
An approach to quantitative analysis of resistance
of equivalent transformations of algebraic circuits

A. V. Shokurov

Abstract. A system of computations on encrypted data such that

— transformation of encryption is effective, i.e. can be performed in polynomial
time on the size of circuit C;

— the size of scheme A′ differs not essentially from the size of initial scheme A;
— lower bounds on resistance of circuit is exponential

is constructed.

1. Introduction
Tamper-resistant software technologies are intended for protecting software
programs from intelligent tampering attacks aimed at obtaining some extra-
knowledge about program structure and behavior (the key ideas of algorithms
used in a program and some specific data — passwords, constants, parameters,
etc.). To achieve these goals some specific semantic-preserving transformations
are applied to a source computer program that perform deep and sophisticated
changes in its control flow and data flow [9, 8, 5].

Tamper resistant software is one of the forms of software protection against
reverse engineering. Data protection is an important part of tamper resistant
software. This protection can be done in different ways and one of them which
uses data encodings [7, 5] is considered in this paper.

Formally model with transformed data can be described as follows. Let Alice
and Bob are two participants of a computation. Alice is the owner of some data
but has not enough computational resources. Bob possesses enough amount of
computational resources but Alice does fully not entrust Bob. Alice needs to
transform data, constants and computational circuit in such a way that the
needed by Alice result could be easily obtained from the result of transformed
computation over transformed data. Then Alice needs to send all transformed
data, constants and computational circuit to Bob. These transformations need
to be such that the second participant could get minimum information (in ideal
case nothing) from received data and circuit.

157

Now we can state the following problem.

Problem. Let C′ be some transformed computational circuit. Find initial
computational circuit C corresponding to C′. How much computational circuits
C correspond to transformed circuit C′? It is suggested that the parameters of
given transform are not given.

To explain what are data encodings consider the problem of computation of
some arithmetical expression

y = F (x, c),

where x = (x1, . . . , xn) are input data and c = (c1, . . . , cm) are some internal
parameters which we need to protect against an adversary. Let y = (y1, . . . , yt)
be the result of this computation.

Encoding in general is a parametric collection of functions that map each
integer into some tuples of integers. Thus, any integer x will be converted
to x′ = (x′

1, x
′
2, . . . , x

′
k). A simple example of it is so called linear encoding

x′ = a ·x+b. Integers a, b are parameters of this encoding [7]. Formal definition
of data encoding will be given in Section 2.

The key idea of using such encodings is the following. Instead of computing
y = F (x, c) we perform some distorted computation ỹ = F̃ (x′, c′), which is
obtained from original computation F by some rules and then apply decoding
(the inverse function to encoding) to obtain “real” results of the computation.

One of possible approaches to obtain F̃ is constructing for every basic operation
(+,×, etc.) used in F a corresponding sequence of operations over encoded
data. This is possible if any arithmetic operation on data can be expressed in
terms of encoded data. Such encodings will be called homomorphic (for formal
definition see Section 2). To clarify this notion consider the following example.
Let integers x1 and x2 be represented using linear encoding as

x′
1 = a1 · x1 + b1

x′
2 = a2 · x2 + b2

(1)

and
A1 = a1/m

A2 = a2/m
(2)

where
m = GCD(a1, a2). (3)

To calculate y = x1 + x2 in terms of linear encoding one can find its encoded
value by the formula

ỹ = A2 · x′
1 + A1 · x′

2. (4)

158



Then

ỹ = B2y + B1 (5)

where B1 = (b1a2 + b2a1)/m and B2 = a1a2/m and the value y can be decoded
from ỹ as follows

y = (ỹ − B1)/B2. (6)

Hence the result of addition is represented in terms of encoded data by the
formula (4). In this example the arithmetic expression is y = F (x1, x2) =
x1 + x2 and the distorted expression ỹ = F̃ (x′

1, x
′
2) is given by the formula (4).

Note that an adversary observes the values of parameters A1 and A2 which are
related with encoding parameters by formulas (2–3), i.e. an adversary knowing
the values A1 and A2 may try to guess the values of encoding parameters.
The main question is the following. Whether such information is enough to
find the values of all encoding parameters? Moreover it is clear that the more
operations on encoded data an adversary should observe the more information
he gets on encoding parameters. The aim of ”good” encoding is to minimize
such information.

Local analysis of encoded procedures may give to adversary some information
about parameters of encoding. An example of such information is given above
where addition of two linearly encoded integers is discussed. Therefore the
problems of proper choice of encoding and of comparison of encodings are im-
portant. The solution of such problems should be based on a notion of measure
of resistance of data encodings against local analysis (when each encoded pro-
cedure is treated separately). These problems are considered in this paper.

We propose a notion of quantitative measure of resistance of encoded circuit
which we consider as our main contribution. This measure gives the opportunity
to compare different encoded circuits. Estimates for lower bounds of resistance
are obtained for relatively wide class of algebraic circuits. These estimates
show high security of computations performed in such encodings. Typically
such bounds are at least of order 2100.

