
On the equivalence-checking problem for
polysemantic models of sequential programs

Ivan M. Zakharyaschev, Vladimir A. Zakharov

Abstract. We introduce a new propositional model of computation for sequential
computer programs. A distinctive feature of this model is that program runs and the
results of computations are defined by means of two independent operational seman-
tics. One of them can be regarded as an internal semantics that is used for routing
runs in the control-flow graph of a program. The other one can be viewed as an
observational semantics which is used for interpreting the results of a program execu-
tion. We show that some conventional models of sequential and recursive programs
can be embedded into our model. We consider the equivalence-checking problem
for the presented model and develop a uniform approach to the design of efficient
equivalence-checking algorithms.

1. Introduction
The investigation of the equivalence-checking problem is of great importance in
computer programs optimization, maintenance and understanding. Although it
is hardly possible to formalize completely the term “to understand the meaning
of a program”, nevertheless we can estimate the extent of our understanding
using the following criterion: the meaning of a given program is understood if
we can distinguish it from programs with different meaning. By defining an
equivalence relation on programs in such a way that programs with the same
meaning are equivalent, we face the need to consider the equivalence-checking
problem. Usually, the meaning of a program is specified by its observable behav-
ior. In the case of sequential programs, with every program π we can associate
the input-output relation Rπ computed by the program and consider this rela-
tion as the observable behavior of the program. Thus, the equivalence-checking
problem is to verify whether two given sequential programs compute the same
input-output relation.
As follows from the well-known Rice-Uspensky Theorem [21, 26], the equi-
valence-checking problem defined above is undecidable for any programming
system Σ satisfying the following conditions:

1) any recursive input-output relation R is computable by some program π

179

from Σ, i.e., R = Rπ;

2) there exists a program U which can simulate any program from Σ, i.e.,
RU(π, in, out) = Rπ(in, out) for every π ∈ Σ;

3) any programming system Σ′ satisfying 1) and 2) above can be effectively
translated into Σ, i.e., there exists a recursive function f : Σ′ → Σ such
that Rπ′ = Rf(π′) for every π′ ∈ Σ′.

It is worth noting that all programming systems used in practice comply with
these three conditions. To obtain positive results (effective criteria, semi-
decision procedures, etc.) for the equivalence-checking problem, one can be
guided by the following approach. Given a programming system Σ, consider a
model of computation Σ̂ which has the same syntax but a simpler semantics.
Based on this semantics, define an equivalence relation ∼ on programs. We say
that Σ̂ approximates Σ if π1 ∼ π2 implies Rπ1 = Rπ2 for every pair π1, π2 of
programs. If Σ̂ approximates Σ, it suffices to check π1 ∼ π2 to certain that
Rπ1 = Rπ2 . If the equivalence-checking problem “π1 ∼ π2?” is decidable in Σ̂
then a decision procedure in Σ̂ can be used for checking program equivalence
in Σ.
This approach goes back to the seminal papers by Lyapunov and Yanov [9, 27].
It was further developed and studied in details in [4, 8, 13]. A whole spectrum of
computational models that can be used for approximating the behavioral equiv-
alence was introduced for sequential programs [10, 13, 19], functional programs
[1, 3, 5], parallel and distributed programs [7]. Lattice-theoretic properties of
the approximation relation on such models were studied in [18]. The utility
of this approach is strengthened by the design of efficient equivalence-checking
algorithms for many approximating models [1, 7, 11, 15, 20, 22, 23, 24, 25, 28,
29, 30].
Usually the semantics of approximating models of computation is defined in
terms of transition systems (Kripke models) M = 〈S, R, ρ〉 (see [6]), where S is
a state space whose elements are associated with data states of programs, R is a
transition relation which interprets program statements, and ρ is an evaluation
of predicates in branching statements. A run of a program π on M is defined
as a double route (wπ, wS), where wπ is a route in the control flow graph of π,
and wS is the corresponding route in the state space S. A program builds both
routes in the framework of a single operational semantics. If a run terminates
then the final data state s reached by wS is accepted as the result of the run.
However, there are cases when such models are not suitable for capturing some
features of program computations. For example, we may assume that the pro-
gram execution allows more than one output along its run. Then the result

180

of computation is specified not only by its final data state, but also by some
intermediate data states traversed by this run in S. Moreover, in functional
programming (see [2, 17]), an execution of a program may consist of the in-
terleaving of explicit data transformations (numerical computation steps) and
transformations of function terms (symbolic or “lazy” computation steps). The
latter requires an alternative operational semantics which is defined in terms of
rewriting rules. Thus, in studying the equivalence-checking problem by means
of approximating models there are cases when it is suitable to deal with models
of programs supplied with different semantics.
In this paper we introduce a new propositional model of computation for se-
quential computer programs. A distinctive feature of this model is that program
runs and the results of computations are defined by means of two independent
operational semantics. One of them can be regarded as an internal semantics
that is used for routing runs in the control-flow graph of a program. The other
one can be viewed as an observational semantics which is used for interpreting
the results of a program execution. We show that some conventional models
of sequential and recursive programs (Yanov schemes with input-output state-
ments, linear recursive monadic schemes) can be embedded into our model. We
consider the equivalence-checking problem for the presented model and develop
a uniform approach to the design of efficient equivalence-checking algorithms.
The paper is organized as follows. In Section 2 we introduce the basic con-
cepts of our model, the syntax and the semantics of generalized propositional
sequential programs (GPSP). Both syntax and semantics of GPSPs are defined
in terms of transition systems. In Section 3 we show that some known mod-
els of computation used in studying the equivalence-checking problem can be
uniformly embedded into GPSP models. Finally, in Section 4 we present a uni-
form approach to the equivalence-checking problem for GPSP. This approach
extends the criteria system techniques used in [28, 29] for designing efficient
equivalence-checking algorithms.

2. Preliminaries
We begin by defining the syntax and the semantics of generalized propositional
sequential programs (GPSP).

