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Abstract. The uniform verification problem for parameterized systems is to determine

whether a temporal property is true for every instance of the system which is composed of an

arbitrary number of homogeneous processes. We consider some aspects of the induction-

based technique which assumes the construction of finite invariants of such systems. An

invariant process is one which is greater (with respect to some preorder relation) than any

instance of the parameterized system. Therefore the preorder relation involved in the invari-

ant rule is of considerable importance. For this purpose we introduce a new type of simula-

tion preorder — quasi-block simulation. We show that quasi-block simulation preserves the

satisfiability of formulae from ACTL∗
−X and that asynchronous composition of processes is

monotonic w.r.t. quasi-block simulation. This suggests the use of quasi-block simulation in

the induction-based verification techniques for asynchronous networks. To demonstrate the

feasibility of quasi-block simulation we implemented this technique and apply it to verifica-

tion of Dijkstra’s token ring algorithm.

Keywords: program verification, asynchronous networks, model checking, temporal logic,

simulation, induction.

1. Introduction
Verification plays an important role in designing reliable computer systems. With

the increasing involvement of computer hardware and software in daily life, check-

ing the safety and correctness of these systems has become essential and some-

times even critical. Therefore it is an imperative task for computer scientists to de-

velop advanced verification techniques that will support the development of reliable

systems.

Two main approaches to program verification are testing and formal verification.

1This paper is supported by the grant RFBR 06-01-00106 and

INTAS 05-1000008-8144.
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Testing assumes an activity of generating a collection of input data (test cases),

running system to be verified on these data, and then analyzing its behavior. Since

the behavior of concurrent systems is usually very complicated and tends to be non-

reproducible, many bugs are difficult to detect by conventional testing. Formal ver-

ification approach assumes that one provides a mathematical model for the system

under study, specifies the properties the system should comply with, and then ap-

plies mathematical techniques (deductive methods, model-checking, equivalence-

checking, etc.) to check that the model satisfies the properties. Formal verification

is relatively inexpensive in comparison to exhaustive simulation and can be applied

at various points through the development process. It receives an ample algorithmic

support from various branches of mathematics and manifests its strength in areas

where other verification methods are inadequate. That is why formal verification is

now becoming an indispensable stage of software development process.

According to the approach towards formalization, formal methods fall into the

following major categories: model checking, theorem proving, and equivalence

checking. Model checking is technique which allows verification of computer sys-

tem by checking that a model M(P ) (represented as transition system derived from

hardware or software design P ) satisfies a formal specification ϕ (usually repre-

sented as temporal logic formula). When M(P ) is a finite state model then one

could find a rich variety of model checking procedures, including tableau-based,

symbolic and on-the-fly algorithms, partial order reduction techniques and many

others (see [9]). In what follows we will assume that each system (process) P under

consideration has only finite state and will not distinguish it from its model (transi-

tion system) M(P ).

It is quite another matter of checking infinite state models or infinite families of

parameterized systems F = {Pk}∞k=1. The latter is one of the most challenging

problems in verification today. As a matter of fact, the parameter k may stand for

any variable characteristics of the design Pk (say, the size of some data structures,

stacks, etc.), but much attention is given to the cases when the concurrent sys-

tems Pk are the parallel compositions p1‖p2‖ . . . ‖pk‖q of similar "user” processes

p1, p2, . . . , pk and a control process ("environment”) q. Then the uniform verifica-

tion problem for parameterized systems is formulated as follows: given an infinite

family F of systems Pk = p1‖p2‖ . . . ‖pk‖q and a temporal formula ϕ, check that

each transition system M(Pk) satisfies ϕ.

Though in [1] it was shown that the problem is undecidable in general, some positive

results may be obtained for specific parameterized systems. For the most part three
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basic techniques, namely,

• symmetry,

• abstraction, and

• induction

are employed to extend the applicability of conventional model checking to re-

stricted families of parameterized systems.

Symmetry is commonly used to avoid the combinatorial explosion in the number of

states in transition systems. Suppose that a transition system P has a non-trivial

group G of permutations acting on the state set S and preserving the transition re-

lation R and the labelling function L. Then one could replace the system P with a

quotient model PG, where the state space SG = {θ(s) : s ∈ S, θ(s) = {r : ∃σ ∈
G(σ(s) = r)}} is the set of orbits of the states in S. If the property ϕ to be checked

is invariant under G then P, s |= ϕ ⇐⇒ PG, θ(s) |= ϕ. The idea of exploiting

symmetry for state set reduction was introduced in [6, 15, 16]. Symmetry-based

reduction has been successfully applied to a number of case studies (see [4] for sur-

vey) and now it is implemented within a framework of many model-checkers [2, 19].