The structure of the paper is the following. In Section 2 formal definitions of
encoding and homomorphic encoding are given. In Section 3 some examples of
homomorphic encodings are considered. A measure of resistance of computation
is introduced in Section 4. In Section 5 we present lower bounds of resistance
of different types of encodings for some algebraic circuits. The proofs are given
in the Appendix.

159

2. Notion of data encoding
Now we give a formal definition of encoding.

Definition 1. Encoding is a pair (ϕ, ψ) of transformations of integer data
(x1, . . . , xn) and constants (parameters of encoding) (c1, . . . , cm) into integer
data (x′

1, . . . , x
′
k) such that

ϕ(x1, . . . , xn, c1, . . . , cm) = (x′
1, . . . , x

′
k)

ψ(x′
1, . . . , x

′
k, c1, . . . , cm) = (x1, . . . , xn),

(7)

where decoding ψ is left inverse of ϕ, i.e.

ψ(ϕ(x1, . . . , xn, c1, . . . , cm), c1, . . . , cm) = (x1, . . . , xn).

The data (x′
1, . . . , x

′
k) are called encrypted data (cryptogram), (x1, . . . , xn is a

plaintext and c1, . . . , cn) is a key.

Now the problem is to find a proper circuit F̃ on encoded data for arbitrary
algebraic circuit F without multiplicity [1]. One of possible approaches is to
construct for every basic arithmetic operation (+,×, etc.) used in F a cor-
responding sequence of operations on encoded data. This is possible if any
arithmetic operation over original data can be expressed in terms of encoded
data. Such encodings will be called homomorphic.

Now we give a formal definition for such encodings.

Consider encoding (ϕ, ψ) of two integers x1 and x2 assuming n = 1 in formula
(7) and

ϕ(x1, c11, . . . , cm1) = (x′
11, . . . , x

′
k1).

Let also
ϕ(x2, c12, . . . , cm2) = (x′

12, . . . , x
′
k2).

Integer numbers c11, . . . , cm1 and c12, . . . , cm2 are parameters of encoding of x1

and x2 respectively. Let x3 = h(x1, x2) be some binary operation on integer
inputs with integer outcome (say, addition, multiplication, etc.).

Definition 2. Encoding (ϕ, ψ) is called homomorphic with respect to h if there
exist functions A, C

(α1, . . . , αs) = A(c11, . . . , cm1, c12, . . . , cm2)
(c13, . . . , cm3) = C(c11, . . . , cm1, c12, . . . , cm2)

(8)

and an arithmetic procedure (a sequence of arithmetic operations)

(y1, . . . , yk) = h̃(x′
11, . . . , x

′
k1, x

′
12, . . . , x

′
k2, α1, . . . , αs) (9)

160



with integer input data x′
11, . . . , x

′
k1, x

′
12, . . . , x

′
k2, α1, . . . , αs such that

h(x1, x2) = x3 = ψ(y1, . . . , yk, c13, . . . , cm3).

It follows from the definition that function C computes the parameters of en-
coding of the outcome of operation whereas function A creates the parameters
of arithmetic procedure h̃. It is clear from definition that one can choose as
function A the identity function

A(c11, . . . , cm1, c12, . . . , cm2) = (c11, . . . , cm1, c12, . . . , cm2),

but in this case the aim of encoding should not be achieved, because all the
parameters of encoding should take part in computation. The aim of function A

is to decrease the information on encoding parameters and to show the possible
minimum. In ideal case function A minimizes information on these parameters.
It is also clear from the definition that h̃ represents algebraic circuit. Note that
functions C and A may be arbitrary but for practical use need to be efficiently
computable. To find encoded value of the result of operation it is not necessary
to know all the parameters of encodings but their transform α1, . . . , αs.

Linear encoding (1) gives an example of homomorphic encoding with respect
to operations of addition and multiplication of integer numbers. For addition
it follows from formulas (2–5) because

x′
1 = ϕ(x1, a1, b1) = a1x1 + b1,

x′
2 = ϕ(x2, a2, b2) = a2x2 + b2,

(α1, α2) = A(a1, b1, a2, b2) = (A1, A2),

(a3, b3) = C(a1, b1, a2, b2) = (B2, B1),

where A1, A2, B1 and B2 are given by formulas (2–3) and arithmetic procedure
h̃ is given by formula (4).

3. Examples of homomorphic encodings
In this section we present some examples of homomorphic encodings with re-
spect to addition and multiplication.

• Linear encoding (see, Section 2).

161

• Residue encoding of integer x is a tuple

x′
i = x (mod pi),

where pi, i = 1, . . . , m are coprime integers. The parameters of encoding
for all data are the same and are equal to

(c1, . . . , cm) = (p1, . . . , pm).