2.1. Syntax of GPSPs

Fix two finite alphabets A = {a1, . . . , aN}, B = {p1, . . . , pK} and an infinite
alphabet P = {F1, F2, . . . }.
The elements of A are called basic actions. Intuitively, basic actions stand for

181

elementary built-in procedures. A finite sequence of basic actions is called a
basic term. The set of all basic terms is denoted by A∗. We write λ for the
empty sequence of actions and call it the empty term. As usual, we denote by
|t| the length of a term t, and by t1t2 the concatenation of t1 and t2. We also
have a basic action stop not included in A — it corresponds to the statement
that terminates each computation of a program.
The elements of B are called basic predicates. Each basic predicate stands for
an elementary built-in relation on program data. A tuple 〈σ1, . . . , σk〉 of truth-
values of basic predicates is called a condition. The set of all conditions is
denoted by C. We write c1, c2, . . . for generic elements from C. Since the set of
primitive relations used in programs is finite and fixed, the internal structure
of conditions is of no importance.
The elements of P are called procedures. Depending on the type of program-
ming system (imperative or functional) whose programs are approximated by
GPSP, procedures may be thought of either as points in control flow graphs
of imperative programs, or as names of procedures and functions defined in
recursive programs.

Definition 1. By a (deterministic) generalized propositional sequential pro-
gram (GPSP, for short) over sets A, C, P we mean a finite labeled transition
system π = 〈Pπ, entry, exit, T, B〉, where

• Pπ denotes the set of procedures used in π;

• entry is the initial point of the program;

• exit is the terminal point of the program;

• T : (Pπ ∪ {entry}) × C → (Pπ ∪ {exit}) is a transition function;

• B : (Pπ ∪ {entry}) × C → A∗ is a binding function.

A transition function represents the control flow of a program, whereas a bind-
ing function associates with each transition a block of basic actions. Given a
sequence of conditions c1, c2, . . . , cn−1, we say that a sequence of procedures
F1, F2, . . . , Fn is a 〈c1, c2, . . . , cn−1〉-trace from F1 to Fn in a program π if
F1 ∈ Pπ ∪ {entry} and Fi+1 = T (Fi, ci), for every i, 1 ≤ i < n. This means
that F1, F2, . . . , Fn is a trace routed by conditions c1, c2, . . . , cn−1 in the tran-
sition system. If F1 = entry and Fn = exit then the trace is called complete.
We extend the binding function to the traces of a GPSP π by assuming that
B(F1, c1, c2, . . . , cn−1) = B(F1, c1)B(F2, c2) . . . B(Fn−1, cn−1). By the size |π|
of π we mean the number |Pπ| +

∑
P∈Pπ

∑
c∈C

|B(P, c)|.

182

Given a GPSP π and two procedures F ′ ∈ Pπ ∪ {entry}, F ′′ ∈ Pπ ∪ {exit},
we say that F ′ refers to F ′′ if there exists a trace from F ′ to F ′′. A procedure
F in Pπ is called

• self-referenced if F refers to itself;

• marginal if F does not refer to any self-referenced procedure in π;

• pre-marginal if F is non-marginal, but there exists a condition c such
that T (F, c) is marginal procedure;

• terminated if F refers to exit.

2.2. Dynamic frames and models

The semantics of programs is defined by means of dynamic Kripke structures
(frames and models) (see [6]).

Definition 2. A dynamic deterministic frame (or simply a frame) over the set
of basic actions A is a triple of the form F = 〈S, s0, Q〉, where

• S is a non-empty set of data states,

• s0 is the initial state, s0 ∈ S,

• Q : S ×A ∪ {stop} → S is an updating function.

For all a ∈ A, s ∈ S, the state Q(s, a) is interpreted as the result of application
of the action a to the data state s. The updating function Q can be naturally
extended to the set A∗ of basic terms: Q∗(s, λ) = s, Q∗(s, ta) = Q(Q∗(s, t), a).
A state s′′ is said to be reachable from s′ if s′′ = Q∗(s′, t) for some t ∈ A∗

(notation: s′ 	 s′′). We also write s′ � s′′ if s′′ = Q∗(s′, t) for some t ∈ A∗, t
=
λ. If 	 is a partial order on S, then the frame F is called ordered.
Denote by [t]F the state s = Q∗(s0, t) reachable from the initial state by means
of a basic term t. As usual, the subscript F will be omitted when the frame is
understood. Since we will deal only with data states reachable from the initial
state, it is assumed that every state s ∈ S is reachable from the initial state s0,
i.e., S = {[t] : t ∈ A∗}.
A frame Fs = 〈S′, s, Q′〉 is said to be a subframe of F = 〈S, s0, Q〉 induced by
a state s ∈ S if S′ = {Q∗(s, t) : t ∈ A∗} and Q′ is the restriction of Q to S′. A
frame F is called

• a semigroup if F can be mapped homomorphically onto every subframe
Fs,

183

• universal if [t1] = [t2] implies t1 = t2 for every pair t1, t2 ∈ A∗.

Taking the initial state s0 = [λ] for the unit, one may regard a semigroup frame
F as a finitely generated monoid 〈S, ∗〉 such that [t1] ∗ [t2] = [t1t2]. In what
follows we will say that the frame F is associated with this monoid. Clearly, the
universal frame U is associated with the free monoid on A. If F is an ordered
semigroup frame then the unit element [λ] is irreducible, e.g., [λ] = [t1t2] implies
t1 = t2 = λ.

Definition 3. A dynamic deterministic model for GPSP (or simply a GPSP-
model) over the sets of basic actions A and conditions C is a triple MG =
〈F , E , ξ〉 such that

• F = 〈S, s0, Q〉 and E = 〈R, r0, P 〉 are frames over A,

• ξ : S → C is a valuation function indicating for every data state s ∈ S
a condition c ∈ C which is satisfied at s.

2.3. Equivalence-checking problem for GPSPs

Definition 4. Let π = 〈Pπ, entry, exit, T, B〉 be some GPSP over the sets of
basic actions A and conditions C, and MG = 〈F , E , ξ〉 be a GPSP-model based
on frames F = 〈S, s0, Q〉 and E = 〈R, r0, P 〉. Then a finite or infinite sequence
of quadruples

ρ = (F1, c1, s1, r1), (F2, c2, s2, r2), . . . , (Fi, ci, si, ri), . . . , (1)

where for every i, i ≥ 1, Fi ∈ Pπ ∪ {entry}, ci ∈ C, si ∈ S, ri ∈ R, is called
a run of π on MG if

1. F1 = entry, s1 = [λ]F , r1 = [λ]E , c1 = ξ(s1);

2. for every i, i ≥ 2, one of the following alternatives holds:

• either Fi = exit and (Fi, ci, si, ri) is the last quadruple in (1),

• or Fi
= exit and

Fi+1 = T (Fi, ci),
si+1 = [B(F1, c1, c2, . . . , ci)]F , ri+1 = [B(F1, c1, c2, . . . , ci)]E ,
ci+1 = ξ(si+1).