However, in many practical cases this approach run into obstacles, since the prob-

lem of finding orbit representatives is as hard as graph isomorphism problem. Some

papers [14, 24] have demonstrated a considerable progress in automatic symmetry

detection, but this problem still remains the main critical point of the symmetry-

based reduction techniques.

Symmetry can be also exploited to reduce the number of cases to be checked when

a specification of a system is also parameterized (say, when ϕk =
k∧

i=1

ψ[i]). In [15]

it was demonstrated that if a group G of permutations acting on the state set S

of a transition system P offers some nice properties then the verification problem

Pk |= ϕk may be reduced to that of checking Pk |= ψ[1].

Abstraction is likely to be the most important technique for coping with state ex-

plosion problem in model checking. It provides a way to replace a large model P

with a smaller one h(P ) such that h(P ) inherits some properties of P . This may be

achieved by picking out some distinguished set of formulae A and introducing an

equivalence relation over the state set S such that if two states are equivalent then

for every formula ψ from A they both either satisfy or falsify ψ. Using the equiva-

lence classes as abstract states and defining an abstract transition relation appro-
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priately, one gets an abstract model h(P ). If a temporal formula ϕ to be checked

is built of formulae from A then h(P ) |= ϕ =⇒ P |= ϕ. A theoretical framework

for abstraction technique has been developed in [5, 12, 20]. Abstraction has been

widely applied in verification of parameterized systems. Only with the essential help

of abstraction does it become possible to apply model checking to verify infinite

state systems (see [7, 23]). But,unfortunately, most of the abstraction techniques

require user assistance in providing key elements and mappings.

The common idea of the induction technique can be summarized as follows. Define

some preorder � (a simulation or bisimulation) on transition systems and choose

some class of temporal formulae Form such that

1. the composition operator ‖ is monotonic w.r.t. �, i.e. P1 � P ′
1 and P2 � P ′

2

imply P1‖P2 � P ′
1‖P ′

2;

2. the preorder � preserves the satisfiability of formulae ϕ from Form, i.e.

P ′ |= ϕ and M � P ′ imply M |= ϕ.

Then, given an infinite family F = {Pk}∞k=1, where Pk = p1‖p2‖ . . . ‖pk‖q, find a

finite transition system I such that

3. Pn � I for some n, n ≥ 1;

4. pi‖I � I.

A transition system I which meets the requirements 3 and 4 is called an invariant

of the infinite family F . Requirements 1, 3 and 4 guarantee that Pk � I holds

for every k, k ≥ n. If a property is expressed by a formula ϕ from Form then, in

view of the requirement 2, to verify this property of the parameterized system F it is

sufficient to model check I and Pk, 1 ≤ k < n, against ϕ. The latter may be done by

means of traditional model-checking techniques for finite state transition systems.

This approach to the verification of parameterized networks was introduced in [22,

26] and developed in many papers (see [4] for a survey).

The central problem with induction technique is deriving a general method for con-

structing invariants. In many cases invariants can be obtained by using the follow-

ing heuristics: if Pk+1 � Pk holds for some k then Pk may be used as an invariant

I. This idea was applied in [7, 8, 15] for developing fully automated approach for

verifying parameterized networks. A typical verification scenario looks as follows.

1. Given a parameterized system {Pk}∞k=1 and a parameterized property ϕk,
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a symmetry-based reduction technique is used to degenerate ϕk to a more

simple formula ψ.

2. The formula ψ is used to generate an abstraction h such that h(h(Pi)‖h(pi+1)) �
h(Pi+1) holds for every i, i ≥ 1.

3. Next an attempt is made to find n such that h(Pn+1) � h(Pn).

4. As soon as such n is found a conventional model-checking technique is ap-

plied to verify the satisfiability of ψ on the finite transition systems h(Pn) and

Pk, 1 ≤ k < n.

