiation of the program P . We assume the length of the program P to be
polynomial in n.
Definition 5. A probabilistic algorithm O is a TM obfuscator if the following
holds:
— For every TM M any output O(M) of O on input M describes a TM that
computes the same function as M .
— The description length and running time of any TM O(M) are at most
polynomially larger than that of M . I. e., there exists a polynomial p such that
for every TM M and any O(M), |O(M)| ≤ p(|M |) and if M halts in t steps on
some input x then O(M) halts within p(t) steps on x.
— For any PPT A there is a PPT S and a negligible function ν such that for
any TM M and any constant value c0 ∈ {0, 1}n

|Pr{A[O(M)(c0), M(c)] = 1} − Pr{SM(c0)[1|M(c0)|, M(c)] = 1}| = ν(|M(c0)|),
where c ∈R {0, 1}n.
Note that one can define a weak form of constant hiding in which adversary A
and simulating machine S instead of outputting a single bit have to guess the
constant c0.
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Nontrivial constant hiding does exist (at least in the weak form) under cryp-
tographic assumptions for certain restricted classes of programs. In fact, any
public-key cryptosystem gives such an example since its encryption program
can be regarded as hiding a particular constant, namely a private key.

4.3. Weak obfuscation

In this section we examine one specific approach to program obfuscation. The
main idea is to divide the search for secure obfuscation into two stages. Since
an adversary having access to the obfuscated program can always obtain not
only input-output pairs but also the corresponding traces one could first pose
a problem of whether it is possible to transform a program in such a way that
these traces are essentially the only useful information available to adversary.
If this were possible then the next problem is how one can guarantee that the
traces themselves give away no useful information.
We confine ourselves here with the model for total obfuscation.
Definition of this new brand of obfuscation which from now on we will call weak
obfuscation differs from definition 1 in two aspects. The first is specification
of the oracle (“black-box”) used by simulating machine S. When the machine
S issues query x to the oracle it gets as a response not only the output word
y but also the trace of execution of M on input x. Note that in our setting
it makes difference which particular program equivalent to M is used by the
oracle. We insist that this is just the original program M . This means that we
do not require obfuscator to hide any property that is learnable efficiently from
traces of execution of TM M . Notice also that any obfuscator can be deemed
secure only if it does not reveal any properties that remain hidden given access
to the traces of original program.
The second is definition of program equivalence. We consider programs with
“memory”, i. e. their output depends not only on the current input but also on
the preceding ones.
To distinguish the oracle used in definition 1 from the oracle provided to simu-
lating machine S in this new setting we denote the latter by Tr(M). On input
x this oracle outputs a pair (y, trM (x)), where y is the output of TM M on
input x and trM (x) is the trace of execution of M on this input.
The string trM is defined as concatenation of all successive instructions executed
by M when running on input x.
Definition 6. A probabilistic algorithm O is a weak TM obfuscator if the
following holds:
— For every TM M any output O(M) of O on input M describes a TM that is
equivalent to M in the following sense. For any sequence of inputs x1, . . . , xu
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the corresponding sequences of outputs of TMs O(M) and M coincide, i. e.,
O(M)(xi) = M(xi) for any i = 1, . . . u.
— The description length and running time of any TM O(M) are at most
polynomially larger than that of M . I. e., there exists a polynomial p such that
for every TM M and any O(M), |O(M)| ≤ p(|M |) and if M halts in t steps on
some input x then O(M) halts within p(t) steps on x.
— For any PPT A there is a PPT S and a negligible function ν such that for
all TMs M

|Pr{A(O(M)) = 1} − Pr{STr(M)(1|M|) = 1}| = ν(|M |).

Theorem 4. If one-way functions exist then weak obfuscation is impossible.
Proof. The intuition behind proof is quite simple. The proof of theorem 3
is by counterexample. Barak et al. [1] constructed an infinite family of TMs
such that certain predicate π(M) defined on this family is unlearnable with
oracle access to the function computed by M but can be decided easily given
a text of any program equivalent to M . It suffices to modify this construction
in such a way that the following two requirements hold simultaneously. First,
learnability of predicate π(M) given a text of any program equivalent to M
should be preserved. Second, traces of execution of M must provide adversary
with no additional useful information as compared to the output-only oracle
treated by definition 1. An adversary having access to traces of execution of M
is apparently more powerful then one bounded to see input-output pairs only.
To defeat this powerful adversary we make use of cryptographic tools. Namely,
instead of comparing input x to the fixed string α as in Barak et al [1] we test
first whether f(x) = f(α), where f is a one-way function. Only if this test
passes we check whether x = α.
Typical trace trM (x) consists of instructions used to compute f(x) and to check
whether f(x) = f(α). Most of the time this check fails. Moreover, if the equality
f(x) = f(α) holds with nonnegligible probability then this contradicts the fact
that f is one-way function.
Note that one cannot replace one-way function f in this construction by e. g.
encryption function of private-key cryptosystem since encryption algorithm uses
private key and traces of its execution become available to adversary.
We stress that the above discussion has to be considered as motivating. The
actual construction is somewhat more complicated.
Now we turn to formal proof.
The counterexample of Barak et al. [1] uses two families of TMs. For any pair
of strings α, β ∈ {0, 1}n Turing machine C′

