Using data flow analysis
for detecting security vulnerabilities

Andrey Belevantsev and Oleg Malikov
Institute for System Programming
Russian Academy of Sciences
Russia, 109004, Moscow, B. Kommunisticheskaya, 25
Phone: (+7-095) 912-07-54, Fax: (+7-095) 912-15-24
{abel,malikov }@ispras.ru

Abstract. This paper addresses the issues of using data flow analysis approach
for detecting certain types of programming errors in the source code. The primary
motivation of this work is that programming errors like a missing array or buffer
bounds checking may lead to security vulnerabilities in programs. The article is
devoted to the detection of buffer overflow, unchecked input usage, and memory leak
€rrors.

A new approach for static detection of these kinds of errors is described. The approach
combines forward data-flow intraprocedural alias and integer range analyses as well as
flow-sensitive and partly context-sensitive interprocedural analysis. The algorithm is
based on the notion of an abstract memory location (AML). The rules for computing
attributes of AMLs as well as number of heuristics used to improve the algorithm are
discussed.

The suggested approach has been implemented for checking C programs. The paper

reports on evaluating the tool with a number of open source programs.

1. Introduction

Security vulnerabilities is a very important class of programming errors. Ac-
cording to the reports of SecurityFocus.com more than 3000 vulnerabilities have
been discovered during 1.5 year starting from 01/2000. The most common are
buffer overflow (23% to 50% [10, 13]), format string and tainted input errors.

A great number of already known security errors originates from the C language
unsafe features and its standard library functions, e.g. unsafe pointer and array
dereferences, pointer arithmetic and string handling routines. As it was noted
in [10], even “safe” string primitives, such as strncpy(), encourage possible
off-by-one bugs.

83

There are several approaches to classify the software security errors. A profound
analysis of the fundamental taxonomies is given in [1] and [5]. We accept a
widely used definition of the security vulnerability as a program error that
causes incorrect program operation if a user feeds specially crafted data into
the program. We distinguish between errors and corresponding vulnerabilities
focusing on programming errors detection in particular. It often is a difficult
problem to qualify an error as the security vulnerability. Moreover, an error,
which is not vulnerable, still may turn to be a severe bug in the code.

It is known that software vendors allocate much resources to audit their code
base for various kinds of possible security vulnerabilities. Manual code inspec-
tion and fixing is an expensive and time consuming solution to the problem.
Existing publicly available tools for the automatic detection of programming
errors are either not designed especially for finding security flaws, thus missing
to report important error classes, or yield too many false positives (more than
90%). Several companies claim to possess such tools [14, 11], but use them in-
ternally in their auditing services. Many researchers are making a considerable
effort towards automated static analysis tool for detecting security flaws with
a relatively low number of false warnings [6, 10].

There is a number of tools and libraries, which are intended to detect attempts
to exploit vulnerabilities at run time, as well as a number of hardware features
aimed at protecting the system from hacking attempts. However, these features
can either be bypassed or incur unacceptable running cost. The preferable way
of anti-hacking protection is to fix all possible security vulnerability errors in
the source code.

The source code programming errors can be detected either during static analy-
sis or at run time during debugging, testing, etc. To detect programming errors
during debugging or testing one has to provide input data that spots an error,
which is a challenging task mainly because the exploitation of security vulner-
abilities often needs non-trivial input data. For these reasons static analysis
approach should be used.

Static analysis approach has its own limitations. Namely, it is impossible to
detect all the errors in a program without false warnings. The false positives
to the total number of detected errors ratio is a measure of quality of the static
analysis algorithm. In our opinion, in order to achieve the best quality of analy-
sis the algorithm should model operation of the program as close as possible.
This includes tracking use of program data memory, memory allocations, buffer

84

accesses as well as tracking integer calculations in the program, for example,
string lengths or array indices. The semantics of the standard library functions
is also to be modeled.

1.1. Overview

The goal of our research is to develop new methods for automatic detection of
various kinds of programming errors in existing (or legacy) programs. Another
goal is to develop a tool for automatic detection of programming errors using
this new approach. The tool should be applicable to real-world programs (hun-
dreds and thousands of KLOC) and have reasonable false positives to the total
number of detected errors ratio.

In this paper we concentrate on the buffer overflow, format string and memory
leak programming errors. Buffer overflow errors occur as a result of miss-
ing or insufficient array bounds checking. Format string errors are results
of using the unchecked input data as an actual parameter passed to the for-
matting input/output functions of the C standard library (printf, fprintf,
etc). Memory leaks occur when a heap object is not deallocated and all the
pointers to that object are lost in the running program.