The formulas for decoding function ψ are given in [2].
Addition and multiplication of integers in this encoding are performed
as follows. Let y′

i = y (mod pi), i = 1, . . . , k then x′
i + y′

i (mod pi) is
the encoded sum x + y and x′

i · y′
i (mod pi) is the encoded product x · y

[1, 2]. The function A from formula (8) is a constant function

A(p1, . . . , pm, p1, . . . , pm) = 0

because the formulas for addition and multiplication do not depend on
parameters of encoding p1, . . . , pm.

• Mixed encoding is a generalization of linear and residue encodings. Fix
coprime integers p1, . . . , pm. Integer x is represented in mixed encoding
as

x′
1 ≡ a1 · x1 + b1 mod p1

. . .

x′
m ≡ am · xm + bm mod pm

(10)

where GCD(ak, pk) = 1 for all k = 1, . . . , m. The parameters of encod-
ings in this case are (a1, b1, . . . , am, bm). Now take two integers encoded
by parameters (a11, b11, . . . , am1, bm1) and (a12, b12, . . . , am2, bm2) corre-
spondingly. Then addition y = x1 + x2 in terms of encoded data can be
made by formula

y′
i = γia

−1
i1 x′

i1 + γia
−1
i2 x′

i2 mod pi

for arbitrary γi such that GCD(γi, pi) = 1. So the function A from
formula (8) is

A(a11, b11, . . . , am1, bm1, a12, b12, . . . , am2, bm2) =
(α11, . . . , αm1, α12, . . . , αm2),

where αij ≡ γia
−1
ij mod pi. Function C in this case is

C(a11, b11, . . . , am1, bm1, a12, b12, . . . , am2, bm2) =
(γ1,−(α11b1 + α12b2), . . . , γm,−(αm1b1 + αm2b2)).

162



The formula for performing multiplication in mixed encoding is given in
section 5 and multiplication also is homomorphic for mixed encoding.

• p-base representation gives an homomorphic encoding [11].

• Encoding based of Discrete Fourier Transform [11, 2].

One can try to protect data in a program using well-known cryptographic en-
codings. Let us consider the following example: RSA function x′ = xe mod m,
where m = pq, p and q are prime numbers [4].

Given encoded data x′ and y′ it is easy to implement multiplication z = xy as
follows: z′ = x′y′. So this encoding is homomorphic with respect to multipli-
cation.

But it is difficult to implement in the same manner the sum of RSA encoded
data. This is the answer to the question: “why we do not use well-known
cryptographic functions for encodings of data”?

4. Resistance of data encodings
Firstly introduce the notion of the “observable” and the “real” worlds. The
“observable” world is a set of encrypted values which Alice sends to Bob. The
“real” world is a set of non-encrypted values of inputs and constants. Illustrate
this by the following example. Let x be encoded in linear encoding as x′ = a·x+b

and assume that an adversary Bob observes only x′. The “observable” world is
x′ and a “real” world is a set (a, x, b) for which encoded x corresponds to the
observable value x′.

It is obvious that the same “observable” world can correspond to several “real”
worlds. And any of these “real” worlds can be the real world which we encode.
In the example mentioned above the number of the “real” worlds, which we
denote as Rw, can be estimated as Rw ≥ K2, where K is the range of integers
we use.

Note that operations with encoded data can reduce the resistance because addi-
tional relations between parameters occur. It can be illustrated by the example
of the sum of two integers in linear encoding given in the previous section.

Let integers x and y be represented as x′ and y′ in linear encodings by formulas
(1–2). The sum z = x + y is given in terms of encoded data by formula (4).

The observable world is determined by the following parameters: x′, y′, A1,
A2 and the number of “real” worlds is the number of solutions of the corre-
sponding system of equations (1-4). Additional relations which reduce Rw are

163

equations (2-3). The solution (i.e., one of the possible “real” worlds Rw) is a set
of values for x, y, a1, a2, b1, b2. Let us denote the range of possible values as K.

We estimate now the number of “real” worlds in some cases.

Proposition 1. For fixed x′, y′, A1, A2 and a1, a2 the number of possible solu-
tions Rw ≥ K2.

To prove it note that arbitrary values of x or y are solutions of our system as
for any x (y, respectively) one can choose such b1 (b2, respectively) that the
value of x′ (y′, respectively) does not change.

Proposition 2. For fixed x′, y′, A1, A2 and x, y the number of possible solutions
can be estimated as Rw ≥ K/ max(a1, a2).

Note that for some solutions of our system a1, a2 and for any q the values
ã1 = q · a1 and ã2 = q · a2 also give a solution because A1, A2 are the same and
there exist b̃1 and b̃2 such that x′ and y′ do not change.

Proposition 3. The number of real worlds is Rw ≥ K3/A, where A =
max(a1, a2).

This follows immediately from Proposition 1 and Proposition 2.

As we can see in this example the procedure of estimating Rw (the number of
“real” worlds) can be rather difficult and greatly depends on the sequence of
the operations with encoded data.

