The equivalence problem for programs with mode
switching is PSPACE-complete

Rimma Podlovchenko, Dmitry Rusakov and Vladimir Zakharov

Abstract. We study a formal model of imperative sequential programs. In this
model programs are viewed as deterministic finite automata whose semantics is de-
fined on Kripke structures. We focus on the equivalence problem for some specific
class of programs — programs with mode switching — whose runs can be divided into
two stages. In the first stage a program selects an appropriate mode of computation.
Several modes may be tried (switched) in turn before making the ultimate choice.
Every time when the next mode is put to a test, the program brings data to some
predefined state. In the second stage of the run, once a definitive mode is fixed, the
final result of computation is produced. The effect of mode switching may be used
for automatic generation of opaque predicates, i.e. boolean expressions whose behav-
ior is known a priori. Such predicates provide a very simple and effective means for
virus obfuscation; therefore the development of efficient algorithms for the analysis of
programs with mode switching is an urgent task in view of designing virus detection
tools. We develop a new technique for simulating the behavior of such programs by
means of finite automata and demonstrate that the equivalence problem for programs
with mode switching is decidable within a polynomial space. By revealing a close
relationship between the equivalence problem for this class of programs and the inter-
section emptiness problem for deterministic finite state automata we show that the
former is PSPACE-complete.

1. Introduction

The intimate linkage among automata and formal models of programs used for
the purpose of translation, verification, optimization, etc. is widely recognized.
Since the early 60-th it was found out [4, 5, 9, 21, 29] that common finite
state, multi-tape, multi-head, push-down automata give a suitable framework
for developing decision procedures/proving undecidability for many program
analysis problems originated from software engineering (see [34] for a survey).
In this paper we study one of such problems, namely, the equivalence problem,
for some specific class of imperative programs with mode switching. The runs
of such programs are divided into two stages. In the beginning of a run an

109

program 7 program 72

read (y1,y2); read (y1,y2);
u=x+z; if P(x,z) then {x=z; goto L1}
stop. else {z=z+x; goto L2};

L1: z=yl; x=y2;

if P(z,x) then {u=x+z; z=x;

x=u-z}

else {u=x-z; z=utx};
stop;
if P(x,z) then u=2%x-z**2;

else u=z+z;

stop.

Figure 1: Programs with mode switching

appropriate mode of computation is selected. A program may try (switch) a
number of modes in turn before making the final choice. In the second stage,
once some mode of computation is chosen, a program starts an ordinary run
and yields the final result.

Usually mode switching is achieved by means of constant assignment state-
ments. Two programs 7; and 7o in Fig 1. illustrate the concept of mode
switching. It is easy to see that both programs are equivalent, i.e. they com-
pute the same function u = y; + y». Boxed statements in these programs play
the role of mode switches; when executing these statements the programs bring
data to the predefined states that are specific for each mode. Our interest to the
equivalence problem for programs with mode switching has both theoretical and
practical motivations. In [23, 24] a theory of algebraic models of programs was 1
program introduced for the purpose of designing effective equivalence-checking
techniques and complete systems of equivalent transformations of programs.
In this theory programs are viewed as deterministic finite automata operat-
ing on semigroups or Kripke structures. A series of obtained results [26, 32]
show that for many algebraic models of programs it is possible to design effi-
cient (polynomial-time) equivalence-checking procedures. It was found out (see
[14, 15, 16, 18]) that decidability and complexity of the equivalence problem for
algebraic models of programs depend greatly on some group-theoretic proper-
ties of program semantics. That is why it is very important to know how much
this or that property of a semigroups or Kripke structures used for the seman-
tics in algebraic models of programs influences the decidability and complexity
of the equivalence problem.

110

In the framework of the theory of algebraic models of programs the semantics
of programs with mode switching can be specified in terms of semigroups with
right zeroes. In [13, 14] the equivalence problem for finite automata operating
on free semigroups with right zeros is considered. A decidability result was
obtained by establishing the regularity preserving properties of the set-theoretic
and closure operations on topological spaces of functions computed by such
automata. In [20, 19] a “hard set” method was successfully applied to the
equivalence problem for linear recursive programs with constants. It must be
emphasized that in the model of recursive programs constants play the same role
as mode switching statements in the propositional model of sequential programs
we deal with in this paper. Both equivalence-checking techniques developed in
[13, 14, 19] are very much sophisticated; their main deficiency is that they give
no means to estimate the complexity of the problem. One of the aims of our
paper to is to estimate precisely (as much as possible) the complexity of the
equivalence problem for programs with mode switching.

Another topic which involves programs with mode switching is malicious pat-
tern (viruses) detection in software. The classic virus-detection techniques look
for the presence of a virus specific sequence of instructions (virus signature)
inside the programs: if the signature is found, it is highly probably that the pro-
gram is infected. A new generation of metamorphic viruses attempts to evade
simple pattern-matching detection by using complex obfuscations: when repli-
cating these viruses change their signatures by applying semantic-preserving
transformations (see [1]). The only way to disclose such viruses is to develop
efficient equivalence-checking techniques that could cope with the common ob-
fuscating transformations. Thus, in [2] an architecture for detecting malicious
patterns in executables is presented that is resilient to some obfuscating trans-
formations (dead-code insertion and code transposition). But the properly resis-
tant obfuscations [3] rely on the existence of opaque predicates whose behavior
is known a priori to the obfuscator, but which is difficult for the deobfuscator
to deduce. The most simple way to get the opaque predicates is to make the
same predicate computable on the same data but in different program points.
This may be achieved by bringing data into some fixed state before computing
such predicate several times along a run. But this is just the effect of mode
switching. When considering the program 7 depicted in the Fig. 1 one could
find that both underlined conditions in the branching statements are opaque
predicates obtained with the help of mode switching: one of them is always
evaluated to true whereas the other to false. Thus, to detect a metamorphic
virus (the program m9) by its signature (the program 1) one need an effective
equivalence-checking procedure which could cope with mode switching.

111

In our paper we reveal close relationships between the equivalence problem for
programs with mode switching and the Intersection Emptiness Problem (IEP)
for deterministic finite state automata (DFAs). The Intersection Emptiness
Problem for DFA is that of checking, given a collection of k DFAs F1, ..., F} of

k ?
size |F;| = n, if their intersection is empty: [L(A;) # 0, where L(F) denotes
i=1
the language accepted by the automaton F. If the parameter k£ is a constant

then the problem has a polynomial time algorithm, but the general problem,
where this parameter can depend on the input size (say, k& = n), is much harder,
known to be PSPACE-complete [12].

Some recent papers testify that the IEP would have a substantial impact on
many aspects of complexity theory and formal verification of complex systems.
In [10] it was proved that integer factoring of an n-bit number is solvable in
time n@M . 25" for any e > 0, provided that one can decide the IEP for a
family Fi,..., Fy of DFAs F; of size n in time t(n,k) = n%’vﬁrd, where f(-)
is an unbound function, and d > 0 is a constant. Moreover, by assuming that
there is a non-uniform circuit that will solve the TEP with size ¢(n, k), one could
deduce NLOG # NP. In [28] the IEP was used to demonstrate that a great
many verification problems of supervisory controllers for discrete-event systems
are PSPACE-complete. We think that the results of our paper also give a new
insight into the TEP.

The paper is organized as follows. In Section 2 we define formally the syntax and
the semantics of propositional sequential programs. In Section 3 the model M,
which captures the semantics of programs with mode switching is introduced.
We also reduce the equivalence problem 7’ ~pq, 7" for programs with mode
switching to that of checking three characteristic properties of the runs of 7/,
7", In Section 4 we show that these properties can be verified by constructing
a finite number of DFAs and checking their emptiness. The DFAs we use for
this purpose are similar to Vectorized Finite State Automata introduced in [11]
for natural language processing. A vectorized DFA operates on a tape divided
into N tracks and its internal states are vectors s = (vq,...,vy). Some tracks
may be synchronized; it is required that the input letters on the synchronized
tracks should be unified (in our case this means that the letters on these tracks
should be the same). The synchronization of tracks varies along a run of DFA.
Vectorized DFAs have the same computation power as common DFAs and the
emptiness problem for them is NLOG-complete. Since the state space of DFAs
we use is exponential of the size of programs to be analyzed, we arrive at the
conclusion that the equivalence problem 7’ ~, 7" is in PSPACE. In Section
5 we reduce the TEP to the equivalence problem for programs mode switching
and establish thus the PSPACE-completeness of the latter. We conclude with
discussing some new research problems caused by the results obtained.

112

2. Preliminaries

In this section we define the syntax and the semantics of propositional sequential
programs.

Fix two finite alphabets A = {a1,...,a,}, P = {p1,...,pr}. The elements of
A are called basic statements; they stand for assignment statements in imper-
ative programs. The elements of P are called basic predicates; they stand for
elementary built-in relations on program data. Each basic predicate may be
evaluated by 0 (false) or 1 (true). A tuple (d1,...,d;) of truth-values of basic
predicates is called a condition. The set of all conditions is denoted by C; we
write Ay, Ao, ... for generic elements from C.

Definition 1. A deterministic propositional sequential program (PSP for
short) is a finite transition system © = (V, entry, exit, T, B), where

e V is a non-empty set of program points;

e entry is the initial point of the program;

e exit is the terminal point of the program;

o T:(V —{exit}) xC — V is a (total) transition function;
e B: (V —{exit}) — A is a (total) binding function.

A transition function represents the control flow of a program, whereas a binding
function associates with each point some basic statement. By the size |7| of a
program 7 we mean the cardinality of the set V. Any finite sequence of points
V1,02, ..., v, such that for every i, 1 < i <n, v;11 = T(v;,A;) holds for some
condition A, is called a control path (or a trace) in the PSP 7 from v; to v,.
We say that v, is reachable from v if there exists a trace from vy to v,,.

The semantics of PSPs is defined with the help of Kripke structures used in the
framework of dynamic logics.

Definition 2. A Kripke structure is a quadruple M = (S, so, R, &), where
e S is a non-empty set of data states;
e sy € S is a distinguished initial state;
e R: Ax S — S is a (total) updating function;

e {:5 — C isa (total) evaluation function.

113

An updating function R gives the interpretation of basic statements: a data
state R(a, s) is the result of application of a basic statement a to a data state s.
An evaluation function ¢ is used for the interpretation of basic predicates: £(s)
gives a tuple of truth-values for all basic predicates on a data state s. By a
data path in M we mean any sequence of states s, so, ..., s such that s;4; =
R(a;, s;) for some basic statement a;, 1 < i < k.