α,β(x) outputs β if x = α and 0n

otherwise. For the same parameters α, β Turing machine D′
α,β(C) outputs 1 if
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C(α) = β and 0 otherwise.
Let {f : {0, 1}n → {0, 1}n}n be a one-way function. Our construction depends
also on integer parameter t ≥ 2 which can be e. g. a constant or a value of
arbitrary but fixed polynomial (in n).
First we choose 2t strings α1, . . . , αt, β1, . . . , βt ∈ {0, 1}n uniformly at random.
Denote this 2t-tuple by γ. Now define TM Cγ(x) as follows. On input x
this TM computes f(x) and tests the result against precomputed values f(αi),
i = 1, . . . , t. If f(x) �= f(αi) for all i = 1, . . . , t then Cγ outputs 0n and halts.
In the case when f(x) = f(αi) for some i, Cγ checks whether x = αi and if so
outputs βi, otherwise it outputs 0n and in either case halts.
Next we define TM Dγ . It stores two arrays of strings α1, . . . , αt and β1, . . . , βt.
Let i be a pointer to both this arrays which is initially set to 0.
On input a TM C, Dγ runs as follows.
1. Check whether i = t − 1. If so, output 0 and halt.
2. Advance the pointer i = i + 1 and then feed C with input αi.
3. If C(αi) = βi then check the current value of the pointer. If i = t then
output 1 and halt, else goto 2.
4. If C(αi) �= βi then output 0 and halt.
Note that simulating machine having access to Cγ and Dγ as oracles may query
Dγ with arbitrary TM C and extract α1 from the trace, then query Cγ with
α1 and obtain β1 (even if we have a modified TM Dγ that hides the values βi)
and so on. Therefore simulating machine is granted only t − 1 queries to Dγ

(in fact further queries are allowed but result invariably in zero responses and
thus can be ignored). The unobfuscatable property is the existence of t distinct
strings α1, . . . , αt ∈ {0, 1}n such that output of a given TM on each of them is
nonzero.
Pair of TMs (Cγ , Dγ) replaces TMs (C′

α,β , D′
α,β) used in the proof of theorem

3. Analysis of this proof shows that to adopt it to our case one needs only to
prove the next claim.
Claim. For any PPT S

|Pr{SCγ ,Dγ (1n) = 1} − Pr{SZγ ,Dγ (1n) = 1}|

is negligible.
TM Zγ differs from Cγ only in that on input αt it outputs 0n.
The probabilities are taken over uniform choice of α1, . . . , αt, β1, . . . , βt in
{0, 1}n and coin tosses of S.
Proof of claim (sketch). It suffices to show that any PPT has only negligible
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probability to get nonzero response to any of its oracle queries, no matter which
TM, Cγ or Zγ , is used as the first oracle.
For simplicity we assume t = 2 for the rest of proof. In this case machine S
can issue unique query to the second oracle. Let a1, . . . , as ∈ {0, 1}n be all
the queries of S to the first oracle prior to issuing its only query to the second
one (in fact s is a random variable). Suppose that nonzero string appears with
nonnegligible probability among responses to these s queries. We construct a
PPT T inverting the function f .
Let z ∈R {0, 1}n and y = f(z) be input to T . Machine T flips a coin and decides
which of values, f(α1) or f(α2) will be set to y. Without loss of generality let it
be α1. Then T chooses α2, β1, β2 ∈ {0, 1}n uniformly at random and calls S as
a subroutine. All queries to the first oracle are intercepted by T . For a query
x ∈ {0, 1}n, T computes f(x) and checks whether f(x) = y or f(x) = f(α2). If
neither of these equalities holds, T outputs 0n. In the case f(x) = y, T outputs
β1, and in the case f(x) = f(α2) it proceeds in the same way as TM Cγ does.
The crucial observation is that the probability of seeing a nonzero response
from this simulated oracle T is at least as high as in the case of real oracle.
Therefore for some j ∈ 1, . . . s the response of T is nonzero with nonnegligible
probability. For this j, αj is in the preimage of y with probability 1/2. Thus
T inverts f with nonnegligible probability which contradicts the fact that f is
one-way function.
If nonzero string appears among responses to the first s queries with negligible
probability then the probability of nonzero response to a unique query of S to
the second oracle is negligible as well.
For the remaining oracle queries (after the query to the second oracle) the same
argument as above shows that nonnegligible probability of success would imply
existence of efficient algorithm for inverting the function f . This contradiction
proves the claim.
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