The main contribution of the paper is a new method for finding certain kinds
of programming errors, which combines interprocedural range and alias analy-
sis. We show that the method can be practically used for error detection by
implementing it in a prototype tool. In our opinion this is the first attempt to
apply such combination of static analysis methods to the problem of automatic
detection of programming errors.

Our approach uses the notion of abstract memory location (AML). An AML
represents any object in memory, allocated either statically (variables, string
constants) or dynamically (heap memory). Each AML possesses a number of
attributes that reflects its properties useful for error detection. These attributes
include, e.g points-to set (i.e., the set of AMLs to which the AML may point
to); size (amount of bytes that occupied by the AML); or length (the length of
the string stored in the AML).

The error detection process consists of two stages. In the first stage a classical
iterative forward data-flow analysis algorithm [7] is used. The algorithm cal-
culates the attributes of AMLs in every program point. It consists of several
components as follows:

85

e Flow-sensitive intraprocedural analysis. This component makes both
alias and integer range analysis, depending on the attributes of an AML
it is calculating.

e Partially context-sensitive interprocedural analysis. We use a number
of experimentally established tradeoffs to regulate context sensitivity of
the analysis.

e Support for the major functions of the C standard library. The purpose
of this part of the algorithm is to provide the information about the
impact of the operational environment on the analyzed program.

The second stage performs verification of the attributes and issues warnings
when certain conditions are not satisfied. The following warnings can be re-
ported: buffer overflow, format string error, memory leak, use of undefined
pointer value, dereferencing NULL pointer.

We have implemented the approach in the prototype tool for checking C pro-
grams. The preliminary evaluation of the tool on a number of open source
programs shows promising results. Namely, in 4 packages we’ve analyzed the
true positive rate ranges from 22.6% to 70.6%.

The rest of the paper is organized as follows. Section 2 introduces basic concepts
of our analysis. Section 3 follows with a detailed description of the algorithm for
attribute calculation. Section 4 describes the process of warnings generation.
Section 5 continues with evaluation results of the implemented tool, Section 6
discusses related works. Section 7 gives the conclusion.

2. Basic concepts

In this section we describe the fundamental concepts and data structures used
in our approach. First we define the lattices applied for tracking all integral
computations performed in the program. We do not support floating-point
calculations, because they rarely result in buffer overflow errors. Then we con-
tinue with a detail description of abstract memory locations and data structures
concerned.

2.1. Data lattices

To model the integral types of the C language we use the integer lattice. The
value set of the lattice consists of unlimited negative and positive integer num-
bers, —o0, co, undef, any, and integer ranges [I, k], (—o0, h], [I, 00), where [, h
are integers. The integer lattice type is further denoted as M Integer.

86

The approach of using integer ranges for tracking integral values in the program
is also used in [3, 10]. Considering [10], we add “undefined” value undef and
“overdefined” value any to the value set of the lattice. The undef value is as-
signed to a local variable at the location of its definition, if the definition has no
initialization. The any value means that the value of the variable is completely
indeterminable by static analysis algorithm. By definition (—oco, c0) = any.
We define the standard set of operations with integers and extend them to
handle undef and any values. We also define the join (L) binary operation used
in program locations where the control flow merges from several alternatives.
We follow the [3] definition of join operation of two integral ranges as bounding
boz of these ranges.

2.2. Abstract memory locations

Each object, which may potentially exist during program execution, has the
corresponding abstract memory location (AML) object during program analy-
sis. AMLs for objects are created “lazily” when the corresponding variable
declaration point of the program is analyzed. AMLs are created for static and
automatic variables, string constants, dynamic data structures (allocated by
malloc() and friends)and temporary variables of the intermediate representa-
tion of the program.

An AML is created for an aggregate type as the whole, as well as AMLs for
individual fields of the aggregate type. These AMLs are linked together using
the overlap AML attribute. For an array object two AMLs are created, the first
represents the pointer to the array, whereas the second is the array itself. This
allows us to handle array and pointer dereferences uniformly. Array elements
are not distinguished and no separate AMLs are created for array elements.
This is a trade-off decision to decrease resource and time consumption of the
analysis. However, our experiments show little impact on the quality of analysis.

We use (AML, offset) to refer to an AML with the offset offset. Offsets have the
M _integer type. By AMLSet = {(AML, offset)} a set of such pairs is denoted.
An AML contains both static and dynamic attributes. The values of static
attributes remain unchanged during the lifetime of the AML, whereas dynamic
attributes are associated with some point of the program and make sense only
in conjunction with it. There is a special AML null, which is referenced by
any NULL pointer.