The number of such “real” worlds which correspond to the same observable
world can be used for estimating the resistance of the encoding. We introduce
a measure of encodings resistance as a measure of uncertainty that is the number
of “real” worlds Rw which can correspond to the observable encoded world. An
adversary observing only operations in encoded world and inputs to encoded
world (i.e., all encoded input data) can not distinguish between any of “real”
worlds. Thus the more there is the number of corresponding “real” worlds the
more there are uncertainty and resistance of encoding.

Let y = F (x, c) be some algebraic circuit [1] and ỹ = F̃ (x′, c′) be its corre-
sponding encoded circuit.

Definition 3. A measure of resistance of observed encoded circuit ỹ = F̃ (x′, c′)
is the number of different “real” worlds (c, x) which correspond to the same
encoded world (x′, c′, F̃ ).

We will denote this resistance by Rw(x′, c′). Now take the maximum of such
circuits over all encoded data x′.

164



Definition 4. A measure of resistance of encoded circuit ỹ = F̃ (x′, c′) is the
maximum of all observed resistances. We denote the resistance by Rw(F ) or
simply by Rw.

It is important to note that such measure characterize the resistance of encoding
to arbitrary attack which uses only information from encoded world. It means
that this measure characterizes absolute resistance.

Protection of data in encoded world will be guaranteed by lower bounds of
resistance of encodings which one can obtain. Typically the bounds we present
below are at least 2100 when the range of integers is 264.

5. Results

5.1. Mixed encoding

In this section some estimates of resistance of some circuits of computations are
obtained. Two algebraic circuits with encoded data are considered — the first
is a computation of second degree form and the second is some homogeneous
circuit without multiplicity. It is shown that for both cases we have the following
estimate of resistance

Rw ≥ (ν(p1) · . . . · ν(pm))n
,

where ν is the Euler function, p1, . . . , pm are mixed encoding parameters, and
n is the number of input variables.

Mixed encoding for a vector of data x = (x1, . . . , xn)t and coprime numbers
(p1, · · · , pm) is given by equations

x′
11 = a11x1 + b11 mod p1

· · · · · · · · · · · ·
x′

1m = a1mx1 + b1m mod pm

· · · · · · · · · · · ·
x′

n1 = an1x1 + bn1 mod p1

· · · · · · · · · · · ·
x′

nm = anmx1 + bnm mod pm.

(11)

Then the encoded data are given by the matrix⎛
⎜⎝

x′
11 · · · x′

1m
... · · · ...

x′
n1 · · · x′

nm

⎞
⎟⎠ . (12)

165

The original data can be decoded from encoded data by the following procedure.
Let

x11 = c11x
′
11 + d11 mod p1

· · · · · · · · · · · ·
x1m = c1mx′

1m + d1m mod pm

· · · · · · · · · · · ·
xn1 = cn1x

′
n1 + dn1 mod p1

· · · · · · · · · · · ·
xnm = cnmx′

nm + dnm mod pm.

(13)

Then
x1 = λ1x11 + · · · + λmx1m mod p1 · . . . · pm

· · · · · · · · · · · ·
xn = λ1xn1 + · · · + λmxnm mod p1 · . . . · pm

(14)

for some integer numbers λ1, . . . , λm.

How to perform operations over data in terms of encoded data?

To add two integer numbers x1 + x2 in terms of encoded data one may use the
following procedure

x11 + x21 = c11x
′
11 + c21x

′
21 + d11 + d21 mod p1

· · · · · · · · · · · ·
x1m + x2m = c1mx′

1m + c2mx′
2m + d1m + d2m mod pm.

(15)

For calculation of linear combination of two integer numbers λ1x1 +λ2x2 the
following formula can be used

λ1x11 + λ2x21 = λ1c11x
′
11 + λ2c21x

′
21 + λ1d11 + λ2d21 mod p1

· · · · · · · · · · · ·
λ1x1m + λ2x2m = λ1c1mx′

1m + λ2c2mx′
2m + λ1d1m + λ2d2m mod pm.

The products λkdki and linear combinations λ1b1i + λ2b2i can be calculated
during the compilation.

Now consider multiplication. To calculate the product of two integers x1x2

one may use the following formula

x1i · x2i = (c1ix
′
1i + d1i) · (c2ix

′
2i + d2i) mod pi. (16)

Hence

x1i · x2i = (c1ic2ix
′
1ix

′
2i + d1ic2ix

′
2i + d2ic1ix

′
2i) + d1id2i mod pi. (17)

166



In observable world only the products c1ic2j , d1ic2i, d2ic1i and d1id2i are given
in evaluation.

Now we show how to estimate the resistance of encoding computations consid-
ering (as an important example) an evaluation of the second degree form

f(x1, . . . , xn) =
n∑

i=1

n∑
j=1

αijxixj +
n∑

i=1

βixi + γ (18)

using encoded data x′. How to find it in terms of encoded data? To do this let
us calculate its three summands using only encoded data.

Claim 1. Let
ξijk = αijkcikcjk for i, j = 1, . . . , n (19)

ζik =
n∑

j=1

(αijk + αjik)cikdjk + βikcik for k = 1, . . . , m (20)

ηk =
n∑

i,j=1

αijkdikdjk +
n∑

i=1

βikdik + γk (21)

where coefficients cik are given by formulas (13). Then

fk(x1, . . . , xn) =
n∑

i,j=1

ξijkx′
ikx′

jk +
n∑

i=1

ζikx′
ik + ηk. (22)

The proof is given in Appendix.

Claim 2. The resistance of formula (22) in mixed encoding is

Rw ≥ (ν(p1) · . . . · ν(pm))n ,

where ν is the Euler function and n is a number of input variables.

Now consider algebraic circuits without multiplicity using operations of addition
and multiplication of integers and define corresponding homogeneous algebraic
circuits. We shall present such circuits as graphs of computation with opera-
tions of addition and multiplications as nodes and data and variables as leaves
(see [3, 1]). Let input variables x1, . . . , xn and the constant data c1, . . . , cm

of this circuit have some weights such that deg(xi) = 1 and deg(ci) < 0. The
degree of the product is equal to the sum of degrees of multipliers. As usually
the degree of the sum is not greater then the maximal degree of the summands.

Definition 5. A circuit is called homogeneous without multiplicity if:

167

(1) Addition is performed only for summands of the same nonpositive degree
and the result has the same degree as its summands.

(2) Each coefficient ci is used in the circuit only once.

(3) Multiple use of input variables is allowed.

Condition (1) means homogeneousity of the circuit. Condition (2) means that
each coefficient is used only once.

Example 1. Consider Horner’s scheme of computation of polynomial

Pl(x) = clx
l + · · · + c1x + c0 = (. . . (clx + cl−1)x + · · · + c1)x + c0.

Let deg(ck) = −k and deg(x) = 1. It is not difficult to see that corresponding
circuit is homogeneous without multiplicity.

Example 2. Sparse multivariate polynomial gives another example of homo-
geneous circuit without multiplicity.

Now encode a homogeneous circuit step by step using the encodings of opera-
tions in mixed encoding.

Claim 3. The resistance of any encoded homogeneous circuit without multi-
plicity in mixed encoding is

Rw ≥ (ν(p1) · . . . · ν(pm))n
,

where ν is the Euler totient function, n is the number of variables, and m is
the parameter of encoding which is a number of modules pk.

Now we add to the algebraic graph of computations on integers the nodes
with one input and one output that correspond to exponents, i.e. if input is
k, then output is km for some integer m. Definition of homogeneousity is the
same as for ordinary homogeneous algebraic circuits. Such circuits will be called
general homogeneous circuits. As for homogeneous circuits without multiplicity
for general homogeneous circuits the following Claim holds.

Claim 4. The resistance of any encoded general homogeneous circuit without
multiplicity in mixed encoding is

Rw ≥ (ν(p1) · . . . · ν(pm))n
,

where ν is the Euler function, n is the number of variables, and m is the
parameter of encoding which is a number of modules pk.

Consider a circuit
C(c1, . . . , cn, x1, . . . , xm),

168



which depends on parameters c1, . . . , cn and inputs x1, . . . , xm. Some circuit

C′(c1, . . . , cn, cn+1, . . . , cn+k, x1, . . . , xm)

will be called a generalization of C if for some values of parameters
cn+1, . . . , cn+k circuit C′ computes the same result as circuit C.

Theorem 1. For any circuit

C(c1, . . . , cn, x1, . . . , xm)

there exists some homogeneous circuit without multiplicity

C′(c1, . . . , cn, cn+1, . . . , cn+k, x1, . . . , xm)

which generalizes the first circuit and contains extra multiplications that does
not exceed the doubled number of additions and k is not greater then the
number of extra multiplication.

Then from Theorem 1 and Claim 4 follows the next Theorem.

Theorem 2. For any algebraic circuit without multiplicity there exists encoded
homogeneous circuit without multiplicity in mixed encoding which resistance is

Rw ≥ (ν(p1) · . . . · ν(pm))n
,

where ν is the Euler function, n is the number of variables, and m is the
parameter of encoding which is a number of modules pk.

5.2. Multi-linear encoding

In this section for this type of encoding we propose some circuit of computation
of second degree form with n variables and show that its resistance satisfies the
inequality

Rw ≥ ν(K)mn+n

where K is the range of integers used, m is the parameter of the encoding, and
ν is the Euler function. This means that all computations are modulo K.

What is multi-linear encoding? Let x = (x1, . . . , xn)t be a vector of data
and

A =

⎛
⎜⎝

a11 · · · a1n

... · · · ...
am1 · · · amn

⎞
⎟⎠ (23)

169

and

b =

⎛
⎜⎝

b1

...
bm

⎞
⎟⎠ . (24)

Then the encoded vector is

x′ =

⎛
⎜⎝

x′
1
...

x′
m

⎞
⎟⎠ = Ax + b.

For matrix A there must exist left inverse

B =

⎛
⎜⎝

b11 · · · b1m

... · · · ...
bn1 · · · bnm

⎞
⎟⎠ . (25)

Then
x = BAx = B(x′ − b) = Bx′ − Bb = Bx′ − b′. (26)

The elements of matrix B may no longer be integers. Then there exists such
integer m that matrix mB = B0 is integer. Then vector mb′ = b0 is also integer
and the following equation holds

mx = (mB)x′ − mb′ = B0x
′ − b0. (27)

How to perform operations over data in terms of encoded data?

To add two integer numbers x1 + x2 in terms of encoded data one may use the
following procedure

x1 + x2 = (b11x
′
1 + · · · + b1mx′

m) + (b21x
′
1 + · · · + b2mx′

m) − b′1 − b′2
= (b11 + b21)x′

1 + · · · + (b1m + b2m)x′
m − (b′1 + b′2).

(28)

For calculation of linear combination of two integer numbers λ1x1 + λ2x2

the following formula holds

λ1x1+λ2x2=λ1(b11x
′
1 + · · · + b1mx′

m)+λ2(b21x
′
1+· · ·+ b2mx′

m)−λ1b
′
1−λ2b

′
2

=(λ1b11 + λ2b21)x′
1 + · · · + (λ1b1m + λ2b2m)x′

m − (λ1b
′
1 + λ2b

′
2).

The linear combinations of coefficients λ1b1i + λ2b2j can be calculated during
compilation.

170



Now consider multiplication. To calculate the product of two integers x1x2

one may use the following formula

x1 · x2 =

(
m∑

i=1

b1ix
′
i − b′1

)
·
⎛
⎝ m∑

j=1

b2jx
′
j − b′2

⎞
⎠

=
m∑

i,j=1

b1ib2jx
′
ix

′
j −

m∑
i=1

(b′1b2i + b′2b1i)x′
i + b′1b

′
2.

(29)

The products b1ib2j and combinations b′1b2i + b′2b1i can be calculated during
compilation.

Now consider calculation of the second degree form

f(x1, . . . , xn) =
n∑

i=1

n∑
j=1

αijxixj +
n∑

i=1

βixi + γ (30)

using encoded data x′.

Claim 5. Let

ξkl =
n∑

i,j=1

αijbikbjl for k, l = 1, . . . , m (31)

ζk =
n∑

i=1

βibik −
n∑

i,j=1

αij(b′ibjk + b′jbik) for k = 1, . . . , m (32)

η =
n∑

i,j=1

αijb
′
ib

′
j −

n∑
i=1

βib
′
i. (33)

Then the following formula for computing function f defined by equation (30)
holds

f(x1, . . . , xn) =
m∑

k,l=1

ξklx
′
kx′

l +
m∑

k=1

ζkx′
k + η. (34)

Claim 6. The resistance of expression (34) in multi-linear encoding satisfies
the inequality

Rw ≥ (ν(K))mn+n,

where K is the range of integers used and m is the parameter of the encoding.

171

For K = 264 (usual range for representing integers) the value ν(K) = 263 and
so lower bounds of suggested circuit of computation of second degree form is
greater then 2100 which seems large enough from the point of computational
complexity (enumerating all possible solutions is impossible) and from prob-
abilistic point of view (the probability to guess right parameters is less than
2−100).

6. On “good” and “bad” parameters of encodings
The measure of resistance of encodings we introduced gives the possibility to
analyze encodings on a quantitative base and choose those parameters which
provide greater resistance. Moreover, such measure of resistance allows to com-
pare different algebraic circuits and choose those that have greater resistance.

6.1. An example of “bad” parameters in linear encodings

Let p1, p2, p3, p4 — be four different prime numbers. Let data x1 = p3 and
x2 = p4 are linearly encoded by formulas

x′
1 = p1x1 + b1

x′
2 = p2x2 + b2.

Let adversary observes computation of their product x3 = x1x2 in terms of
encoded data made by the following formula

x′
3 = x′

1x
′
2 − b1x

′
2 − b2x

′
1 + b1b2.

The result of encoded computation is connected with real product by relation
x′

3 = a1a2x3. Therefore the adversary knows the values b1, b2, x
′
1 and x′

2. So he
can find that

x′
1 − b1 = a1x1

x′
2 − b2 = a2x2.

In our case the adversary finds that

a1x1 = p1p3

a2x2 = p2p4.

Hence he obtains that there are 4 cases for a1 and x1

• a1 = 1, x1 = p1p3

• a1 = p1, x1 = p3

172



• a1 = p3, x1 = p1

• a1 = p1p3, x1 = 1,

and 4 independent cases for a2 and x2

• a2 = 1, x2 = p2p4

• a2 = p2, x2 = p4

• a2 = p4, x2 = p2

• a2 = p2p4, x2 = 1.