Let # = (V,entry,exit, T, B) be a PSP and M = (S, sp, R,{) be a Kripke
structure. A run of m on M is a sequence (finite or infinite) of pairs

r(m, M) = (vi,81), (v2,82), -, (03, 8), (Vig1, Sit1), - - - (1)
such that

1. sg is the initial state of M, and v; = entry;
2. s; = R(B(v), 8i—1) and v;+1 = T'(v;,£(s;)) hold for every i, i > 1;

3. the sequence r(m, M) either is infinite (in this case we say that the run
loops and yields no results), or ends with a pair (vn, sn, A,) such that
vpt1 = exit (in this case we say that the run terminates and gives a
result s,,).

We write | r(m, M) to indicate that the run terminates and denote by [r(m, M)]
its result assuming that the result is undefined when (7, M) loops. It is worth
noting that if v; = v; and s; = s; for some pair of triples in (1) then (7, M)
loops. If a point v; occurs in some triple of (1) then we say that r(7, M) passes
via ;.

In what follows when referring to a model of programs M we mean the set of
all PSPs over fixed alphabets A, P whose semantics is specified by the set M
of Kripke structures.

Definition 3. Given a model of programs M, we say that PSPs w1 and ma are
equivalent (my ~aq mo in symbols) iff [r(m, M) = [r(mwe, M)] for every M € M.

The equivalence problem for a model of programs M is to check, given a pair of
PSPs 7 and 7y, whether m; ~a 7o holds. The complexity of the equivalence
problem "7y ~aq w7 depends on the set of structures M which specifies a
model of programs. Two examples below illustrate this thesis.

114

Example 1. Given a set cal A of basic statements, consider a free semigroup
(A, o) generated by A. The elements of this semigroup may be thought of as
finite sequences (words) of basic statements, whereas binary operation o may be
interpreted as concatenation. The empty sequence lambda stands for the neutral
element of the semigroup. Then the equivalence problem for the model of pro-
grams M' = {{cal A", \,0,&} : & is an evaluation function on A is decidable
in time O(nlogn). In [9, 29]it was demonstrated that the equivalence problem
for M’ is reducible in linear time to the the equivalence problem for determin-
istic finite automata; the complezity O(nlogn) of the latter was established in

[8].

Example 2. Given a set A = {al,...,an,afl,...,agl} of basic state-
ments consider Abelean group (S,o) of rank n generated by the elements
from A. The equivalence problem for the model M' = {(S e, o0,&}

¢ is an evaluation function on S, where e is the unit (neutral) element of
S, was studied in [16]. It was shown that this problem is decidable within
exponential space when n =1, and it is undecidable when n > 2.

Other results on the equivalence problem for some models of programs may be
found in [16, 17, 18, 25, 26, 27, 34, 35, 36].

3. Programs with mode switching

In this paper we focus on the equivalence problem for some specific class of
programs whose runs can be divided into two stages. In the first stage a program
selects an appropriate mode of computation. Several modes may be tried in
turn before making the ultimate choice. Every time when the next mode is
put to the test, the program brings the data back to the initial state. In the
second stage, once a definitive mode is fixed, the final result of computation is
generated. In real programs mode switching may be implemented by restart
statements or constant assignment statement. In this section we introduce
formally the model of such programs in the framework of PSP’s syntax and
semantics.

We will assume that the set of basic statements A is partitioned into two sub-
sets Aora = {at,...,a"} (ordinary actions) and A,,pq. = {b%,...,bN} (mode
switches). Those points v in a PSP & that are associated with mode switches
(i.e. B(v) € Amode) are called switching points. All other points are called ordi-
nary points. We write V4. to denote the set of all switching points of a given
program 7. Without loss of generality, we will assume that entry € V,,ode.

115

Two principles are used as the basis for the semantics of PSPs with mode
switching:

e cach ordinary action « is interpreted according to a current mode of
computation, and

e ecach mode switch b abandons any previous intermediate result of com-
putation and brings data into some distinguished state s.

Thus, the model of programs with mode switching is characterized by the set
of all Kripke structures Mo = {M¢ : M¢ = (S, s0, R,)} such that

1. S ={e} UAnoge AL, 1e. S includes the empty string A and all strings
bayas .. .ay,, where a mode switch b € A,,.qe is followed by a string of
ordinary actions ajas . ..a, € A*

ord?
2. So =)\;
3. an updating function R is defined as follows:

_ SY, if Yy e Aord:
Ry, s) = { y, ify € Anode-

Since the data space S and the interpretation of basic statements R are fixed,
each structure Mg € My is completely specified by its evaluation function
¢. PSPs with mode switching 7 and 7y are called equivalent (m1 ~aq, 72 in
symbols) iff [r(71, M¢)] = [r(m2, M¢)] holds for every structure Me € My. When
studying decidability and complexity of the equivalence problem for Mg we will
use the inverse variant of this definition: PSPs 7 and 7y are not equivalent
iff there exists a structure M € M such that either both runs r(m, M¢) and
r(me, M¢) terminate but [r(mwi, M¢)] # [r(ma, M¢)], or one of the runs (say,
r(m, M¢)) terminates, whereas the other (in our case, r(m2, M¢)) loops.

Given a PSP 7, we introduce the skeleton G, of 7 as a finite directed graph
intended for representing the reachability relation between the switching points
in 7. Formally, G, = (U, E), where U = V04 U {exit} is the set of vertices
and E = {(v/,v") : v/,v” € U, and v" is reachable from v’ in 7 by a trace
which does not pass via any switching point other than v" and v”} is the set of
arcs. A trajectory is any directed path in G, (finite or infinite) which begins
in the entry point. A trajectory reflects a possible scenario of mode selection
in the course of some run of 7. We say that a run r(m, M¢) of a PSP 7 on a
structure Mg traverses the skeleton G along a trajectory vi,va,...,vp,... if
r(m, M) passes via switching points vy, va, ..., vy, ... in order. The proposition
below follows from the definition of M and states the principal property of
PSP’s runs on the structures under consideration.

116

Proposition 1. If a run (7, M¢) of a PSP 7 traverses the skeleton G along
a trajectory vi,va, ..., Vi, ..., Vj,... such that v; = v; then r(m, M) loops.

A trajectory vi,ve,...,v, in a skeleton G is called
e repetition-free if it does not pass twice via the same vertex;
e complete if it is repetition-free and ends in the node v,, = exit.

Thus, a terminating run of 7 traverses the skeleton G, only along a com-
plete trajectory, while a looping run of 7 may traverse G, along either some
repetition-free non-complete trajectory (in this case we say that the run loops
on ordinary points of 7), or some infinite trajectory (in this case we say that
the run loops on switching points of 7). By Proposition 1, in order the lat-
ter case to happen a run of 7 should traverse the skeleton along a trajectory
V1,V2, ..., Vi, Vit1,... such that vy, ve,...,v; is a repetition-free trajectory and
Vitr1 € {’Ul,’Ug, e ,’Ui}.

The proposition below is but a restatement of the equivalence problem 7' ~ a4,
7’ in terms of some properties of trajectories in the skeletons of the PSPs.

Proposition 2. PSPs 7’ and ©” are not equivalent on My iff there exists a pair
of repetition-free trajectories w' = vi,vh, ... vl and W' =v{ WY, ... vl in the
skeletons G and Gr» such that for some structure M¢ the runs r(n’, M¢) and
r(w"”, M) traverse the skeletons along the trajectories w' and w” respectively,
and meet one of the following requirements:

R1: both trajectories are complete and [r(n’, Me)] # r[(7", M¢));

R2: one of the trajectories (say, w') is complete, whereas the other (w'") is
traversed by the run which loops on ordinary points;

R3: one of the trajectories (say, w') is complete, whereas the other (w") is
traversed by the run which loops on switching points.

This proposition provides a foundation for the following equivalence-checking
strategy: given a pair of PSPs, guess a complete trajectory in the skeleton of one
PSP and a repetition-free trajectory in the skeleton of the other; then check if
there exists some structure M to satisfy one of the requirements R1-R3 above.
Since the number of repetition-free trajectories in the skeletons is finite, the
equivalence problem for PSPs is reduced thus to the analysis of trajectories in
their skeletons. Next we will show that the latter can be carried out with the
help of DFAs.

117

4. Using DFAs for the equivalence-checking of pro-
grams with mode switching

The problem we deal with in this section is as follows: given a pair of repetition-
free trajectories w’ and w” in the skeletons of PSPs 7" and 7, check if there
exists a structure Mg which complies with at least one of the requirements R1-
R3 in Proposition 2. We demonstrate that to retrieve an appropriate structure
Me¢ one could construct the specific DFAs Dy, Dy and D3 and check their empti-
ness: the requirement Ri, i= 1,2, 3, can be satisfied by some M, iff L(D;) # 0.
First we discuss the key ideas of our construction of the DFAs D; and briefly
describe how they operate. Then we present a detailed description of D; and
explain what minor modifications should be made to convert Dy into Ds and
D3.

When guessing a structure M which makes it possible to traverse the skele-
tons of 7’ and 7" along the trajectories w’ and w” one may rely on the basic
property of the semantics of PSPs with mode switchings: each mode switch b
abandons the achieved data state s and brings data into the predefined state s;.
Thus, the traversing of each arc (u,v) begins with some fixed data state which
depends only on a mode switch assigned to the point u. This enables us to try
all arcs of the trajectories independently in attempt to find for each arc (u,v)
a specification Spec,, which provides the reachability of the switching point v
from the switching point u in the course of some run. The specification Spec,,
imposes constraints on a an evaluation function & on some data path b, bay,
baiasz, ..., where b = B(u) and a1, a9, - € Myrq. We seek to define the spec-
ification so that for any structure M, which satisfies Spec,, the run r(n’, M¢)
(or r(m"”, M¢) depending on the trajectory (u,v) belongs to) when starting from
the point u reaches the point v. As soon as the specifications Spec,, are de-
veloped for all arcs of the trajectories, we may compose the objective structure
M.

When building up Specy,,, and Specy,,, for a pair of arcs (ui,v1), (ugz,v2)
it should be seen that the specifications are consistent, i.e. impose the same
constraints on & on the same data states. Two cases are possible depending on
the mode switches assigned to u; and wus.

1. The switching points u; and wug are associated with distinct mode
switches, i.e. B(ui) = by # by = B(uz). This implies that the data
paths the specifications Spec,,,, and Spec,,,, refer to are disjoint.
Therefore these specifications are always consistent and may be built up
independently.

118

2. The switching points u; and us are associated with the same mode
switch, i.e. B(u1) = B(uz) = b. Then the specifications Specy,,, and
Specy,p, may refer to the same data path. Therefore, special care must
be taken to coordinate (synchronize) the development of such specifi-
cation. But as soon as the data paths these specifications deal with
diverge, they will never refer to any other common data state and the
synchronization may be ceased.

Thus, all specifications Spec,,, can be built up in parallel provided that some
appropriate synchronization is used to ensure their consistency. This parallel
synchronized derivation of the specifications can be implemented by some DFA
D. The internal states of D keep only track of the following information:

e A tuple [vg,...,un] of points in 7" and 7”. Every element v; is a point
in 7’ or 7 which is currently achieved in attempt to route a trace from
the switching point u to the switching point v for some arc (u,v) in the
trajectories w’ and w”.

e Synchronization table H. It is used to provide the consistency of those
specifications that refer to the same data states. The synchronization
table may be viewed as a finite set of pairs (e1,es) of arcs. Every such
pair when being set into the table H indicates that the corresponding
specifications Spec; and Specs need coordination to maintain their con-
sistency.

On each computation step D reads as input (guesses) a tuple of conditions
[A1,...,Ax]. These conditions give rise to new constraints that should be
added to the specifications: each A; is viewed as a possible value of £ on the
currently achieved data state. The synchronization table H is used to check the
identity of those constraints that should be added to coordinated specifications.
Then DFA D computes the updated tuple of points [T'(v1, A1), ..., T(vn, AN)]
and modifies the synchronization table H by using the transition functions T'
and the the binding functions B of both PSPs 7’ and «”/. This results in
transition of D to the next internal state. To complete the computation step
D checks whether the new internal state satisfies some objective condition; if
this is the case then D accepts. The acceptance implies the existence of a
structure M such that w’, w” and Mg comply with one of the requirements
R1-R3 (depending on the objective condition to be checked).

Now we consider a DFA D; intended for checking the satisfiability of the re-
quirement R1 and describe this DFA in more detail.

119

Let ' = (V,entry’, exit, T, B) and 7’ = (U, entry”, exit, T, B). To simplify
the notation we will assume that V NU = {exit}, and both PSPs have the
same transition function 7" and the same binding function B defined on V UU.
Let w' = vy, v9, ..., 0, exit and W’ = vp11,Un12, ..., Untm, €xit be complete
trajectories in the skeletons of ' and 7" respectively.

Let H(n,m) denotes the set of all (unordered) pairs (4,j), 1 < i,j < n+m,
i # j, and Ho(n,m) = {(i,j) : (i,j) € H(n,m),B(v;) = B(v;)}. The set
Hy(n,m) indicates all those pairs of switching points in w’ and w” that are
associated with the same mode switch.

Then D; = (X, Q, qo, accept, §), where
e X = C"™™ ig the input alphabet;

e Q = {accept,reject} U (V" x U™ x 2H (7)) is the set of internal states
of D1;

® g0 = (V1. s UnyUnt1,-- s Untm, Ho(n,m)) is the starting state of Dq;
e accept is the accepting state of Dy;
e §:(Q XX — (@ is the (partial) state transition function.

Suppose ¢ = (u1, ..., Untm, H) is any internal state of Dy and

z = (A1,...,Antm) is any tuple of conditions. The state transition function
0 is defined according to the following rules (we provide each rule with a brief
explanation of its intended meaning).

1. If A; # Aj for some pair (i,7) € H then d(q,z) = reject (Comm: the
tuple z does not comply with synchronization request; the constraints
imposed on £ are inconsistent);

2. Otherwise, consider the tuple of points (uf,...,u;,,,) such that

) { T.(ui, A;), if u; is an ordinary point, or ¢ = qo, for every

g Us, if u; is a switching point and ¢ # qq,
1<i<n+m.

Two cases are possible.

Case 1: all points uj, 1 <i <n, and u}, n+1 < j <n+m, are switching
points, and at least one of the points u, and u/, ., is either a switching
point, or exit. Then

120

(a) if w), or wl,, is a switching point, or if there exists 4,
1<i<n+m, i # n, such that) is a switching point, but
u; # vi11 then 6(q,z) = reject (Comm: this means that the
automaton D; “went of” the trajectory when “laying off” a trace
either from v,—1 and v, 4m—1 to exit, or from v; to vi41);

(b) if u; = w4y holds for all 1 < i < n+ m, i # n, and
Uy, = Uy, ,,, = exit, and (n,n +m) € H then §(q,z) = reject
(Comm: this means that D; built a specification of a structure
Me such that [r(n’, Me)] = [r(7”, M¢)]);

(c¢) otherwise d(q,z) = accept (Comm: this means that D; built a
specification of a structure M¢ such that both runs r(n’, M) and
r(n”, Me)] traverse the skeletons along the trajectories w’ and w”,
but [r(r’, Me)] # [r(x", Me))).

Case 2: at least one point w}, 1 < i < n+m, i # n, is an or-
dinary point, or both w], and w]_,, are ordinary points. Then
6(q,z) = (uy, ..., up oy, H'), where

H' = H — {(i,7) : both uj,u} are ordinary points, and B(u;) # B(u})}

is a new synchronization table. (Comm: this means that the traversing
along some arcs in the trajectory is not completed yet; B(u}) # B(u})
implies that data paths in the specifications Specy,y,., and Specy ;.
diverge and the synchronization for these specifications is of no further
consequence). O

The DFA D; thus defined may be thought of as a one-way finite state ma-
chine operating on a tape divided into m 4+ m tracks. On the i-track it
simulates some fragment r; of the runs of PSPs «’ and 7”. Such fragment
ri = (v}, s AL, (uFTE s AR begins with a triple whose point v} is
either a switching point or entry, and ends with a triple whose point ’Uerl
either a switching point or exit. The synchronization tables of D; ensure that
only those pairs of runs of 7’ and 7" are simulated that could be performed on
the same structure. The accepting conditions allow D; to accomplish success-
fully a simulation of the runs iff the last fragments of these runs yield different

results. Thus we arrive at

is

Proposition 3. Let w' and w” be complete trajectories in the skeletons of 7'
and "' respectively. Let DFA Dy be as specified above. Then L(Dy) # 0 iff
there exists a structure M¢ such that the runs r(n',§) and r(n", M) traverse
the skeletons along the trajectories w' and w”, and [r(7', M¢)] # [r(n”, M)].

121

It is suffice to introduce only some changes in the acceptance and rejection rules
(Case 1) to transform a DFA D, intended for checking the requirement R1 into
the DFAs Dy and D3 that would be responsible for the requirements R2 and
R3.

To construct Dy one has to set off in 7" strongly connected components that
are free from switching points. Let

Ving = {v : thereis a cycle in "

which contains no switching points and passes via v}

Then D, operates as follows: after constructing the tuple of points

(uh,...,ul,,,) (see item 2 in the description of D), it

e rejects (rule 2(b)) if u; = v;4q holds for all 1 < i < n+m, i # n, and
uy, = exit, and uj, ., is either a switching point or exit,

e accepts (rule 2(c)) u, = v;41 holds for all 1 < i < n+m, i # n, and

uy, = exit, and u),_,,, € Vins.

It is worthy of notice that when at some computation step Do accepts after
constructing the tuple (va, ..., vy, exit, v,42,. .., Untm,u) such that u € Ving,
this should be interpreted as 7" is presented with an unbound possibility to
continue an infinite (looping) run along some cycle on ordinary points.

Similarly to D, after constructing the tuple of points (ul,..., u;)
D3 rejects (rule 2(b)) if w_,, is either exit, or a switching point
other than wv,41,...,054m, and accepts (rule 2(c)) if u/, = exit and
u;H»m € {vn+1a .- -vvn+m}'

Proposition 4. Let w' be a complete trajectory and w” be a repetition-free
trajectory in the skeletons of @' and " respectively. Let DFA Do and D3 be as
specified above. Then

1. L(Ds) # O iff there exists a structure Mg such that the runs r(n’, M)
and (", M) traverse the skeletons along the trajectories w' and w”,
and r(m', M) terminates, whereas r(n", M) loops on ordinary points of

.

2. L(D3) # 0 iff there exists a structure Mg such that the runs r(n’, M)
and (", M) traverse the skeletons along the trajectories w' and w"”,

and r(n', M) terminates, whereas r(n", M) loops on switching points
of ™.

122

Theorem 1. The equivalence problem 7' ~pq, @ for PSPs with mode switch-
ing is decidable in polynomial space.

Proof. Due to Savitch’s theorem [30] we can convert any nondeterministic poly-
nomial space algorithm into deterministic one. Therefore it will suffice to design
a nondeterministic polynomial space procedure for checking non-equivalence of
PSPs with mode switching. It is as follows. Given a pair of PSPs «’ and «”/
it builds their skeletons G, G~ and guesses a complete trajectory w’ in one
of the skeletons and a repetition-free trajectory in the other. Then it checks
the emptiness of DFAs Dy, Dy and D3 corresponding to 7/, 7" and the se-
lected trajectories. Propositions 2-4 guarantee that 7' %, 7 iff for some
pair of trajectories one of the DFAs D;, i = 1,2, 3, is non-empty. As may be
seen from the descriptions of DFAs D;, these automata has O(2P°(?)) states,
where n = |7| 4+ |7”|. Hence, their non-emptiness may be certified within a
polynomial space. 1

5. Complexity issues

The complexity of decision procedure above can not be improved to a large
extent.

Theorem 2. The equivalence problem for PSPs with mode switching is
PSPACE-complete.

Proof. We demonstrate how to build in linear time, given a family of n DFAs

F,, 1 < i < n, of size |F;| = n, a PSP 7 of size |7| = n? such that the
n

intersection () L(F;) = 0 iff = has no terminating runs, i.e. my is equivalent to
i=1

the empty PSP.

Without loss of generality, we may assume that each DFA F; operates on

binary input alphabet {0,1}, ie. F; = (Qi,6:,¢),Q}), where Q; is a fi-

nite state of states, §; : @ x {0,1} — @ is a (total) transition function,

¢ € Q; is the starting state, and @} C Q; is the set of final states. Let

Amode = {b}, Aora = {a}, and P = {p1,p2}. For every DFA F; we build the

PSP m; = (Q; U {dead, entry,, exit; }, entry,, exit;, T;, B;) whose transition

function 7; is defined as follows for every ¢ € @ and x € {0,1}:

exit;, if ¢ € Q!,

1. Ti(entry,, (v,0)) = ¢, and T;(entry, (z,1)) = { dead. otherwise

exit;, if ;(q, x) € Q,

2. Tilg, (2, 0)) = dilg,), and Ti(g, (&, 1)) = { dead, otherwise;

3. T;(dead,A) = dead.

123

It is easy to see from the construction of m; that a binary string
w = x1%2...Tk, k > 0, is accepted by F; iff r(m;, Mg,) terminates on a
structure Mg, such that &,(b(a)*) = (vx,1) and &,(b(a)’) = (z;,0) for all
1<i<k.

The PSP 7y is obtained from the family of PSPs 7y, ..., m, by identifying each
point exit;, 1 <¢ <n —1, with the point entry,, . It is easy to verify that a
binary string w is accepted by every DFA F; iff | r(m;, Me,) hold for all PSPs
m; iff | r(mo, Me,,).

Finally, consider any PSP ey, such that the terminal point exit is un-
reachable from the initial point entry in mempey (PSPs of this kind are called
empty PSPs). Clearly, an empty PSP has no terminating runs, and therefore

n
N L(F;) = 0 iff 7o ~aty Tempty- Thus the Intersection Emptiness Problem for

=1
DFAs, which is known to be PSPACE-complete, is reducible in linear time to
the equivalence problem for PSPs with mode switching. 1

6. Conclusion and Future Work

We demonstrated that the equivalence problem for programs with mode switch-
ing is PSPACE-complete. Actually, the semantics of these programs makes it
inevitable to face the Intersection Emptiness Problem for DFAs. This gives us a
decision procedure which is confined to the manipulations with finite automata
but at the expense of fairly large complexity. One could find some analogy
between our construction of DFAs D; and the "parallel stacking" technique in-
troduced in [31]. The results obtained pose a number of open problems and we
discuss some of them.

One of the most simple class of programs with undecidable equivalence problem
was studied in [22]. The programs from this class are composed of four basic
statements A = {ay, as, by, ba}. In the framework of PSPs the semantics of such
programs is specified by the set of structures My = {M’ = (N2 (0,0), R, £)},
where N ={0,1,2,...}, R'(a1, (n,m)) = (n+1,m), R (az, (n,m)) = (n,m+1),
R'(by,(n,m)) = (0,m), R'(b2,(n,m)) = (n,0). Notice that constant assign-
ment statements by, by are but a sort of a (separate) mode switches. In [7, 22]
it was proved that two-head finite state automata can be simulated by the
PSPs in the model M5 and this brings the equivalence problem for My into
undecidability.

124

In essence, My captures two main features of the real program semantics:
the effect of commutativity of some statements (a; and as) and the effect of
constant assignments (b; and bg). By divorcing these effects from each other
we arrive at the model of programs with commutative statements M; and the
model of programs with mode switching M. In [26, 32] it was shown that
the equivalence problem for M is decidable within a time O(n?logn). In our
paper we proved that the same problem for M is PSPACE-complete. In order
to make a boarder between decidable and undecidable cases more precise we
wonder: what is the complexity of the equivalence problem for the model Mg,
which may be placed between Ms and both My and M;? In contrast to Ms,
which involves two separate mode switches by and by, we restrict ourselves in
M1 only with a joint mode switch by such that R'(b1,(n,m)) = (0,0). Clearly,
My is less expressive than M. The equivalence problem for Mg, was studied
in [6], but its complexity is still unknown.

The equivalence-checking algorithms worked out in the framework of this model
of programs may be used as the basis for the deobfuscation tools aimed at
detecting metamorphic viruses. This could stimulate the development of more
practical and efficient equivalence-checking procedures for Mg than that from
Theorem 1. Thus, for example, we wonder, if it is possible to check within a
polynomial time the equivalence 7’ ~ a4, ©" providing that every mode switch
occurs in 7/, 7" at most k times and k is fixed.

References

[1] M. Christodorescu, S. Jha. Static analysis of executables to detect mali-
cious patterns. In Proceedings of the 12th USENIX Security Symposium
(Security’03), 2003, p. 169-186.

[2] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, R. E. Bryant. Semantics-
aware malware detection. In Proceedings of the 2005 IEEE Symposium on
Security and Privacy (Oakland 2005), 2005, (to be published).

[3] Collberg C., Thomborson C., Low D., Manufacturing cheap, resilient and
stealthy opaque constructs. Symposium on Principles of Programming
Languages, 1998, p.184 196.

[4] A.P.Ershov, Theory of program schemata. In Proc. of IFIP Congress 71,
Ljubljana, 1971, p.93-124.

125

[5] E.P. Friedman. Equivalence problem for deterministic context-free lan-
guages and monadic recursive schemes. J. Comput. and Syst. Sci., 14,
N 3, 1977, p. 344 359.