If ρ is finite and (Fn, cn, sn, rn) is its last element, we say that ρ terminates
having the state r = P (rn, stop) ∈ R as the result of the run ρ. If ρ is an
infinite sequence, we say that ρ loops and has no results. Since GPSPs and

184

frames under consideration are deterministic, every program π has the unique
run ρ(π, MG) on a given model MG. We denote the result of ρ(π, MG) by
[ρ(π, MG)], assuming that [ρ(π, MG)] is undefined if ρ(π, MG) loops.
Let π′ and π′′ be some GPSPs, M a GPSP-model, and F , E be frames. Then
π′ and π′′ are called

• equivalent on MG (π′ ∼MG π′′, in symbols) if [ρ(π′, MG)] = [ρ(π′′, MG)],
i.e., either both runs ρ(π′, MG) and ρ(π′′, MG) loop (and hence have no
results) or both of them terminate with the same state r as their results;

• equivalent on F , E (π′ ∼F ,E π′′, in symbols) if π′ ∼MG π′′ for every
model M = 〈F , E , ξ〉 based on F and E .

The equivalence-checking problem w.r.t. frames F , E is to check, given an arbi-
trary pair π′, π′′ of GPSPs, whether π′ ∼F ,E π′′ holds. When the decidability
and complexity aspects of the equivalence problem are concerned, the frames
F , E under consideration are assumed to be effectively characterized in logic or
algebraic terms.

3. Embedding sequential and recursive programs
into GPSPs

In this section we show that the computational model of generalized proposi-
tional sequential programs is sufficiently expressive for presenting uniformly the
equivalence-checking problem for various models of computer programs. We
consider two models of computer programs—sequential imperative programs
with multiple outputs and linear recursive programs—and demonstrate the em-
bedding of these models into GPSPs.

3.1. Sequential programs with multiple outputs

As was observed in Section 1, if more than one output statements are executed
along a run of a sequential program, the result of computation is specified not by
the final data state when the program terminates, but by the sequence of data
states reached by the program after successive execution of output statements.
Formally, the equivalence-checking problem for this class of programs can be
defined as follows.
Suppose that the set of basic actions is split into disjoint sets A1 and A2. The
actions from A1 are used just to output current intermediate results, whereas
those from A2 are conventional actions whose execution is invisible to the ex-
ternal observer.

185

Definition 5. A deterministic propositional sequential program (PSP) over
sets A, C, P is a finite labeled transition system π = 〈Pπ, entry, exit, T, B〉,
where

• Pπ denotes the set of program points in π;

• entry is the initial point of the program;

• exit is the terminal point of the program;

• T : (Pπ ∪ {entry}) × C → (Pπ ∪ {exit}) is a transition function;

• B : Pπ ∪ {entry} → A is a binding function.

Let F = 〈S, s0, Q〉 be a frame and ξ a valuation function on F . Then the run
of PSP π on the PSP-model M = 〈F , ξ〉 is a finite or infinite sequence of triples

ρ = (F1, c1, s1), (F2, c2, s2), . . . , (Fi, ci, si), . . . , (2)

such that

1. Fi ∈ Pπ ∪ {entry}, ci ∈ C, si ∈ S for every i, i ≥ 1,

2. F1 = entry, c1 = ξ(s0), s1 = [λ]F ;

3. for every i, i ≥ 2, one of the following alternatives holds:

• either Fi = exit and (Fi, ci, si) is the last triple in (2),

• or T (Fi, ci)
= exit and

Fi+1 = T (Fi, ci), si+1 = Q(si, B(Fi)), ci+1 = ξ(si+1),

If ρ is finite and (Fn, cn, sn) is its last element, we say that ρ terminates. The
result r(π, M) of a terminating run ρ of a PSP π on a model M is defined
as follows. Let i1, i2, . . . , ik be the sequence of all indices such that B(Fij) ∈
A1. Then r(π, M) = 〈si1 , si2 . . . , sik

〉. If ρ does not terminate then the result
r(π, M) is undefined.
The equivalence of PSPs π′ and π′′ on models and frames is defined analogously
to that of GPSPs.
Now we show that the equivalence-checking problem for PSPs with multiple
outputs can be reduced to the equivalence-checking problem for GPSPs.
With every PSP π = 〈Pπ, entry, exit, T, B〉 we associate a GPSP
π̂ = 〈Pπ, entry, exit, T, B̂〉 such that B̂(F, c) = B(F) for every procedure
F ∈ Pπ and every condition c ∈ C.
Given a PSP-model M = 〈F , ξ〉 based on the frame F = 〈S, s0, Q〉, we consider
a GPSP-model MG = 〈F , E , ξ〉, where the frame E = 〈R, r0, P 〉 is defined as
follows:

186

1. R is the set of all finite sequences 〈s1, s2, . . . , sk〉 of data states from F ;

2. the initial state r0 is the sequence 〈s0〉;
3. for every state r = 〈s1, . . . , sk〉 in R and every action a in A ∪ {stop}

(a) P (r, a) = 〈s1, s2, . . . , sk−1, Q(sk, a), Q(sk, a)〉 if a ∈ A1;
(b) P (r, a) = 〈s1, s2, . . . , sk−1, Q(sk, a)〉 if a ∈ A2;
(c) P (r, stop) = 〈s1, s2, . . . , sk−1, s0〉.

The following theorem shows that PSPs with multiple outputs can be embedded
into GPSPs:

Theorem 1. Let π1 and π2 be PSPs and M = 〈F , ξ〉 a PSP model. Consider
the GPSPs π̂1, π̂2 and the GPSP-model MG = 〈F , E , ξ〉 as defined above. Then

1. π1 ∼M π2 ⇐⇒ π̂1 ∼MG π̂2;

2. π1 ∼F π2 ⇐⇒ π̂1 ∼F ,E π̂2.