The static attributes of an AML are listed below:

87

e size is the amount of bytes occupied by the AML. For dynamically cre-
ated AMLs the size is calculated using the corresponding parameter(s)
of the memory allocation function, when it is possible. In this case the
size may change during iterations of the analysis, as well as after the call
to realloc(). In other words, the size of the AML is the same for all
the points of the program, but may be adjusted dynamically.

e overlap is an AMLSet that contains the AMLs that overlap the current
one. The attribute is used for specifying the layout of subobjects in the
object of the aggregate type. Creation of subobject AMLs is done im-
plicitly during creation of an aggregate AML, but this set can also be
defined more precisely among the iterations. It happens due to impossi-
bility of the correct determination of subobjects of dynamically created
aggregate AML.

e label denotes the name of the AML.
e type denotes the type of the AML.

e var denotes the original variable that initiated the creation of the AML.
The dynamic attributes of an AML (denoted by AMLAttributes) are as follows:

e aset is an AMLSet of the objects which the AML may point to (i.e,
points-to set).

e len is M_integer denoting the length of the string contained in the AML.
e value is M_integer denoting possible values of AMLs of integral types.

e input is a boolean attribute that shows whether the AML is “tainted”,
i.e. its value depends on user input.

e alive is a boolean attribute denoting that the memory allocated for this
AML was not freed.

Note that the dynamic attributes of an AML are always bound to a specific
program point.

3. Calculation of attributes

This section contains detailed description of the rules for an AML attribute cal-
culation. Both intra- and interprocedural stages of the algorithm are discussed.

88

Iif (a >0
ouTrT(I)={(AML.a,...

OUT_F(I) = § (AML.a, ...

. valueg, N (0,4+00)),valueg, N (—00,0]),...}

}

true false

Figure 1: An example of the flow function calculation

There is also a number of heuristics used to improve speed and convergence of
the analysis presented.

3.1. Intraprocedural analysis

The algorithm operates on the medium level of the intermediate representation
of the program, generated by the C front-end. We use medium-level represen-
tation in form of quadruples (opcode, res, op,, op,). Structured statements are
converted to conditional and unconditional gotos. So-called pseudoregisters are
used to hold temporary values.

The algorithm annotates each instruction I of the program with additional at-
tributes. We denote the type of these attributes as AML2Attr. Each attribute
of the type AML2Attr is a set of pairs {(AM L, AM L Attributes)}. The in-
struction attribute IN(I) is a set of attributes that are available at the point
before the instruction I. If I is a single-exit instruction, OUT(I) is the set of
attributes available at the point after the instruction I.

When I is a conditional jump instruction, two sets OUT _T(I) and OUT F(I)
are defined and they contain the attributes effective when the condition holds
and when the condition fails respectively. Similarly, if the instruction I has
several exits, all of them have different attribute sets. In the Fig. 1 an example
is given. AML, is an AML corresponding to the variable a. At the entry
of the instruction I this AML has the attribute value = wvalue;,. At the
exits of I the attributes will be as follows: valueous ¢ = valuey, N (0, +00),
valuegys § = valuey, N (—o00,0].

89

IN(I) and OUT(I) (OUT_T(1), OUT_F(I)) are connected by the flow equa-
tion:

OUT(I) = Flow(I,IN(I)), or
(OUT_T(1), OUT_F(I)) = Flow(I,IN(I))

INI)= || OUT(P)
pEPred(I)

Joining of AML2Attr sets is performed as follows. For each =z =
(AML, Attribl) taken from OUT(P), if IN(I) does not contain y =
(AM L, Attrib2) with the same AML, z is added to IN(I). Otherwise,
Attribl and Attrib2 are joined.

The flow function is defined for each instruction of the intermediate representa-
tion and is the core of the attribute calculation algorithm. For example, access
via pointer instructions modifies aset and/or len attributes, arithmetic instruc-
tions modify wvalue attributes, etc. Conditional jump instructions also modify
attributes.

The function call instructions are handled in a special way. If the function being
called is a standard library function (for example, strcpy), a special routine
is called, which simulates the behavior of this library function and generates
the output attribute set OUT(I) from the current input attribute set IN(I),
i. e. handling of the standard library functions is always context sensitive. If
the function is not a predefined function, yet its body is available, the analysis
of the function is not performed immediately, and the current output attribute
set QUT(I) is used. It is the duty of the interprocedural analysis framework
to analyze the function and to update its output attributes. If the callee is not
a predefined function and its body is not available, the analysis algorithm has
to use conservative assumptions concerning the function semantics.

Special support for loops is also implemented in order to ensure algorithm
convergence and improve its precision. The loop counter variable is detected
and its value range is set according to loop condition. All the further changes
of the attributes of the loop variable are prohibited. This heuristics work for
loops of simple structure, and still complex loops may not converge. A number
of other tricks is used in this case.

90

3.2. Interprocedural analysis

A context-insensitive program call graph is constructed at the beginning of the
analysis. Initially the call graph does not contain edges corresponding to call-
by-pointer instructions, such edges are added when the corresponding points-to
sets are computed.

The current implementation features only partially context-sensitive interpro-
cedural analysis. On each iteration each function is analyzed only once with
joint context (join of all the input attribute sets at all the call sites), thus the
analysis is mostly context-insensitive. However, calculation of the flow function
for a call instruction does some additional passes to make analysis more sensi-
tive. For example, all the dynamic AML attributes, which cannot exist at the
current path in the call graph, are killed.

The interprocedural analysis uses the worklist approach. Initially the worklist
of functions to be analyzed contains all the dangling nodes of the call graph,
i.e. all the functions which are not called from any other function. On each
iteration each function f in the worklist is analyzed once as follows:

1. All the input sets IN(I) of all the call sites of f are joined. Let IN; be
the result of join operation.

2. All the pairs (AML, Attributes) in IN, are replaced with (AMLy,
Attributes). Here AML corresponds to an actual argument of the
function at some call site, AML; corresponds to the respective formal
parameter of the function. If several AMLs map onto the same AMLq,
their attributes are joined and the result is assigned to the attributes of
AML,. The attributes of the actual parameters without an AML (for
example, constants) are also joined to the attributes of the corresponding
formal parameters. Let IN5 be the resulting set of attributes.

3. The pairs (AML, Attributes) are removed from INo for all the AMLs,
which are not directly or indirectly accessible from the current scope.
Such attributes are useless during the analysis of f. Let IN3 be the
result of the operation.

4. Forward iterative intraprocedural data-flow analysis is performed with a
set of input attributes I N3 for the f function.

91

5. The pairs (AML, Attributes) are removed from the output set of at-
tributes of f for all the AML, which are not directly of indirectly ac-
cessible outside the f.

6. If the intraprocedural analysis performed at the step 4 has changed at-
tributes of any instruction within f, then all the callers of f are marked
to be reanalyzed on the next iteration. A callee of f is marked to be
reanalyzed, if input attributes of the corresponding call instruction have
changed.

3.3. Additional analysis heuristics

We have implemented a number of additional analysis heuristics to increase the
analysis speed, reduce memory usage, and improve the precision of the analysis.
These features are listed below.

e Loop widening and narrowing [3] is performed to ensure convergence of
the analysis in typical situations.

e Context clipping is performed at the points of conditional jump instruc-
tions. The context is updated on both exits according to the condition
tested.

e Attributes of the source and the destination AMLSs of transfer instruc-
tions are linked instead of copying. A transfer instruction assigns at-
tributes of a source AML to attributes of a destination AML without
changes. This feature allows effective cutting of AML attributes later.

e The exits of the function are distinguished. The contexts at the func-
tion exit points may differ from each other providing different attribute
sets to the callers. When the result of the function call is tested, the
condition is propagated back to the function and the appropriate return
statement is chosen, thus selecting specific attribute set. This is a trade-
off, which allows increasing context-sensitivity without impacting on the
performance.

The code snippet below is an example of this heuristic. On the “then”
branch of if (line 14) the value of p is undefined, but on the “else” branch
(line 15) p points to the object of size 10.

92

1 int f(char xx p) {
2 char * pp — malloc(10);
3 if (pp = NULL)
4 return 0;
5 else {

6 *P = PP;

7 return 1;
8 }

9 }

10

11 int main() {

12 char xp;

13 if (f(&p) = 0)
14 return 0;
15 p[1] = 0

16

17}

4. Error detection

In two previous sections we described the attribute computation algorithm.
The programming errors are detected using the computed AML attributes. For
each instruction of the program the input context is checked and the attribute
values, which can indicate programming errors, are determined.

Buffer overflow warning messages are generated as a result of comparing size
attribute of the destination AML with offset attribute of pointers to this AML.
If the offset is negative or greater than the size of the AML, buffer overflow
warning is issued.

Detection of memory leaks is implemented as follows. At the end of each
function all the pairs (AML, AMLAttributes), which have alive attribute set to
true, are checked. AML must correspond to some dynamically allocated data
structure. If such pair is to be removed from the output sets according to step 5
of interprocedural analysis, then all the points of memory allocation for this
AML are marked as potential sources of memory leaks, and the corresponding
warnings are issued.

Potential format string errors are detected at the call sites of the corresponding
library functions. The format argument of the function is checked for tainted-
ness. The argument is tainted, if the input attribute of the corresponding AML
is set, to true. In such cases warning messages are also issued.

Dereferencing of undefined or possibly NULL pointers is also checked and appro-
priate warning messages are generated.

93

5. Experimental results

We have implemented our approach as a prototype tool for checking C pro-
grams. The tool uses the C compiler and is implemented in the framework of
the Integrated Research Environment (IRE) developed at Moscow State Uni-
versity. The compiler translates C code to the medium-level intermediate rep-
resentation. The IRE contains a number of standard and original analysis and
transformation algorithms. All of them operate over the intermediate represen-
tation. The IRE provides graphical user interface and project support.

For understanding features of our prototype implementation, consider this ex-
ample.

#define BSIZE 32

1

2

3 wvoid copy string(char xdst, const char xsrc,
4 int xcur, unsigned cnt) {

5 int i = 0;

6 for (; i < cntj; i++)

7 dst[*xcur + i] — src[i];

8 kcur += i;

9 }

10

11 void fix middle(char =dst, int scur) {
12 dst [(*cur)++] = .73

13 dst [(*cur)++] = ;

14 dst [(*cur)++] = .73

)

15}

16

17 void do cat(char xdst, const char xsrcl,

18 const char *src2, int xcur, unsigned cnt) {
19 copy string(dst, srcl, cur, cnt);

20 fix middle (dst, cur);

21 copy string(dst, src2, cur, cnt);

22 }

23

24 int main(void) {
25 char strl [BSIZE |;
26 char str2 [BSIZE |;

27 char xstr3;

28 int i = 0;

29 j = sizeof(strl) + sizeof(str2) + 3;
30 str3 = (charx) malloc(j);

31 if (str3) {

32 do cat(str3, strl, str2, &i, sizeof strl);
33 printf("%d_%d\n", i, j);

34 str3[i] = 0;

35 }

36 return 0;

37}

94

Table 1: Evaluation results for our tool

Application Source True Total % of true
LOCs | positives | warnings | positives
bftpd-1.0.24 3389 19 60 31.7%
lhttpd-0.1 1141 7 19 36.8%
pcre-3.9 9102 7 31 22.6%
surfboard-1.1.8 823 12 17 70.6%

It contains buffer overflow in line 32. Index variable i is changed through
calling do_cat () function when passing its address as a parameter. Both calls
of copy_string() increase the variable by BSIZE, and fix_middle() increases
it by 3. Then the value of this variable equals the allocated size for str3 buffer.
Thus, an off-by-one error occurs. Note that neither FlexeLint [15], nor ITS4 [9]
and RATS [12] detect this error.

We delivered preliminary evaluation of the tool on a number of open source
programs. Several examples are taken from [6]. Evaluation results are summa-
rized in the Table 1. For each package we show the size of its source code as
reported by the we tool, total number of warnings generated, a number of true
positives and the percentage of true positives.

There is relatively high percentage of false positives due to complex evaluations
of array indices, which our analysis is not yet able to cover. Other major causes
of false warnings include insufficient handling of calls by pointer, insufficient
standard library support and imprecision of the analysis in certain situations.

6. Related work

There are many methods and tools applied for automatic detection of program-
ming errors. We have only mentioned approaches based on program verification
(see [8] for an overview) and run-time checking such as [4]. Below we focus on
the existing static analyses and tools.

There are tools that use lexical source code analysis to detect security errors
(for example, [9, 12]). The main advantage of such tools is the speed of the
analysis. However, lexical analysis tools lack accuracy and gives a very large
number of false warnings.

95

Static analysis tools of the 1int family such as Splint and FlexeLint [16, 15]
use semantic analysis and simple forms of data flow analysis to detect many
common C coding errors. The tools can detect buffer overflow and format string
errors in simple situations, but more complex situations are either missed or
yield false positives.

Bush et al. [2] use static analysis for finding common dynamic programming
errors, such as dereferencing NULL pointers, memory leaks, etc. The analyzer
simulates execution paths by modeling a memory state of a program and iden-
tifying inconsistencies. Models for system library functions are provided with
the analyzer, whereas models for user functions are generated from the source.
The tool does not aim at finding security errors such as buffer overflow and
format string errors, whereas our approach is designed to detect these kinds of
errors too. Both approaches detect memory leak and NULL pointer dereferencing
errors.

Wagner et al. [10] develop static range analysis technique for finding buffer
overflows. The approach consists in generating constraints for modeling string
and buffer operations and then solving the constraints with range analysis. The
tool implemented finds one real error in 10 warnings generated. The main lim-
itations of the approach are insufficient handling of aliases (both pointers and
unions) and flow- and context-insensitivity. Our approach handles pointer oper-
ations with flow sensitivity. That allows us to detect buffer overflows resulting
from primitive pointer operations, which is not performed in [10]. However,
we use some ideas from [10] and [3] for our implementation of integer range
analysis.

Livshits and Lam [6] proposed an alias analysis to be used expressly for error
detection. The approach introduces a new representation, called TPSSA, for
capturing pointer dereferences and procedure calls in SSA form. The algorithm
presented is a hybrid approach, using context- and path-sensitive analysis in
the key situations and fast imprecise analysis for all other references. However,
error detector used in [6] is limited to discover buffer overflows resulting from
putting user supplied string to a static buffer. Our approach performs tracking
of integral values of array indices and string lengths. That allows us to detect
buffer overflows resulting from handling strings as character arrays, which was
not the aim of [6]. Nevertheless we think that the assumptions we have made
to speed up the analysis and suppress false errors are to some extent similar to
those of [6].

96

7. Conclusions

This paper describes an approach for using data flow analysis for detecting
programming errors, especially those error kinds, which may lead to security
vulnerabilities (buffer overflow and unchecked input usage errors). Our algo-
rithm is based on flow- and partially context-sensitive interprocedural alias and
integer range analyses.

We use our approach in a tool for automatic detection of security vulnerabili-
ties, which is currently at the stage of prototype implementation. Preliminary
evaluation of the tool yields the true positive rate from 22.6% to 70.6% on 4
tested packages, showing feasibility of our approach.

We may also state that the assumptions we have made to improve the precision
of the tool match the semantics of many functions analyzed.

Future challenges for us include scaling up of the analysis to larger programs,
as well as eliminating known drawbacks and further improving the precision of
the tool. We also plan to implement the support for annotation language and
perform thorough evaluation of the features introduced by annotations.

References

[1] T. Aslam. A Taxonomy of Security Faults in the Unix Operating System.
M.S. thesis, Purdue University, 1995.

[2] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for find-
ing dynamic programming errors. In Proceedings of Software Practice and
Ezxperience, pages 775-802, 2000.

[3] P. Cousot and R. Cousot. Static determination of dynamic properties of
programs. In Proceedings of the Second International Symposium on Pro-
gramming, pages 106-130. Dunod, Paris, France, 1976.

[4] E. Haugh and M. Bishop. Testing C Programs for Buffer Overflow Vulner-
abilities. In Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, February 2003

[5] I. Krsul. Computer vulnerability analysis. Ph.D. thesis, Purdue University,
West Lafayette, IN, May 1998.

97

[6] V. Benjamin Livshits and Monica S. Lam. Tracking Pointers with Path
and Context Sensitivity for Bug Detection in C Programs. In Proceedings
of the 11th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering (FSE-11), September 2003.

[7] S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997, 3rd ed.

[8] K. Rustan, M. Leino. Extended Static Checking: a Ten-Year Perspec-
tive. In Proceedings of the Schloss Dagstuhl Tenth- Anniversary Conference,
Springer-Verlag, 2001

[9] J. Viega, J.T. Bloch, T. Kohno, and G. McGraw. ITS4: A Static Vulner-
ability Scanner for C and C++ Code. In Proceedings of the 16th Annual
Computer Security Applications Conference, December 2000.

[10] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step Towards
Automated Detection of Buffer Overrun Vulnerabilities. In Proceedings of
7th Network and Distributed System Security Symposium, Feb. 2000.

[11] @Stake, http://www.atstake.com
[12] RATS checker, http://wuw.securesoftware. com

[13] Bugtraq mailing list and vulnerability database,

http://www.securityfocus. com.
[14] Secure Software, http://www.securesoftware.com
[15] Flexelint static checker, http://www.gimpel.com

[16] Splint static checker, http://www.splint.org

98