[6] A.B. Godlevsky. Some special cases of the termination and equivalence
problems for automata, 1973, N 4, p. 90--98 (in Russian)

[7] A.B. Godlevsky. On the one case of special problem of functional equiva-
lence for discrete transducers. Cybernetics, 1974, N 3, p. 3235 (in Russian)

[8] J.E. Hopcroft, R.M. Karp. A linear algorithm for testing equivalence of
finite automata, Technical Report TR 71 114, Cornell University, Com-
puter Science Dep., 1971.

[9] Ianov Iu I., On the equivalence and transformation of program schemes
Communications of the ACM, 1:10 (1958), 8 12.

[10] G. Karakostas, R.J. Lipton, A. Viglas. On the complexity of intersecting
finite state automata and NL versus NP. Theoretical Computer Science,
302, 2003, p. 257-274.

[11] A. Kornai. Vectorized finite state automata. In: Proceedings of the W1
workshop of the 12th European Conference on Artificial Intelligence, Bu-
dapest, 1996, p. 36—41.

[12] D. Kozen. Lower bounds for natural proof systems. In 18th Annual Sym-
posium on Foundation of Computer Science, IEEE, 1977, p. 254-266.

[13] A.A.Letichevsky. On the equivalence of automata with final states on the
free monoids having right zero. Reports of the Soviet Academy of Science,
182, 1968, N 5 (in Russian).

[14] A.A.Letichevsky. Functional equivalence of discrete transducers. Cybernet-
ics, 1970, N 2, p. 14-28.

[15] A.A.Letichevsky, Functional equivalence of finite transducers. III, Cyber-
netics, 1972, N 1, 1—4 (in Russian)

[16] A.A.Letichevsky, On the equivalence of automata over semigroup, Theo-
retic Cybernetics, 6, 1970, 3 71 (in Russian).

[17] A.A.Letichevsky, Equivalence and optimization of programs. In Program-
ming theory, Part 1, Novosibirsk, 1973, 166-—180 (in Russian).

126

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A_A Letichevsky, L.B.Smikun, On a class of groups with solvable problem
of automata equivalence, Sov. Math. Dokl., 17, 1976, N 2, 341 344.

L.P. Lisovik, Methalinear schemes with constant assignment, Program-
ming and Computer software, N 2, 1985, 29- 38.

L.P. Lisovik. Hard sets method and semilinear reservoir method with ap-
plications. Lecture Notes in Computer Science, 1099, 1996, p. 219-231.

D.C.Luckham, D.M.Park, M.S.Paterson, On formalized computer pro-
grams, J. Comput. and Syst. Sci., 4, 1970, N 3, p.220-249.

G.N.Petrosyan, On one basis of statements and predicates for which the
emptiness problem is undecidable. Cybernetics, 1974, N 5, p.23-28 (in
Russian).

R.I.Podlovchenko, The hierarchy of program models, Programming and
Computer Software, 1981, N 2, 3—14.

R.I.Podlovchenko, Semigroup program models, Programming and Com-
puter Software, 1981, N 4, 3-—13.

R.I.Podlovchenko, On the decidability of the equivalence problem on a
class of program schemata having monotonic and partially commutative
statements, Programming and Computer Software, 1990, N 5, 3 12.

R.I.Podlovchenko, V.A.Zakharov, On the polynomial-time algorithm de-
ciding the commutative equivalence of program schemata, Reports of the
Soviet Academy of Science, 362, 1998, N 6 (in Russian).

R.I.Podlovchenko, On program schemes with commuting and monotonic
statements, Programming and Computer software, N 5, 2003, 46—54.

K. Rohloff, S. Lafortune. On the computational complexity of the verifica-
tion of modular discrete-event systems. In Proceedings of IEEE Conference
on Decision and Control, 2002, Las Vegas, NV, Dec., 2002.

J.D.Rutledge, On Ianov’s program schemata, Journal of the ACM, 11,
1964, p.1-9.

W.J. Savitch. Relationships between nondeterministic and deterministic
space complexities. Journal of Computer and System Science, 4, N 2, 1970,
p. 177-192.

127

[31]

[32]

[33]

[34]

[35]

[36]

128

L.G.Valiant, The equivalence problem for deterministic finite-turn push-
down automata, Information and Control, 25, 1974, p.123 133.

V.A. Zakharov, An efficient and unified approach to the decidability of
equivalence of propositional program schemes. Lecture Notes in Computer
Science, 1443, 1998, p. 247-258.

V.A. Zakharov, On the decidability of the equivalence problem for monadic
recursive programs, Theoretical Informatics and applications, 34, N 2,
2000, 157- 171.

V.A. Zakharov, The equivalence problem for computational models: de-
cidable and undecidable cases. Lecture Notes in Computer Science, 2055,
2001, 133-153.

V.A. Zakharov, .M. Zakharyaschev, An equivalence-checking algorithm
for polysemantic models of sequential programs, Proceedings of the Inter-
national Workshop on Program Understanding (14-16 July, Altai Moun-
tains, Russia), 2003, 59-—70.

V.A. Zakharov, .M. Zakharyaschev, On the equivalence checking problem
for a model of programs related with muti-tape automata, Lecture Notes
in Computer Science, 3317, 2005, 293- 305