So there are only 16 possible cases in this example.

6.2. Resistance and comparison of algebraic circuits for en-
coded computations

Now consider multiplication of two integers and estimate its resistance. At first
consider linear encoding. Let encodings for x1 and x2 be given by formulas

x′
1 = a1x1 + b1

x′
2 = a2x2 + b2

and m = GCD(a1, a2). Then the product y = x1x2 can be encoded by formula
(see [10])

ỹ = x′
1x

′
2 − b2x

′
1 − b1x

′
2.

Then an adversary observes the parameters of encoding b1 and b2 and finds
that

a1a2 | (x′
1x

′
2 − b2x

′
1 − b1x

′
2 + b1b2).

In the example of Subsection 6.1 we obtain only 16 possibilities for parameters
a1, a2, x1 and x2.

So in the case of linear encoding the upper bound for resistance of multiplication
is equal to 16. To increase resistance of multiplication it is necessary to make
restrictions on the encoding parameters.

Now consider a variant of mixed encoding. Let encodings for x1 and x2 be
given by formulas

x′
1i = a1ix1i + b1i

x′
2i = a2ix2i + b2i,

173

where
x1 ≡ x1i mod pi for 0 ≤ x1i < pi

x2 ≡ x2i mod pi for 0 ≤ x2i < pi.

Then multiplication y = x1x2 can be expressed in terms of encoded data by
formulas (similar to linear encoding) (see [10])

ỹi = x′
1ix

′
2i − b2ix

′
1i − b1ix

′
2i. (35)

Than an adversary finds that

a1ia2i | (x′
1ix

′
2i − b2ix

′
1i − b1ix

′
2i + b1ib2i). (36)

and we have the same problem as in case of linear encoding. In this case the
resistance is at most 16m. In the case m = 5 it is not more then 220.

Now consider another variant of mixed encoding. In this case integers x1

and x2 are encoded by the formulas

a1ix1i + b1i ≡ x′
1i mod pi

a2ix2i + b2i ≡ x′
2i mod pi,

where GCD(aki, pi) = 1 and there are no other restrictions on x′
1i and x′

2i and
coefficients aki and bi. Then the product y = x1x2 can be expressed in terms
of encoded data by the formula (see [11])

ỹ = αi3x
′
1ix

′
2i + α1ix

′
1i + α2ix

′
2i, (37)

where
αi3 ≡ γia1ia2i mod pi

αi1 ≡ γia1ia2ib2 mod pi

αi3 ≡ γia1ia2ib1 mod pi

(38)

for some (arbitrary) γi such that GCD(γi, pi) = 1. Then adversary observes
parameters

α11, α12, α13, . . . , αm1, αm2, αm3.

In this case the function A of formula (8) is given by

A(a11, b11, . . . , a1m, b1m, a21, b21, . . . , a2m, b2m) =
(α11, α12, α13, . . . , αm1, αm2, αm3).

It may be shown in this case that the resistance of such multiplication is at
least ν(p1) · · · · · ν(pm) where ν is the Euler totient function.

174



7. Conclusions
The main contribution of this paper is the notion of measure of resistance of
encoded computations we introduced. This gives the possibility to perform
quantitative analysis of encoding schemes and to compare different data en-
codings. The results presented here show sufficiently high level of protection
of data during the computations when one uses considered encoding schemes.
Protection of data in encoded world is guaranteed by lower bounds of resis-
tance we obtained. Typically the bounds are at least 2100 when operating with
integers of range 264.

References
[1] A. A. Aho, J.E. Hopcroft, J. D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley Publishing Company, 1976.

[2] D. E. Knuth, The Art of Computer Programming, vol.2, Seminumerical
Algorithms, 1997.

[3] G. Birkhoff, T. C. Bartee, Modern Applied Algebra, McGrow-Hill Book
Company, 1975.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms,
The MIT Press Cambridge, Massachusetts, London, England, 1997.

[5] S. T. Chow, H. J. Johnson, Yuan Gu, Tamper Resistant Software Encod-
ing, O8-878835US, 1999.

[6] I. Niven, H. S. Zuckerman, An Introduction to the Theory of Numbers,
Wiley, 1980.

[7] C. Collberg, C. Thomborson, D. Low, Manufacturing cheap, resilient and
stealthy opaque constructs, Symp. on Principles of Prog. Lang., 1998,
p.184-196.

[8] M. Mambo, T. Murayama, E. Okamoto, A tentative approach to construct-
ing tamper-resistant software, Workshop on New Security Paradigms,
1998, p.23-33.

[9] C. Wang, J. Hill, J. Knight, J. Davidson, Software tamper resistance:
obstructing static analysis of programs, Tech. Report, N 12, Dep. of Comp.
Sci., Univ. of Virginia, 2000.