As it may be seen from this description the right choice of abstraction h and a pre-

order � is of prime importance for the successful application of this heuristic in

practice. In [7, 8] it was demonstrated how to derive an appropriate abstraction

h from the property ψ to be checked when the latter is represented by a finite au-

tomaton. Less attention has been paid to �. In [7] and [15] strong simulation and

block bisimulation respectively were used as a preorder �, but so far as we know no

systematic study of other possible preoreders has been made (though bisimulation

equivalences were studied in detail). It is clear that the weaker is preorder �, the

larger in number are the cases of parameterized systems for which this approach

succeed. Furthermore, a careful choice of � makes it possible to circumvent diffi-

culties pertaining to abstractions: if � is loose enough an invariant Pn can be found

without resorting to abstraction h. To be certain that this effect could appear we

introduced in [21] a block simulation preorder (which is an amalgamation of block

bisimulation [15] and visible simulation [18]) and showed that by using this preorder

one can generate invariants of some parameterized systems straightforwardly.

In this paper we continue this line of research. Unfortunately, asynchronous com-

position of processes is not monotonic w.r.t. block simulation in general case.

Therefore we extend this preorder and introduce a quasi-block simulation which

is weaker than block simulation. We show that quasi-block simulation preserves

the satisfiability of formulae from ACTL∗
−X and that asynchronous composition

of processes is monotonic w.r.t. quasi-block simulation. This suggests the use of

quasi-block simulation in the induction-based verification techniques. To demon-

strate the feasibility of quasi-block simulation we consider Dijkstra’s token ring

algorithm [13]. This algorithm was treated as a case study in [8]. We demonstrate

that its induction-based verification can be performed by employing quasi-block

simulation.
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The paper is organized as follows. In Section 2 we define the basic notions, in-

cluding asynchronous composition of labelled transition systems, block and quasi-

block simulations on transition systems. In Section 3 we study some essential fea-

tures of quasi-block simulation. In Section 4 we apply induction technique based

on quasi-block simulation to token ring protocol. Section 5 concludes with some

directions for future research.

2. Definitions
Definition 1. Labelled Transition System (LTS) is a sextuple M = 〈S, S0, A, R,Σ, L〉
where

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• A is a set of actions, not containing the distinguished action τ (invisi-

ble action),

• R ⊆ S × A ∪ {τ} × S is a labelled transition relation,

• Σ is a nonempty set of atomic propositions,

• L : S → 2Σ is an evaluation function on the set of states.

Any triple (s, a, t) from R is called a transition. To simplify notation we write

s
a−→M t instead of (s, a, t) ∈ R and often elide the subscript M when a spe-

cific LTS is assumed. A finite path π of LTS M is a finite sequence π = s1
a1−→

s2
a2−→ . . .

ak−1−→ sk of transitions (si
ai−→ si+1). The length |π| of a finite path π

is the number of states this path passes through, i.e. |π| = k. An infinite path

π is an infinite sequence of transitions π = s1
a1−→ s2

a2−→ . . .
aj−1−→ sj

aj−→ . . .

(si
ai−→ si+1). We write π[i] for the state si of a path π.

Temporal Logics. Temporal specifications (or properties) of parameterized

systems are expressed in temporal logics. The logic used in the framework of

induction-based verification technique are usually the Full Branching Time Logic

CTL∗ or its sub-logics ACTL∗ and ACTL∗
−X . An important factor in deciding

between them is capability of an abstraction h and a preorder � used in verification

procedure to preserve the satisfiability of temporal formulae. For the lack of space

we do not define the syntax and semantics of these logics; they may be found in

many textbooks, e.g. in [9].
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Syntax of CTL�. Let Σ be a set of propositional variables. CTL� formulas are

defined using state formulas and auxilary path formulas.

State formulas are defined as follows:

• For any p ∈ Σ propositional variable p is a state formula.

• If ϕ and ψ are state formulas, then ϕ∧ ψ, ϕ∨ ψ, ¬ϕ are also state formulas.

• If ϕ is a path formula, then Eϕ and Aϕ are state formulas.

Path formulas are defined as follows:

• If ϕ is a state formula, then ϕ is a path formula.

• If ϕ and ψ are path formulas, then ϕ ∧ ψ, ϕ ∨ ψ, ¬ϕ are also path formulas.

• If ϕ and ψ are state formulas, then Xϕ, Fϕ, Gϕ, ϕUψ are path formulas.

Any state formula is a formula of Full Branching Time Logic CTL�.