Moreover, if F is a semigroup frame then E is a semigroup frame as well.

Thus, the equivalence-checking problem for sequential programs with multiple
outputs can be reduced to the equivalence-checking problem for GPSPs without
loss of specific algebraic features of semantics.

3.2. Linear recursive programs

Let A and P be the sets of basic actions and procedures, respectively. By a
term we mean any finite sequence of basic actions and procedures. A term t is
called linear if at most one procedure occurs in t and the rightmost element of t
is a basic action. The set of all linear terms over A∪P is denoted by LinTerm.
We write F ∈ t to indicate that a procedure F occurs in t. If t = a1a2 . . . an

then the term an . . . a2a1 is called the reverse of t and denoted by t−1.
A definition of a procedure F is an expression D of the form

F = if c1 then t1 else
if c2 then t2 else
· · ·

if cI−1 then tI−1 else tI

where ti ∈ LinTerm, ci ∈ C = {c1, c2, . . . , cI}, 1 ≤ i ≤ I. The definition above
will be also written as

F : (c1, t1), (c2, t2), . . . , (cI , tI) . (3)

187

The first occurrence of F in D is called the head of D, and the list of pairs
(c1, t1), (c2, t2), . . . , (cI , tI) is the body of D. For every pair (ci, ti) in the body
of D, the term ti is called a ci-variant of the definition D.

Definition 6. A (deterministic) linear recursive program (LRP) over the sets
A, C, P is a tuple π = 〈G, D1, D2, . . . , Dn〉, where

• G ∈ LinTerm is the goal of the program;

• D1, D2, . . . , Dn are definitions of pairwise different procedures
F1, . . . , Fn.

The set of procedures {F1, . . . , Fn} defined in an LRP π is denoted by Pπ.
Given a procedure F in Pπ, we write Dπ(F) for the definition of F in π, and
Dπ(F, c) for the c-variant of Dπ(F). If a program is understood, the subscript
π will be omitted. It is also assumed that every procedure occurring in π is
defined in π.
The semantics of LRPs is defined by means of dynamic frames and models.

Definition 7. Let π = 〈G, D1, D2, . . . , Dn〉 be some LRP and M = 〈F , ξ〉 a
model based on a frame F = 〈S, s0, Q〉. A finite or infinite sequence of triples

ρ = (t1, s1, c1), (t2, s2, c2) . . . , (ti, si, ci), . . . , (4)

where ti ∈ LinTerm, si ∈ S, ci ∈ C, i ≥ 1, is called a run of π on M if t1 = G
and for every i, i ≥ 1, one of the following conditions holds:

1. if ti is a basic term then si = Q∗(si−1, t
−1
i), ci = ξ(si), and the triple

(ti, si, ci) is the last element of (2);

2. if ti is a non-basic term of the form ti = TFt, where F ∈ Pπ, t ∈ A∗,
then si = Q∗(si−1, t

−1), ci = ξ(si), ti+1 = TD(F, ci).

If ρ is finite and the triple (sm, cm, tm) is its last element, we say that ρ ter-
minates with result sm. If ρ is an infinite sequence, we say that ρ loops. Since
LRPs and frames under consideration are deterministic, every program π has
a unique run ρ(π, M) on a given model M . We denote by [ρ(π, M)] the result
of ρ(π, M), assuming that [ρ(π, M)] is undefined if ρ(π, M) loops.
The equivalence of LRPs π′ and π′′ on models and frames is defined similarly
to that of GPSPs.
Now we show that the equivalence-checking problem for LRPs can be reduced
to the equivalence-checking problem for GPSPs.
First, we define a translation from LRPs into GPSPs. Given the set A of
basic actions for LRPs, we introduce a set A of basic actions for GPSPs by

188

taking A = {〈λ, a〉 : a ∈ A} ∪ {〈a, λ〉 : a ∈ A}. For any pair of basic terms
t1 = a1, . . . , ak and t2 = a′

1, . . . , a
′
m over A we denote by 〈t2, t1〉 the term

〈λ, a1〉 . . . 〈λ, ak〉〈a′
1, λ〉 . . . 〈a′

m, λ〉.
Let π = 〈G, D1, D2, . . . , Dn〉 be an LRP over A, C, and P . The corresponding
GPSP π = 〈Pπ, entry, exit, T, B〉 is defined as follows:

1. Pπ = Pπ, entry = G;

2. for every procedure f ∈ Pπ and every condition c ∈ C,

(a) if Dπ(F, c) = t, where t is a basic term in A∗, then T (F, c) = exit
and B(F, c) = 〈λ, t〉;

(b) if Dπ(F, c) = t′F ′t, where t, t′ are basic terms in A∗ and F ′ is a
procedure in Pπ, then T (F, c) = F ′ and B(F, c) = 〈t′, t〉.

Next we relate dynamic models for LRP with GPSP-models. Let M = 〈F , ξ〉
be a dynamic model over the set of basic actions A and conditions C. Then the
corresponding GPSP-model MG = 〈F , E , ξ〉 is obtained from M by adopting
the updating function Q to the basic actions from A

Q(s, 〈t′, t〉) = Q(s, t)

and by adding to M a frame E = 〈R, r0, P 〉 such that

1. R = (A ∪ {stop}) × S;

2. r0 = 〈λ, s0〉 is the initial state;

3. the updating function P : R × (A ∪ {stop}) → R is defined for each
r = 〈t, s〉 in R by the following equalities:

(a) P (r, stop) = 〈stop, Q∗(s, t)〉;
(b) P (r, 〈a, λ〉) = 〈at, s〉;
(c) P (r, 〈λ, a〉) = 〈t, Q(s, a)〉.

The following theorem shows that LRP can be embedded into GPSPs:

Theorem 2. Let π1 and π2 be LRPs, and M = 〈F , ξ〉 a PSP model. Consider
the GPSPs π1, π2 and the GPSP model MG = 〈F , E , ξ〉 as defined above. Then

1. π1 ∼M π2 ⇐⇒ π1 ∼MG π2;

2. π1 ∼F π2 ⇐⇒ π1 ∼F ,E π2.

Moreover, if F is a semigroup frame then E is a semigroup frame as well.

189

Thus, the equivalence-checking problem for linear recursive programs can be
reduced to the equivalence-checking problem for GPSPs without loss of specific
semantic features.

4. How to design a polynomial time
equivalence-checking algorithms for GPSPs

In this section we present an approach to the design of efficient equivalence-
checking algorithms for GPSPs w.r.t. some ordered semigroup frames. Its key
idea is as follows. Given frames F , E and a pair of programs π1, π2, we first
choose some specific semigroups U and V to encode all pairs of states 〈s′, s′′〉
in F and 〈r′, r′′〉 in E . This encoding is intended to estimate the extent to
which the intermediate data states of program runs “diverge” to that moment.
Then, using this encoding, we construct a graph structure Γπ1,π2 to represent
all pairs of runs ρ(π1, M), ρ(π2, M) of programs π1, π2 on the models based
on the frames F and E . We show that to check the equivalence of π1 and
π2 we only need to analyze a fragment of Γπ1,π2 whose size is polynomial in
|π1| and |π2|. The construction of Γπ1,π2 involves solutions to the reachability
problem “s′ 	 s′′?” for the frame F and the identity problem “w′ = w′′?”
for the semigroups U and V . If these problems are decidable in polynomial
time, the equivalence-checking problem for GPSPs w.r.t. F , E is decidable
in polynomial time as well. Using this technique, we demonstrate that the
equivalence-checking problem for LRPs w.r.t. the frames associated with free
commutative monoids is decidable in polynomial time.
Suppose that U is a finitely generated monoid, and u+, u∗ are the distinguished
elements in U . Denote by ◦ and e the binary operation on U and the unit of
U , respectively.

Definition 8. The triple K = 〈U, u+, u∗〉 is said to be a criteria system for a
semigroup frame F = 〈S, s0, Q〉 if K and F meet the following requirements:

(R1) there exists a homomorphism ϕ of S × S into U such that

[t1] = [t2] ⇐⇒ u+ ◦ ϕ(〈[t1], [t2]〉) ◦ u∗ = e

holds for every pair t1, t2 in A∗,

(R2) for every element u in U ◦ u∗ the equation X ◦ u = e has at most one
solution X in the coset u+ ◦ U .

Let F = 〈S, s0, Q〉 and E = 〈R, r0, P 〉 be semigroup frames, and F an ordered
frame. Suppose that KF = 〈U, u+, u∗〉 and KE = 〈V, v+, v∗〉 are criteria systems
for these frames such that ϕ : S × S → U and ψ : R × R → V are the required

190

homomorphisms. We assume that the coset u+ ◦U is divided into four disjoint
sets U= = {u+ ◦ ϕ(〈s, s〉)}, U< = {u+ ◦ ϕ(〈s′, s′′〉) : s′ � s′′}, U> = {u+ ◦
ϕ(〈s′, s′′〉) : s′′ � s′} and U∅ = (u+ ◦ U) − (U= ∪ U< ∪ U>). Since F is
an ordered semigroup frame, checking reachabilities s′ 	 s′′ and s′′ 	 s′ would
suffice to decide which of these classes contains u+ ◦ ϕ(〈s′, s′′〉).
Given a pair of GPSPs π1, π2 such that Pπ1 ∩ Pπ2 = ∅, we define a rooted
labeled directed graph Γπ1,π2 as follows.
The nodes of Γπ1,π2 are quadruples (F1, F2, u, v) such that F1 and F2 are pro-
cedures from π1 and π2, respectively, and u, v are elements from the cosets
u+ ◦ U and v+ ◦ V , respectively.
The root of Γπ1,π2 is the node w0 = (entry, entry, u+, v+).
The arcs of Γπ1,π2 are marked with pairs (c1, c2) in (C∪{ε})×(C∪{ε}). The arcs
connect nodes in Γπ1,π2 according to the following rules. Consider an arbitrary
node w = (F1, F2, u, v) in Γπ1,π2 .

1. If u ∈ U∅ and F1, F2
= exit then for every pair (c1, c2) ∈ C × C the
arc marked with (c1, c2) leads from w to w′ = (F ′

1, F
′
2, u

′, v′) such that
F ′

1 = Tπ1(F1, c1), F ′
2 = Tπ2(F2, c2), u′ = u ◦ ϕ(〈[t1]F , [t2]F 〉), v′ = v ◦

ψ(〈[t1]E , [t2]E〉), where t1 = Bπ1(F1, c1) and t2 = Bπ2(F2, c2)].

2. If u ∈ U> or F1 = exit then for every c ∈ C the arc marked with (ε, c)
leads from w to the node w′ = (F, F ′

2, u
′, v′) such that F ′

2 = Tπ2(F2, c),
u′ = u ◦ ϕ(〈[λ]F , [t2]F〉), v′ = v ◦ ψ(〈[λ]E , [t2]E〉), where t2 = Bπ2(F2, c)].

3. If u ∈ U< or F2 = exit then for every c ∈ C the arc marked with (c, ε)
leads from w to the node w′ = (F ′

1, F2, u
′, v′) such that F ′

1 = Tπ1(F1, c),
u′ = u ◦ ϕ(〈[t1]F , [λ]F 〉), v′ = v ◦ ψ(〈[t1]E , [λ]E〉), where t1 = Bπ1(F1, c)].

4. If u ∈ U= and F1, F2
= exit then for every c ∈ C the arc marked with
(c, c) leads from w to the node w′ = (F ′

1, F
′
2, u

′, v′) such F ′
1 = Tπ1(F1, c),

F ′
2 = Tπ2(F2, c), u′ = u ◦ϕ(〈[t1]F , [t2]F〉), v′ = v ◦ψ(〈[t1]E , [t2]E〉), where

t1 = Bπ1(F1, c) and t2 = Bπ2(F2, c)].

The directed paths in Γπ1,π2 encode all possible pairs of runs r(π1, M), r(π2, M)
of the GPSPs π1 and π2 on the models M based on the frames F and E . The
main characteristic feature of the graph Γπ1,π2 is presented in the following
lemma:

Lemma 1. Suppose w0, w1, . . . , wm, m ≥ 1, is a finite sequence of nodes in
Γπ1,π2 such that w0 is the root of Γ and wi = (F i

1 , F
i
2, u

i, vi), 1 ≤ i ≤ m. Then
this sequence of nodes forms a path

w0
(c1

1,c1
2)−→ w1

(c2
1,c2

2)−→ · · · (cm
1 ,cm

2)−→ wm

191

in Γπ1,π2 iff there exists a GPSP-model M based on the frames F and E such
that each of the runs r(πi, M), i = 1, 2, of the programs π1 and π2 has a prefix
of the form

(entry, c
ji
1

i , s
ji
1

i , r
ji
1

i), (F 1
i , c

ji
2

i , s
ji
2

i , r
ji
2

i), . . . , (F k
i , c

ji
k

i , s
ji
k

i , r
ji
k

i),

where c
ji
1

i , c
ji
2

i , . . . , c
ji
k

i is the subsequence of all those elements in c1
i , c

2
i , . . . , c

m
i

that are different from ε. Moreover, for every j, 1 ≤ j ≤ m, these prefixes
satisfy the following requirements

uj = u+ ◦ ϕ(〈sl1j
1 , s

l2j
2 〉),

vj = v+ ◦ ψ(〈rl1j
1 , r

l2j
2 〉),

where lij = max
{
l : l ≤ j, l ∈ {ji

1, j
i
2, . . . , j

i
k}

}
, i = 1, 2.

Proof. By induction on m, using the definition of Γπ1,π2 .

A node w in Γπ1,π2 is said to be a 0-rejecting node if it satisfies one of the
following conditions:

1. w = (exit, exit, u, v) and v ◦ v∗
= e;

2. w = (F 1, F 2, u, v) is such that one of the procedures F 1, F 2 is marginal,
whereas the other one is a non-marginal.

Clearly, given a decision procedure for the identity problem “v′ = v′′?” on V it
is easy to check whether w is a 0-rejecting node.
A node w0 in Γπ1,π2 is said to be a 1-rejecting node if there exists an infinite
path w0, w1, . . . , wn, . . . in Γπ1,π2 which starts at w0 and satisfies one of the
following conditions:

1. almost all nodes wn = (F 1, F 2, u, v) in this path are such that u ∈ U<

and F 2 is terminated procedure;

2. almost all nodes wn = (F 1, F 2, u, v) in this path are such that u ∈ U>

and F 1 is terminated procedure.

Lemma 2. π1 ∼F ,E π2 iff no rejecting nodes are accessible from the root Γπ1,π2 .

Proof. Follows from Lemma 1 and requirement (R1). If a 1-rejecting node
is accessible from the root of Γπ1,π2 then there is a GPSP-model M such that
one of the runs ρ(π1, M), ρ(π2, M) terminates, whereas the other loops. If a
node w = (F 1, F 2, u, v) is accessible from the root of Γπ1,π2 and one of the
procedures, say F 1, is marginal, whereas the other (F 2) is a non-marginal then

192

there is a GPSP-model M such that the run ρ(π1, M) terminates and the run
ρ(π2, M) loops. If a node w = (exit, exit, u, v) is accessible from the root of
Γπ1,π2 and v ◦ v∗
= e then there is a GPSP-model M such that both runs
ρ(π1, M), ρ(π2, M) terminate but [ρ(π1, M)]
= [ρ(π2, M)].

Lemma 3. Suppose that both procedures F1, F2 are terminated and two different
nodes w′ = (F1, F2, u, v′), w′′ = (F1, F2, u, v′′) are accessible from the root of
Γπ1,π2 . Suppose also that neither w′, nor w′′ is a 1-rejecting node. Then some
0-rejecting node is accessible from the root of Γπ1,π2 .

Proof. By Lemma 1, each path in Γπ1,π2 is associated with the pair of (prefixes
of) runs ρ(π1, M), ρ(π2, M). Since F1 is a terminated procedure and F is
an ordered frame, we may assume that ρ(π1, M) terminates. Since w′ and
w′′ are not 1-rejecting nodes, this means that two different nodes of the form
w′

1 = (exit, G2, u1, v
′
1) and w′′

1 = (exit, G2, u1, v
′′
1) are accessible from w′ and

w′′ respectively. The requirement (R2) of the criteria system KE guarantees
that v′1
= v′′1 . If G2 is non-marginal then each of the nodes w′

1 and w′′
1 is

0-rejecting. Otherwise, by applying Lemma 1, we may assume that ρ(π2, M)
also terminates. Then two different nodes of the form w′

2 = (exit, exit, u2, v
′
2)

and w′′
2 = (exit, exit, u2, v

′′
2) are reachable from w′

1 and w′′
1 . But, by the

requirement (R2) of the criteria system KE , at most one of the elements w′
2,

w′′
2 may be equal to e. Hence, at least one of the nodes w′

2, w′′
2 is 0-rejecting.

Lemma 4. Suppose both procedures F1, F2 are pre-marginal and the node w =
(F1, F2, u, v) is accessible from the root of Γπ1,π2 . Suppose also that u /∈ U=

and w is not a 1-rejecting node. Then some 0-rejecting node is accessible from
the root of Γπ1,π2 .

Proof. If F1, F2 are pre-marginal nodes and u /∈ U= then we may find a pair
(c1, c2) of conditions such that the arc marked with (c1, c2) leads from w to
a node w′ = (F ′

1, F
′
2, u

′, v′), where one of the procedures F ′
1, F ′

2 is marginal,
whereas the other is non-marginal.

Lemma 5. Let N = (max(|π1|, |π2|))2 + 1, and F1, F2 be a pair of procedures
such that one of them is non-marginal, whereas the other is terminated. Sup-
pose that at least N pairwise different nodes w1 = (F1, F2, u

1, v1), . . . , wN =
(F1, F2, u

N , vN) are accessible from the root of Γπ1,π2 and all these nodes are
not 1-rejecting. Then some 0-rejecting node is accessible from the root of Γπ1,π2 .

Proof. If exactly one of the procedures F1, F2 is non-terminated or marginal
then, by Lemma 1, a 0-rejecting node is accessible from any wi. If ui = uj holds
for some pair i, j, then vi
= vj and, hence, by Lemma 3, some 0-rejecting node

193

is also accessible from the root. Thus, it suffices to consider the case when (1)
all elements u1, . . . , uN are pairwise different and (2) both procedures F1, F2

are non-marginal and terminated. It follows from (2) that from any node wi

it is possible to reach a node w′
i = (F ′

1, F
′
2, u

′
i, v

′
i) such that u′

i ∈ U∅ ∪ U= and
one of the procedures, say F ′

1, is pre-marginal. If F ′
2 is not pre-marginal then

at least one of the successors of w′
i in Γπ1,π2 is a 0-rejecting node. Suppose

that both F ′
1 and F ′

2 are pre-marginal. Then a consequence of (1) and the
requirement (R2) for criteria system KF1 is the fact that a node of the form
w′

j = (F ′
1, F

′
2, u

′
j , v

′
j) is also reachable from another node wj (where i
= j), and,

moreover, u′
i
= u′

j. By the requirement (R2) of the criteria system KF , at most
one of the element u′

i, u′
j is in U=. Hence, by Lemma 4, a 0-rejecting node is

accessible from the root of Γπ1,π2 .

Lemma 6. Let N = (max(|π1|, |π2|))2+1, and F1, F2 be a pair of marginal pro-
cedures. Suppose that N +1 pairwise different nodes w0 = (F1, F2, u0, v0), w1 =
(F1, F2, u1, v1), . . . , wN = (F1, F2, uN , vN) are accessible from the root of Γπ1,π2

and v0
= vi for all i, 1 ≤ i ≤ N . Then some 0-rejecting node is accessible from
the root of Γπ1,π2 .

Proof. By combining the arguments used in the proofs of Lemmas 4,5.

Lemma 7. Let N = (max(|π1|, |π2|))2+1, and F1, F2 be a pair of marginal pro-
cedures. Suppose that N + 1 pairwise different nodes w0 = (F1, F2, u1, v), w1 =
(F1, F2, u1, v), . . . , wN = (F1, F2, uN , v) are accessible from the root of Γπ1,π2 .
Then a 0-rejecting node is accessible from w0 only if a 0-rejecting node is ac-
cessible from some wi, 1 ≤ i ≤ N .

Proof. By combining the arguments used in the proofs of Lemmas 4,5.

Theorem 3. Suppose that F = 〈S, s0, Q〉 and E = 〈R, r0, P 〉 are semigroup
frames, and KF = 〈U, u+, u∗〉 and KE = 〈V, v+, v∗〉 are criteria systems for
these frames such that the identity problem “x = y?” is decidable in both
semigroups U and V in time τ1(n). Suppose also that F is in addition an
ordered frame such that the reachability problem ”[t′] 	 [t′′]?” is decidable in
time τ2(n). Then the equivalence-checking problem “π1 ∼F ,E π2?” is decidable
in time O(n6(τ1(O(n4)) + τ2(O(n4)))), where n = max(|π1|, |π2|).
Proof. Let π1 and π2 be GPSPs, and n = max(|π1|, |π2|). By Lemma 2,
the equivalence-checking problem for π1 and π2 is reduced to the accessibility-
checking of rejecting nodes in Γπ1,π2 . Consider an arbitrary pair of procedures
F1 ∈ Pπ1 and F2 ∈ Pπ2 . We will show that to check the accessibility of a
rejecting node from the root of Γπ1,π2 it suffices to analyze only a bounded

194

number of the nodes (F1, F2, u, v) for every pair of procedures F1, F2.
If both procedures F1, F2 are non-terminated then it is clear that no rejecting
nodes are accessible from any node of the form (F1, F2, u, v).
If one of the procedures F1, F2 is terminated, whereas the other is non-
terminated, then Lemma 1 guarantees that some rejecting node is accessible
from any node of the form (F1, F2, u, v).
Now consider the case when one of the procedures F1, F2 is non-marginal and
the other is terminated. As evidenced by Lemmas 3–5, if n2 + 1 nodes of the
form w = (F1, F2, u, v) are accessible from the root of Γπ1,π2 then either one of
these nodes is 1-rejecting, or some 0-rejecting node is accessible from the root
of Γπ1,π2 .
Finally, suppose that both procedures F1, F2 are marginal. Then, by Lemmas 6
and 7, it suffices to consider only 2n2+1 nodes of the form (F1, F2, u, v) to check
the accessibility of any rejecting node via some node of the form (F1, F2, u, v).
Thus, to check the equivalence π1 ∼F ,E π2 one need only to check the rooted
fragment of Γπ1,π2 which includes at most 2n4 + n2 nodes. When constructing
such a rooted fragment of size m we are forced to check inequalities [t′] 	 [t′′]
and identities u+ ◦ ϕ(〈[t′1], [t′2]〉) = u+ ◦ ϕ(〈[t′′1], [t′′2]〉), v+ ◦ ψ(〈[t′1], [t′2]〉) = v+ ◦
ψ(〈[t′′1], [t′′2]〉), where the size of terms t′, t′′, t′1, t′2, t′′1 , t′′2 is O(m).

To demonstrate the use of Theorem 3, we consider the equivalence-checking
problem for linear recursive programs w.r.t. commutative frames. Let Ffc be a
frame associated with a free commutative monoid. Suppose A = {a1, . . . , aN}
and denote by Z a free Abelian group of range N generated by some ele-
ments q1, . . . , qN . Then K = 〈Z, Z, e, e〉 is a criteria system for Ffc, assuming
ϕ(〈[ai], [λ]〉) = qi and ϕ(〈[λ], [aj]〉) = q−1

j for every pair of actions ai, aj . It
should be noted that the reachability problem in Ffc and the identity problem
in Z are decidable in linear time. Hence, by Theorem 3 the equivalence-checking
problem for GPSPs w.r.t. Ffc is decidable in polynomial time.
As in Section 3, given the set A of basic actions for LRPs, we introduce the
set A of basic actions for GPSPs: A = {〈λ, a〉 : a ∈ A} ∪ {〈a, λ〉 : a ∈ A}
and translate every LRP π into GPSP π. Given a free commutative frame
F = 〈S, s0, Q〉, we introduce a pair of frames F = 〈S, s0, Q1〉,E = 〈S, s0, Q2〉
such that

Q1(s, 〈λ, a〉) = Q(s, a);
Q1(s, 〈a, λ, 〉) = s;
Q2(s, 〈λ, a〉) = Q(s, a);

Q1(s, 〈a, λ, 〉) = Q(s, a).

Theorem 4. Let π1 and π2 be a pair of LRPs, and a frame Ffc is associ-
ated with a free commutative frame. Then the frames F , E defined above are

195

associated also with free commutative monoids and

π1 ∼F π2 ⇐⇒ π1 ∼F ,E π2.

By combining Theorems 3 and 4 we arrive at

Corollary 1. The equivalence-checking problem for linear recursive programs
w.r.t. frames associated with free commutative monoids is decidable in polyno-
mial time.

5. Conclusions
We introduce a new model of computation—a polysemantic model of proposi-
tional sequential programs (GPSPs)—into which both sequential and recursive
models of programs can be embedded. This gives a uniform framework for
studying the equivalence-checking problem for various classes of programs. This
framework substantially extends the algebraic formalism of propositional mod-
els of computer programs developed in [27, 10, 18, 19]. An attempt to introduce
program semantics where the intermediate and final results of computations are
separated was initiated in [16]. In that paper the first-order model of sequen-
tial programs is considered and final results of computations are defined as a
projection of intermediate results on some subset of program variables. But
unlike our approach, this type of semantics for final results does not maintain
the composition of program statements.
Theorems 3 and 4 demonstrate that some equivalence-checking techniques ini-
tially developed for propositional models of sequential programs [28] can be
readily adopted to a more general model of computation—generalized proposi-
tional sequential programs. This gives us a hope that some new decidable cases
of equivalence-checking problem can still be found.

References
[1] E. Ashcroft, Z. Manna, A. Pnueli, A decidable properties of monadic func-

tional schemes, J. ACM, vol 20 (1973), N 3, p.489-499.

[2] R. Bird, P. Walter, Introduction to Functional Programming, 1988,
Prentice-Hall, Englewood Cliffs, NJ.

[3] J.W. De Bakker, D.A. Scott, A theory of programs. Unpublished notes,
Vienna:IBM Seminar, 1969.

[4] A.P. Ershov, Theory of program schemata. In Proc. of IFIP Congress 71,
Ljubljana, 1971, p.93-124.

196

[5] S.J. Garland, D.C. Luckham, Program schemes, recursion schemes and
formal languages, J. Comput. and Syst. Sci., 7, 1973, p.119-160.

[6] D. Harel, Dynamic logics. In Handbook of Philosophical Logics, D. Gabbay
and F. Guenthner (eds.), 1984, p.497-604.

[7] Y. Hirshfeld, F. Moller, Decidable results in automata and process theory.
LNCS, 1043, 1996, p.102-148.

[8] V.E. Kotov, V.K. Sabelfeld, Theory of program schemes, 1991.

[9] A.A. Lapunov, Yu.I. Yanov, On logical program schemata, In Proc. Conf.
Perspectives of the Soviet Mathematical Machinery, Moscow, March 12-17,
1956, Part III.

[10] A.A. Letichevsky, On the equivalence of automata over semigroup, Theo-
retic Cybernetics, 6, 1970, p.3-71 (in Russian).

[11] A.A. Letichevsky, Equivalence and optimization of programs. In Program-
ming theory, Part 1, Novosibirsk, 1973, p. 166-180 (in Russian).

[12] A.A. Letichevsky, L.B. Smikun, On a class of groups with solvable problem
of automata equivalence, Sov. Math. Dokl., 17, 1976, N 2, p.341-344.

[13] D.C. Luckham, D.M. Park, M.S. Paterson, On formalized computer pro-
grams, J. Comput. and Syst. Sci., 4, 1970, N 3, p.220-249.

[14] M.S. Paterson, Program schemata, Machine Intelligence, Edinburgh:
Univ. Press, 3, 1968, p.19-31.

[15] M.S. Paterson, Decision problems in computational models, SIGPLAN
Notices, 7, 1972, p.74-82.

[16] G.N. Petrosyan. On the decidable cases of the inclusion problem for sequen-
tial program schemes, in System Informatics and Theory of Programming.
Novosibirsk, 1974, p.130-151 (in Russian).

[17] S. Peyton-Johns, The implementation of Functional Programming, 1987,
Prentice-Hall, Englewood Cliffs, NJ.

[18] R.I. Podlovchenko, Hierarchy of program models, Programming and Soft-
ware Engineering, 1981, N 2, p.3-14 (in Russian).

[19] R.I. Podlovchenko, Semigroup program models, Programming and Soft-
ware Engineering, 1981, N 4, p.3-13 (in Russian).

[20] R.I. Podlovchenko, V.A. Zakharov, On the polynomial-time algorithm de-
ciding the commutative equivalence of program schemata, Reports of the
Soviet Academy of Science, 362, 1998, N 6 (in Russian).

197

[21] H.G. Rice. Classes of recursively enumerable sets and their decision prob-
lems. Trans. Amer. Math. Soc., bf 89, 1953, p. 25-59.

[22] V.K. Sabelfeld, Logic-term equivalence is checkable in polynomial time.
Reports of the Soviet Academy of Science, 249, 1979, N 4, p.793-796 (in
Russian).

[23] V.K. Sabelfeld Tree equivalence of linear recursive schemata is polynomial-
time decidable, Information Processing Letters, 1981, 13, N 4, p.147-153.

[24] V.K. Sabelfeld, An algorithm deciding functional equivalence in a new
class of program schemata, Theoret. Comput. Sci., 71, 1990, p.265-279.

[25] M.A. Taiclin,The equivalence of automata w.r.t. commutative semigroups,
Algebra and Logic, 8, 1969, p.553-600 (in Russian).

[26] V.A. Uspensky, A.L. Semenov, What are the gains of the theory of algo-
rithms: basic developments connected with the concept of algorithm and
with its application in mathematics. LNCS, bf 122, 1981, p.100-234.

[27] J.I. Yanov, To the equivalence and transformations of program schemata,
Reports of the Soviet Academy of Science, 113, 1957, N 1, p.39-42 (in
Russian).

[28] V.A. Zakharov, The efficient and unified approach to the decidability of the
equivalence of propositional programs. In LNCS, 1443, 1998, p. 246-258.

[29] V.A. Zakharov, On the decidability of the equivalence problem for orthog-
onal sequential programs, Grammars, 2, 1999, p.271-281.

[30] V.A. Zakharov, On the decidability of the equivalence problem for monadic
recursive programs, Theoretical Informatics and Applications, 34, 2000,
p.157-171.

198