175

[10] A.V. Shokurov, On encodings of integers and the division problem. Techni-
cal Report, Institute for Sistem Programming Russian Acad. of Sci., May
2000.

[11] A.V. Shokurov, On measures of resistance of data encodings. Intitute for
Sistem Programming Russian Acad. of Sci., Technical Report, February
2001.

Appendix
Proof of Claim 1. We have (all computations are made modulo pk)

n∑
i,j=1

αijkxikxjk =
n∑

i,j=1

αijk(cikx′
ik + dik) · (cjkx′

jk + djk)

=
n∑

i,j=1

αijk(cikcjkx′
ikx′

jk+

cikdjkx′
ik + cjkdikx′

jk + dikdjk)

=
n∑

i,j=1

αijkcikcjkx′
ikx′

jk+

n∑
i=1

⎛
⎝ n∑

j=1

αijkcikdjk + αjikcikdjk

⎞
⎠x′

ik+

n∑
i,j=1

αijkdikdjk

=
n∑

i,j=1

αijkcikcjkx′
ikx′

jk+

n∑
i=1

⎛
⎝ n∑

j=1

(αijk + αjik)cikdjk

⎞
⎠ x′

ik +
n∑

i,j=1

αijkdikdjk.

For linear part of this expression we can write

n∑
i=1

βixi =
n∑

i=1

βik(cikx′
ik + dik) =

m∑
k=1

(βikcikx′
ik + βikdik). (39)

Now let
ξijk = αijkcikcjk for i, j = 1, . . . , n (40)

176



ζik =
n∑

j=1

(αijk + αjik)cikdjk + βikcik for k = 1, . . . , m (41)

ηk =
n∑

i,j=1

αijkdikdjk +
n∑

i=1

βikdik + γk. (42)

Then the formula (22) for computing function f defined by equation (18)
holds. �
Proof of Claim 2. The observed data are coefficients ξijk, ζik, ηk of formula
(22) and encoded data x′

ik. Take arbitrary numbers δik mod pk that coprime
with pk and change coefficients of the form (18) by relations α̃ijk = δikδjkαijk

and β̃ik = δikβik. Then change the parameters of encoding by relations c̃ik =
δ−1
ik cik and d̃ik = δ−1

ik dik where δ−1
ik are modulo pk inverse of δik. Then from

formulas (19)– (21) for α̃ijk and β̃ik

ξ̃ijk = α̃ijk c̃ik c̃jl = δikδjkαijkδ−1
ik cikδ−1

jk cjk = αijkcikcjk = ξijk

ζ̃ik =
n∑

j=1

(α̃ijk + α̃jik)c̃ikd̃jk + β̃ik c̃ik

=
n∑

j=1

(δikδjkαijk + δikδjkαjik)δ−1
ik cikδ−1

jk djk + δikβikδ−1
ik cik = ζik

η̃k =
n∑

i,j=1

α̃ijk d̃ik d̃jk +
n∑

i=1

β̃ikd̃ik + γk

=
n∑

i,j=1

δikδjkαijkδ−1
ik dikδ−1

jk djk +
n∑

i=1

δikβikδ−1
ik dik + γk = ηk.

the coefficients of encoded form do not change. Thus encoded data and circuit
don’t change.

Prof of Statements 3 and 4 is similar to the proof of Claim 2.

177

Prof of Claim 5. We have

n∑
i,j=1

αijxixj =
n∑

i,j=1

αij

(
m∑

k=1

bikx′
k − b′i

)
·
(

m∑
l=1

bjlx
′
l − b′j

)

=
n∑

i,j=1

αij

⎛
⎝ m∑

i,j=1

bikbjlx
′
kx′

l−

b′i
m∑

l=1

bj lx
′
l − bj

m∑
k=1

bikx′k + b′ib
′
j

)

=
m∑

k,l=1

⎛
⎝ n∑

i,j=1

αijbikbjl

⎞
⎠x′

kx′
l−

m∑
k=1

⎛
⎝ n∑

i,j=1

αij(b′ibjk + b′jbik)

⎞
⎠ x′

k +
n∑

i,j=1

αijb
′
ib

′
j

(43)

For linear part of this expression we can write

n∑
i=1

βixi =
n∑

i=1

(
m∑

k=1

bikx′
k − b′i

)
=

m∑
k=1

(
n∑

i=1

βibik

)
x′

k −
n∑

i=1

βib
′
i. (44)

Now denote by

ξkl =
n∑

i,j=1

αijbikbjl for k, l = 1, . . . , m (45)

ζk =
n∑

i=1

βibik −
n∑

i,j=1

αij(b′ibjk + b′jbik) for k = 1, . . . , m (46)

η =
n∑

i,j=1

αijb
′
ib

′
j −

n∑
i=1

βib
′
i. (47)

Then the formula (34) for computing function f defined by equation (30) holds.
�
Prof of Claim 6 is similar to the proof of Claim 2.

178