Semantics of CTL�. Semantics of CTL� may be defined on Labelled Transi-

tion Systems. Let M = 〈S, S0, A, R,Σ, L〉 be a LTS. We write M, s |= ϕ to mean

that formula ϕ (ϕ is a state or path formula) is true in state s of LTS M . Also we

write M,π |= ϕ to mean that formula ϕ (ϕ is a state or path formula) is true on path

π of LTS M .

Then, semantics of CTL� is defined as follows:

• M, s |= p ⇔ p ∈ L(s).

• M, s |= ¬ϕ ⇔ ¬(M, s |= ϕ).

• M, s |= ϕ ∧ ψ ⇔ M, s |= ϕ and M, s |= ψ.

• M, s |= ϕ ∨ ψ ⇔ M, s |= ϕ or M, s |= ψ.

• M, s |= Eϕ ⇔ there is a path in π from state s in LTS M such that M,π |=
ϕ.

• M, s |= Aϕ ⇔ for any path π from state s in LTS M it holds M,π |= ϕ.

• M,π |= ϕ ⇔ in the first state s of path π it holds M, s |= ϕ.

• M,π |= ¬ϕ ⇔ ¬(M,π |= ϕ).

• M,π |= ϕ ∧ ψ ⇔ M,π |= ϕ and M,π |= ψ.
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• M,π |= ϕ ∨ ψ ⇔ M,π |= ϕ or M,π |= ψ.

• M,π |= Xϕ ⇔ M,π1 |= ϕ.

• M,π |= Fϕ ⇔ there is k ≥ 0 such that M,πk |= ϕ.

• M,π |= Gϕ ⇔ for any i ≥ 0 it holds M,πi |= ϕ.

• M,π |= ϕUψ ⇔ there is k ≥ 0 such that M,πk |= ψ and for any 0 ≤ i < k

it holds M,πi |= φ.

Formula ϕ is true in LTS M = 〈S, S0, A, R,Σ, L〉 (M |= ϕ in symbols), if for any

initial state s0 ∈ S0 it holds M, s0 |= ϕ.

Formulas of ACTL�-X are formulas of CTL� in positive normal form, without sub-

formulas Eϕ and Xψ.

Let M1 and M2 be two LTSs, M1 =
〈
S1, S1

0 , A1, R1,Σ1, L1
〉

and M2 =〈
S2, S2

0 , A2, R2,Σ2, L2
〉

, Σ1∩Σ2 = ∅. We call a synchronizer any pair Γ = 〈Δ, 〉,
where Δ ⊆ A1, and : Δ → A2 is an injection, relating some actions of M1 and

M2. We write Δ for the set {b ∈ A2 | ∃a ∈ Δ : a = b}. When introducing

a synchronizer we assume that some actions a of one LTS are executed only

synchronously with the co-actions a of another LTS. Thus, a pair (a, a) forms a

channel for communication between M1 and M2. One of this action (say, a) may

be thought as an action of sending a message, whereas the other (co-action a) is

an action of receiving a message.

Definition 2. The (asynchronous) parallel composition of LTS’s M1 and M2 w.r.t.

synchronizer Γ is an LTS M = M1 ‖Γ M2 = 〈S, S0, A, R,Σ, L〉 such that

• S = S1 × S2, S0 = S1
0 × S2

0 , A = A1 ∪ A2 \ (Δ ∪ Δ), Σ = Σ1 ∪ Σ2,

L(s, u) = L1(s) ∪ L2(u)

• For every pair of states (s, u), (t, v) ∈ S and an action a ∈ A a transition

((s, u), a, (t, v)) is in R iff one of the following requirements is met:

– a ∈ A1 \ Δ, u = v, (s, a, t) ∈ R1 (M1 executes a),

– a ∈ A2 \ Δ, s = t, (u, a, v) ∈ R2 (M2 executes a),

– a = τ , and there exists b ∈ Δ such that (s, b, t) ∈ R1 and (u, b, v) ∈
R2 (M1 and M2 communicate),
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Let ϕ be a temporal formula. Denote by Σϕ the set of all basic propositions involved

in ϕ. Given an LTS M = 〈S, S0, A, R,Σ, L〉, one may separate those transitions

of M that either are visible (i.e. marked with an action a �= τ ) or affect the basic

propositions of ϕ:

Observ(M,Σϕ) = {(s, a, t)|(s, a, t) ∈ R and (a �= τ ∨ L(s) ∩ Σϕ �= L(t) ∩ Σϕ)}.

On the other hand, one may also distinguish some set of transitions that seemed

"significant” for an observer. Any set E ⊆ R of transitions which includes all visible

transitions will be called a set of events of M . If Observ(M,Σϕ) ⊆ E then the set

of events E will be called well-formed w.r.t. ϕ.

Definition 3. A finite block from a state s1 w.r.t. a set of events E is a path

B = s1
τ−→ s2

τ−→ · · · τ−→ sm
a−→ sm+1 such that (sm, a, sm+1) ∈ E and

(si, τ, si+1) /∈ E for all i : 1 ≤ i < m. An infinite block from a state s1 is an

infinite sequence B = s1
τ−→ s2

τ−→ · · · τ−→ sk
τ−→ · · · such that (si, τ, si+1) /∈

E for all i ≥ 1.

We write MAXF (E, s) and MAXI(E, s) for the set of all finite and infinite blocks,

respectively, from a state s w.r.t. a set of events E.

Definition 4. Let M be the LTS M = M1 ‖Γ · · · ‖Γ Mn and δ be the path δ =
s1

a1−→ s2
a2−→ . . .

ai−1−→ si
ai−→ . . . in M . We define the projection π = prMl

(δ) on

the model Ml by induction on the length of path.

If n = 1 then π1 = s1.

If n = k ≥ 2 then the following cases may occur:

• Model Ml does not make a move in (s1
k−1, . . . , s

n
k−1)

ak−→ (s1
k, . . . , sn

k ). In

this case we put δk = δk−1.

• The transition (s1
k−1, . . . , s

n
k−1)

ak−→ (s1
k, . . . , sn

k ) is a local move of Ml.

In this case δk = δk−1
ak−→ sl

k.

• The transition (s1
k−1, . . . , s

n
k−1)

ak−→ (s1
k, . . . , sn

k ) is a synchronous move

of Ml and Mj (ak = τ). This transition is built as a composition of

some transitions sl
k−1

b−→ sl
k and sj

k−1
b−→ sj

k. In this case δk =

δk−1
b−→ sl

k.

Let prbMl
(δ) (block projection) denote any finite or infinite block B such that B

starts with prMl
(δ).
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Definition 5. Let M i =
〈
Si, Si

0, A
i, Ri,Σi, Li

〉
, i = 1, 2, be two LTSs, let Σ0 be

a subset of Σ1 ∩ Σ2, and let E1 and E2 be some sets of events of M1 and M2.

Then a binary relation H ⊆ S1 × S2 is called a quasi-block simulation on M1

and M2 w.r.t. Σ0, E1, E2, iff for every pair (s1, t1) ∈ H meets the following

requirements:

1. L1(s1) ∩ Σ0 = L2(t1) ∩ Σ0,

2. For every finite block B′ = s1
τ−→ s2

τ−→ · · · τ−→ sm
a−→ sm+1 ∈

MAXF (E1, s1) there is a block B′′ = t1
τ−→ t2

τ−→ · · · τ−→ tn
a−→

tn+1 ∈ MAXF (E2, t1) such that (sm+1, tn+1) ∈ H , and (si, tj) ∈ H

holds for every pair i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

3. For every infinite block B′ = s1
τ−→ s2

τ−→ · · · τ−→ sm
τ−→ · · · ∈

MAXI(E1, s1) there is an infinite block B′′ = t1
τ−→ t2

τ−→ · · · τ−→
tn

τ−→ · · · ∈ MAXI(E2, t1), such that (si, tj) ∈ H holds for every pair

i, j, 1 ≤ i, 1 ≤ j.

We write M1 �qb
Σ0

M2 iff there exist two sets of events E1 and E2 of LTSs M1 and

M2 and a binary relation H ⊆ S1 × S2 such that H is a quasi-block simulation

on M1 and M2 w.r.t. Σ0, E1, E2, and for every initial state s0 ∈ S1
0 there exists an

initial state t0 ∈ S2
0 such that (s0, t0) ∈ H . If both E1 and E2 are well-formed w.r.t.

ϕ then we say that the quasi-block simulation M1 �qb
Σϕ

M2 is also well-formed

w.r.t. ϕ. A block simulation (M1 �b
Σ0

M2 in symbols) is a quasi-block simulation

w.r.t. Σ0, Observ(M1,Σ0), Observ(M2,Σ0).

Block simulation is similar to block bisimulation which was defined in [15] for the

purpose of checking correctness properties for parameterized distributed systems

composed of similar processes connected in ring network. It is also close to visi-

ble simulation introduced in [3] and studied in [25]. Quasi-block simulation is an

extension of block simulation. The necessity of this extension stems from the fact

that asynchronous composition of LTSs (unlike synchronous one) is not monotonic

w.r.t. block simulation. The following example reveals this effect.

Example 1. Let M1, M2, M3, M4 be LTSs depicted below and Γ = ({{a, b}, {a →
a, b → b}}) be a synchronizer.
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It can be seen that M1 �b
∅ M2 and M3 �b

∅ M4. However, there exists no block

simulation for the compositions M1 ‖Γ M3 and M2 ‖Γ M4.

M1 ‖ M3 M2 ‖ M4
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3. The basic features of quasi-block simulation
As it can be seen from the definitions above M1 �b

Σ0
M2 =⇒ M1 �qb

Σ0
M2.

Moreover, quasi-block simulation can be reduced to block simulation. Let

M i =
〈
S1, S1

0 , A1, R1,Σ1, L1
〉

, i = 1, 2, be two LTSs such that M1 �qb
Σ0

M2

w.r.t. sets of events E1 and E2. Consider an auxiliary visible action ε such that

ε /∈ A1 ∪ A2, and build the LTSs M̃ i =
〈
Si, Si

0, A
i ∪ {ε}, R̃i,Σi, Li

〉
, i = 1, 2,

such that (s, a, t) ∈ R̃i iff either a �= ε and (s, a, t) ∈ Ri, or a = ε and (s, τ, t) ∈ Ei.

Thus, ε marks all those invisible transitions that included in the sets of events E1

and E2.

Theorem 1. M1 �qb
Σ0

M2 ⇐⇒ M̃1 �b
Σ0

M̃2.

Theorem 1 may have a considerable utility in checking quasi-block simulation,

since it provides a way of taking an advantage of efficient simulation-checking al-

gorithms [11, 17] that are applicable to block simulation.

Quasi-block (unlike visible or block simulations) is preserved under asynchronous

compositions of LTSs.

Theorem 2. Let M i =
〈
Si, Si

0, A
i, Ri,Σi, Li

〉
, i = 1, 2, 3, 4, be four LTS’s such

that

• (Σ1 ∪ Σ2) ∩ (Σ3 ∪ Σ4) = ∅,

• A1 = A2 = A′, A3 = A4 = A′′, and A′ ∩ A′′ = ∅.

Let Σ′ and Σ′′ be the distinguished sets such that Σ′ ⊆ (Σ1 ∪ Σ2) and

Σ′′ ⊆ (Σ3 ∪ Σ4).

Let Γ = (Δ, ) be a synchronizer such that Δ ⊆ A′, and : Δ → A′′.

Then M1 �qb
Σ′ M2 and M3 �qb

Σ′′ M4 implies M1 ‖Γ M3 �qb
Σ′∪Σ′′ M2 ‖Γ M4.

Proof. Let H ′ and H ′′ be the relation of quasi-block simulation on M1,

M2 w.r.t. Σ′, Event1, Event2 and M3, M4 w.r.t Σ′′, Event3, Event4 re-

spectively. We build such a relation H ⊆ (S1 × S3) × (S2 × S4), that

H = {((s1, s3), (s2, s4)) | (s1, s2) ∈ H ′ ∧ (s3, s4) ∈ H ′′}, and show that H is

a quasi-block simulation of M13 and M24 w.r.t. some Event′ and Event′′.

Event′ is built as follows.

((s1, s3), a, (t1, t3)) ∈ Event′ iff one of the conditions met:
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• a ∈ A′ ∧ (s1, a, t1) ∈ Event1,

• a ∈ A′′ ∧ (s3, a, t3) ∈ Event3,

• a = τ and for some b ∈ A′ it is true that (s1, b, t1) ∈ R1 ∧ (s3, b, t3) ∈ R3.

Event′′ is built similar to Event′.

The proof idea is as follows. Block simulation may fail for the composition of models

only in case of failure of condition 2. Condition 2 is failed only if blocks expand in

comparison to that in original models. We build Event′ and Event′′ in such a

manner that blocks are not enlarged. Conditions 1-3 are proved by considering all

the possible ways of the composition of original blocks.

We show for any pair of states ((s1, s3), (s2, s4)) ∈ H that conditions of quasi-block

simulation are satisfied.

1. L((s1, s3)) ∩ (Σ′ ∪ Σ′′) = (L(s1) ∪ L(s3)) ∩ (Σ′ ∪ Σ′′) = L(s1) ∩ Σ′ ∪
L(s3) ∩ Σ′′ = L(s2) ∩ Σ′ ∪ L(s4) ∩ Σ′′ = (L(s2) ∪ L(s4)) ∩ (Σ′ ∪ Σ′′) =
L((s2, s4)) ∩ (Σ′ ∪ Σ′′).

2. Let B13 be any block such that B13 ∈ MAXF (Event′, (s1, s3)). B13 =
(s1

1, s
3
1)

τ−→ (s1
2, s

3
2)

τ−→ · · · τ−→ (s1
m, s3

m) a−→ (s1
m+1, s

3
m+1), (s1

1, s
3
1) =

(s1, s3).

Let B1 = prbM1(B13), B3 = prbM3(B13).

There are several cases to be considered:

(a) a = τ is a result of synchronous move of some s1
m

b−→ s1
m+1 and

s3
m

b−→ s3
m+1 in M1 and M3 correspondingly.

As (s1, s2) ∈ H12, (s3, s4) ∈ H34, then there is the blocks B2 and

B4 such that B2 ∈ MAXF (Event2, s2), B2 matches B1, and B4 ∈
MAXF (Event4, s4), B4 matches B3.

B34 is built by shuffling all the transitions of B3 and B4 excluding the

last ones. The parallel composition of the last transitions of B3 and

B4 form the last transition of B34.

(b) B13 contains only the part of B3. The blocks B1 and B3 are finite ones.

As (s1, s2) ∈ H12, (s3, s4) ∈ H34, then there is blocks B2 and

B4 such that B2 = s2
1

τ−→ s2
2

τ−→ · · · τ−→ s2
k

a−→ s2
k+1 ∈

MAXF (Event2, s2), B2 matches B1, and B4 = s4
1

τ−→ s4
2

τ−→
· · · τ−→ s4

l
b−→ s4

l+1 ∈ MAXF (Event4, s4), B4 matches B3.
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B24 is constructed as B24 = (s2
1, s

4
1)

τ−→ (s2
1, s

4
2)

τ−→ (s2
2, s

4
2)

τ−→
. . .

τ−→ (s2
k, s4

2)
a−→ (s2

k+1, s
4
2). The block B24 matches to B13.

(c) B13 contains only the part of B3. The block B1 is a finite one and B3

is an infinite one.

As (s1, s2) ∈ H12, (s3, s4) ∈ H34, then there is blocks B2 and

B4 such that B2 = s2
1

τ−→ s2
2

τ−→ · · · τ−→ s2
k

a−→ s2
k+1 ∈

MAXF (Event2, s2), B2 matches B1, and B4 = s4
1

τ−→ s4
2

τ−→
· · · τ−→ s4

l
b−→ s4

l+1 ∈ MAXF (Event4, s4), B4 matches B3.

As in the previous case we construct B24 as B24 = (s2
1, s

4
1)

τ−→
(s2

1, s
4
2)

τ−→ (s2
2, s

4
2)

τ−→ . . .
τ−→ (s2

k, s4
2)

a−→ (s2
k+1, s

4
2). The block

B24 matches B13.

(d) The cases when B3 is fully included in B13 and B1 is only partly in-

cluded in B13 are similar to the previous two cases.

3. Let B13 be an infinite block such that B13 ∈ MAXI(Event′, (s1, s3)).

B13 = (s1
1, s

3
1)

τ−→ (s1
2, s

3
2)

τ−→ · · · τ−→ (s1
m, s3

m) a−→ (s1
m+1, s

3
m+1),

(s1
1, s

3
1) = (s1, s3).

Let B1 = prbM1(B13), B3 = prbM3(B13).

We have to consider several cases:

(a) The blocks B1 and B3 are infinite ones.

As (s1, s2) ∈ H12, (s3, s4) ