Guaranteed Slowdown, Generalized Encryption
Scheme, and Function Sharing

Yury Lifshits?

Abstract. The goal of the paper is to construct mathematical abstractions of differ-
ent aspects of real life software protection. We introduce three following notions: pro-
gram slowdown, generalized encryption scheme and function sharing. These schemes
allowed to discover new applications of such known ideas as trap-door functions and
self-correcting programs.

1. Introduction

Software protection is very active research area now. It involves both practical
approaches and theoretical investigation. In contrast to cryptography there is a
lack of strict models for almost all aspects of program protection. In this paper
we consider three notions motivated various intuitive protection ideas. We give
a series of definitions examples and open questions around them.

There are a lot of practical tools, but the level of protection provided by them
is unclear. In many cases we require an evidence that program is protected. So
the main problem is to construct a proof of security. As soon as you start think
about proof you immediately ask for formal model and definition of security.

In 2001 the general formal model for program protection (namely, black-box
security) [3] was presented. However there are only few positive results [15, 11]
in this framework. An informal conclusion of this study is that threats are
different, and in each case you need specific protection. Hence we ask for new
formal models describing program protection and attacks on programs.

Our new approaches are the following.

First idea is guaranteed slowdown scheme. Guaranteed slowdown is a slow
version of some algorithm which is difficult to speed up to the original level. One
application is slowdown of encryption algorithms in public key cryptosystems.
It helps against brute force attacks. In this work we introduce two examples of
slowdown transformation. We show that idea of guaranteed slowdown is closely

ISupport by grant RFBR 06-01-00584-a and contract with Federal Agency
of Science and Innovation N 02.442.11.7290 are gratefully acknowledged

99

related to trap-door functions. The most interesting open question is how to
get a formal proof that slowdown is difficult to reverse.

Second protection method we study is generalized encryption scheme (GES).
This notion was already presented in work of Abadi et al. [1]. The problem is
the following: how to use untrusted computational resource with information-
theoretic security of your own data? Here we present one new example of such
a scheme and discuss utilization of this notion in software protection. The main
result of Abadi et al. [1] is that GES is impossible for NP-complete problems.
Still it is very perspective to find such schemes for polynomial tasks.

Third notion is function sharing. This is a natural generalization of secret
sharing schemes. The question is how to divide a computational task among
several parties in the way such that subgroups can’t say anything about the
original task. This scheme are interesting for protecting mobile agents from
malicious hosts [7, 10] development and as a basic block for new obfuscating
transformations [6]. We present here a scheme for function sharing in the most
simple model. For several additional restrictions existence of such schemes
remains an open question.

Next three sections devoted to these models. For each of them we introduce
some motivation, several examples, then formalization and conclude with re-
lated work and open questions.

2. Guaranteed slowdown

Informally, guaranteed slowdown is a pair of programs P; and P, with three
following properties: P; and P» are functionally equivalent, P; is faster than
P, and there is some “evidence” that given only source code of P, to construct
a functionally equivalent program comparable (in speed) with P; is difficult.

The task of slowdown seems quite unusual so we need to explain our motivation.
There are four points here:

A. Author of some program can distribute it in the slow version in order to
protect his copyright. To prove the authorship of his code he (and only
he) can show speedup version of the program.

B. We now explain how slowdown of encryption algorithm might be useful
against brute force attacks on public key cryptosystem. Let Bob is send-
ing message to Alice. Then to obtain the maximum level of security they
choose the largest length of the key such that decryption and encryption
algorithms are still feasible. Consider the case when decryption (using
this long key) requires full resources from Alice while Bob has some re-

100

serve of computational power during encryption. In such circumstances
instead of public key we can distribute slowdown version of encryption
algorithm. Thus Bob still can encrypt what he want but any brute force
attack that uses a lot of encryptions becomes harder.

C. It is popular to bound some functionalities in the trial versions of soft-
ware. We can apply guaranteed slowdown scheme to obtain provable
crack resistance for trial version. If we use slow version as a trial one,
then by our informal definition recovering of original speed for the pro-
gram is difficult.

D. We can divide all attacks on a program in the two classes: understand-
ing (gaining knowledge) and modification. When we distribute a slow
version program a potential attack is a speedup transformation. Hence
guaranteed slowdown scheme is a partial case of modification protection.
Therefore there is a hope to extend some ideas of slowdown scheme to
protection against other modification threats.

We start with two examples of slowdown.

Example 1. Consider a function f(z) = 2* mod N, where N is a production
of two prime numbers as in RSA cryptosystem. We can slow down computation
of f in the following way. We keep a in secret but announce b = a + kp(N) for
some integer k instead. By Euler’s theorem % = 2°(mod N). To proof that
g(z) = 2® mod N is guaranteed slowdown for f we should check to things: a) g
is slower than f and b) g is difficult to speed up. We have only informal evidence
for this statements. Firstly, b > a and, moreover, we are free to choose k as large
as we want; it seems very natural that raising to the larger power requires more
computation. Secondly, up to now there is no known polynomial algorithms to
compute p(N) so we believe that given b to compute lesser degree ¢ such that
for any z the equality 2 = 2*(mod N) holds is also hard. However, we still
need rigorous proofs here.

Example 2. Take any trap-door function fi (see [9]). Knowing the secret key
k there is a polynomial algorithm A to compute f, 1 As a slowdown version
of A we can take the following algorithm A’:

for y=1 to 2°n do
if f_k(y)=x then return y;

Let us discuss the idea of guaranteed slowdown. The first question to answer is
how to measure the speed of algorithm. On any particular input we can achieve

101

even a constant time for computation. Hence for the guaranteed slowdown
definition speed should be an integral characteristic. We use average speed but
other approaches might be reliable as well.

Another point of discussion is whether to study slowdown for functions defined
on finite or infinite domains? Below we choose first answer (hence we can speak
about circuit slowdown). But slowdown for functions on infinite domains also
might be investigated. So the average speed of finite function is just a number.
If we will speak in terms of circuits than we would use circuit size as a measure
for speed.

We now give a slightly more formal description of our model. A pair of al-
gorithms Ay (fast), As (slow) is called a guaranteed slowdown for function f
if both algorithms compute f, Ay works on time ¢ and given only A, it is
“difficult” to construct an algorithm computing f faster than ¢;.

How can we prove difficulty of speed up? To have a complexity bound we should
specify a computational problem. That is a family of questions and answers.
The above description is a single slowdown scheme but security proof might
exist only for family of such schemes. The way out is the following. We specify
a family of functions F'. Security proof should be a statement like: given A
for some f € F it is difficult to construct a (fast) algorithm computing f.

The notion of guaranteed slowdown is very close to the idea of trap-door func-
tion. The common point is that in both cases we have pair of algorithms and
knowing only the public one it is difficult to get the secret algorithm. The
difference is that we do not require dramatic difference between efficiency of al-
gorithms in the pair. Another point is that in trap-door function scheme there
are three algorithms (straightforward computation, obvious slow inversion and
secret fast inversion) while in guaranteed slowdown there are only two.

What are further questions about guaranteed slowdown? It might be interesting
to know:

e Whether it is possible to make any level slowdown? That is whether for
any function s there is a function f that could be slowdown from ¢ to s(t)?

e Whether it is possible to organize multilevel slowdown? We mean here a

series of algorithms Ay, ..., Ay computing f such that A; is slower than
A;+1 and knowing any A; it is difficult to get an algorithm comparable
with Ai+1.

e How to prove that speed up is difficult?

e Function that is nonzero only on one input value is called point function.
It seems quite natural that such functions have slowdown schemes. The

102

question is to make a full study of guaranteed slowdown schemes for
point functions.

3. Generalized encryption schemes

In this section we investigate the following model [1]. There are two partic-
ipants, Alice and Bob. Alice has some computational task, that is function
f € F and input x, Bob has nothing. Alice want to get a result f(x) faster
than just doing all computation by herself. Alice can communicate with Bob
and ask him to do some computation for her. We study only semihonest model
here that is Bob send back correct results. The main restriction is information-
theoretic security of x and f (Bob knows only that f € F). In contrast to
[1] below we also consider generalized encryption scheme with cryptographic
security.

We present generalized encryption scheme for two functions. In these examples
f is not a secret, but =z is.

Example 3. [1] Discrete logarithm. Let prime number p be fixed and g be
generator for Z;. For every integer u such that (u,p) = 1 the value of discrete
logarithm function f(u) is the unique integer e € [1,p — 1] for which ¢°¢ = u
mod p. Generalized encryption scheme for discrete log is as follows. Alice send
to Bob v’ = ug” (for random r), Bob send back discrete log ¢’ for v/, and
Alice get the answer e = ¢/ — r. Value of ug” is uniformly distributed on the
set [1,p — 1], therefore Bob get no information about u. Discrete log in usual
computation is believed to be a hard problem.

Example 4. Inverse operation in a group. Here we present a schema that could
be applied for many functions. Let G be any group such that inversion operation
as at least twice harder than multiplication. Then there is a fully encrypted
computation scheme for inversion. Alice asks Bob to compute inversion of rz,
receives 777! and multiply result by r. So Alice uses two multiplications
instead of one inversion. Bob get no knowledge about x. Multiplication group
of matrices over the finite field is a natural candidate for “inversion is twice
harder than multiplication” property.

Use of auxiliary untrusted computational source arise in several practical areas.
First is market-based parallel computing. That is we “encrypt” our hard com-
putational tasks and (for money) ask outside computers to perform it for us.
Second relevant framework is mobile agents technology. We send programs on
others computers to make some task for us (usually depending on that host’s
inputs). Another property of mobile agents is their ability to change the host

103

from time to time. Third application field is development of smart cards. Infor-
mally smart card sends some computational task to an auxiliary computer and
tries not to reveal any essential information about computation. In all these
cases we have two security aspects: to hide internal information from outside
host and to check whether it’s results are correct. In our study we deal only
with first one.

We now recall the definition of generalized encryption scheme. It is a two party
(Alice and Bob) protocol. Alice has a computational task that is € X and
f € F. There are finite number of communication rounds between Alice and
Bob. In each round i Alice compute her massage a; based on her input, all
previous Bob answers and random coins and send a; to Bob. He compute
an answer based on all massages received from Alice to the moment. After
the last round Alice compute an f(z) based on all information she has. We
have two requirements: efficiency and security. Efficiency means that total
amount of computation performed by Alice should be less than that in the
case of straightforward computation (without Bob). There are two different
approaches two security. In the work [1] information-theoretic security is used.
This means that distribution of Alice messages should be the same for all input
values.

We now introduce cryptographic security for GES and discuss its relation black-
box security [3]. If distribution of Alice massages for different pairs (x, f) are
computational indistinguishable (see [9]), then we call GES to be cryptograph-
ically secure. Consider any family of functions F' defined on a set of strings X.
Let us fix some pseudorandom function G (again, see [9]). Then for any string
r and any seed k we call

f = f(az XOR 7) + Gi(x)
to be a prepared form of f.

Proposition 1. Suppose for every prepared form of every function from F
there exists an obfuscation with black-box security. Then there is a GES for F
with cryptographic security.

Proof. Our construction is straightforward. We choose randomly r and k& and
send to Bob string (x XOR r) and obfuscated f. Bob send back f(x XOR r)
and Alice subtract Gy (x XOR r) from it to obtain f(z).

To get a security property we should combine two facts. First is that Gy
is computationally indistinguishable with truly random function. Hence fis
also indistinguishable with random function. Second point is that it is com-
putationally hard to get any knowledge besides input-output behavior about

104

function obfuscated with black-box security. Thus our GES is cryptographically
secure. 0

We know [3] that black-box secure obfuscation not possible for every function.
Still obfuscation even with smaller level of security leads to a potentially ap-
plicable generalized encryption schemes.

We now recall models that are the most relevant to generalized encryption
scheme. Secure function evaluation is a common computational task for several
parties each of which knows only part of data. The security requirement is not
to reveal more information about input data than just output value. Encrypted
computation [14] is a two parties (Alice and Bob) task. Alice has a function,
Bob has an input value, Alice sends her function in encrypted form to Bob,
he performs computation on his value and returns an (encrypted) result back.
Third problem is acceleration of raising to a power in RSA cryptosystem [4,
12], which is, in fact, a particular case of generalized encryption scheme with
cryptographic security. Besides this models there is another relevant notion.
As we see in examples, basic idea is to ask Bob to compute the same function
but with different input. The same idea was used in self-correctors [5]. The
difference in our works is that we ask that new input reveal no information
about original one.

We conclude this section with two open problems:

e For which functions there exists a generalized encryption scheme with
cryptographic security?

e For which computational tasks there is essential polynomial speed up
with theoretic-informational security?

4. Function Sharing

Function sharing is a protocol for distributed computation satisfying some se-
curity requirements. There are three parties, say Alice, Bob, and Carl. Let
family of functions F' be fixed and known to everybody. We study the following
process of computing a function f € F. Alice, Bob and Carl have predefined
secret functions Ay, By, and Cf, respectively. Input z goes to Alice and Bob,
they compute their functions on it and send results Ay(x) and By(z) to Carl,
Carl compute his function on these results and outputs the value of f.

Thus we have the decomposition formula
f(z) = Cr(Ay(x), B (2)).

105

The security requirement is that knowing only two of functions Ay, By, and
C it is impossible to get any knowledge about f except that f belongs to F.

Example 5. Let Fy be the class of all functions f that there exists an algo-
rithm Alg; computing it and that length of description of Alg; is less than V.
Then there is a simple function sharing scheme for Fiy. We already have a good
developed theory of data secret sharing. Hence our idea is to treat a function
as a sort of data. So we write down a description string S of an algorithm com-
puting f. Than we generate a random string R of the same length. We send R
to left party, SXORR to the right one. They wouldn’t compute anything and
just resend x and their part of f coding to Third party. Third party recover S
end evaluate a universal circuit (universal Turing machine) on S and .

In program obfuscation [6] the idea of usual secret sharing is used in the follow-
ing obfuscating transformation: boolean variable v is splitted into two x, y such
that on any point in time v = zXORy. In the same way any function sharing
scheme will lead to a procedure splitting transformation. Notion of function
sharing is applicable wherever program is decomposed into several parts. Now
two such approaches are obfuscation on interpretation level [13] and dividing
mobile agent into set of agentlets [7]. Notice that in all these applications
function sharing will be useful mostly against static attacks.

It is a natural idea to decompose a secret into several parts such that knowing
only some of them does not help to recover this secret. When the secret is a
string of bits a lot of beautiful secret sharing schemes were constructed since the
seminal paper [2] was published. Function sharing is an extension of that idea.
There is another framework, namely minimal model for secure computation
[8], close to function sharing. The common is three parties, result should be
computed by third (Carl), inputs goes only to first two (Alice and Bob). But
these models have a significant difference. Namely, in our case input circuit is
a secret, and data is not while in multiparty communication complexity circuit
is public, but data is a secret.

Now we present two modifications of our main task. One additional requirement
is to ask C'y be as simple as possible. Second is to restrict the size of output of
Ay and By. More precisely an interesting questions are:

e For which function families it is possible to construct a function sharing
scheme with Cy equal to XOR?

e For which function families it is possible to construct a function sharing
scheme with output size of Ay and By at most constantly larger then
output size of f?

106

5. Conclusion and future work

Theoretical research in the area of software protection goes in two ways: in-
vestigation of existed models and introduction of new ones. We present three
frameworks: guaranteed slowdown, generalized encryption scheme and func-
tion sharing. These models allow us to connect problems of program protec-
tion with such good investigated notions as trap-door functions (for guaranteed
slowdown) and random self-reducibility for (generalized encryption scheme).

A series of new theoretical problems naturally arise in our study. Probably the
most interesting are to find a large class of functions having generalized en-
cryption schemes and to construct a formal proof of irreversibility of slowdown
transformation.

To define an adequate theoretical framework for software protection is not easy.
The main difficulty is pure understanding of what are protected programs and
what are threats. One of the unanswered question in modelling is: how to define
what is known to adversary and what is a secret in a program. In cryptography
there is a Kerckhoff law saying that an algorithm is public and a key is a secret.
In practice of software protection real secrets have different nature.

The target of modelling is to get some theoretical result and bring it back
to practice. Here we introduce several ideas with potential for applications,
e.g. RSA encryption slowdown. Still for further theoretic investigation our
formalizations should be more rigorous.

6. Acknowledgements

I thank Peter Holgerson for idea of program slowdown.

References

[1] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information
from an oracle. J. Comput. Syst. Sci., 39(1):21 50, 1989.

[2] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612—-613, 1979.

[3] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In CRYPTO ’01: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, pages 1-18, London,
UK, 2001. Springer-Verlag.

[4] Philippe Begiun and Jean-Jacques Quisquater. Fast server-aided rsa sig-
natures secure against active attacks. In CRYPTO ’95: Proceedings of the

107

[5]

[6]

7]

18]

9]
[10]
[11]

[12]

[13]

[14]

[15]

108

15th Annual International Cryptology Conference on Advances in Cryptol-
ogy, pages 57 69, London, UK, 1995. Springer-Verlag.

Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. J. Comput. Syst. Sci., 47(3):549—
595, 1993.

Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Technical Report 148, Dept. Computer
Science, University of Auckland, July 09 1997.

L. D’Anna, B. Matt, A. Reisse, T. Van Vleck, S. Schwab, and P. LeBlanc.
Self-protecting mobile agents obfuscation report. Technical Report 03-015,
Network Associates Labs, June 2003.

Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure
computation (extended abstract). In STOC, pages 554-563, New York,
NY, USA, 1994. ACM Press.

Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, New York, NY, USA, 2000.

Fritz Hohl. Time limited blackbox security: Protecting mobile agents from
malicious hosts. Lecture Notes in Computer Science, 1419:92-113, 1998.

Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and
techniques for obfuscation. In EUROCRYPT, pages 20-39, 2004.

Tsutomu Matsumoto, Koki Kato, and Hideki Imai. Speeding up secret
computations with insecure auxiliary devices. In CRYPTO ’88: Proceed-
ings of the 8th Annual International Cryptology Conference on Advances
in Cryptology, pages 497-506, London, UK, 1990. Springer-Verlag.

Akito Monden, Antoine Monsifrot, and Clark Thomborson. A framework
for obfuscated interpretation. In CRPIT ’04: Proceedings of the second
workshop on Australasian information security, Data Mining and Web In-
telligence, and Software Internationalisation, pages 7—16, Darlinghurst,
Australia, 2004. Australian Computer Society, Inc.

Tomas Sander and Christian F. Tschudin. On software protection via
function hiding. In Information Hiding, pages 111-123, 1998.

Nikolay P. Varnovsky and Vladimir A. Zakharov. On the possibility
of provably secure obfuscating programs. In Ershov Memorial Confer-
ence, volume 2890 of Lecture Notes in Computer Science, pages 91-102.
Springer, 2003.

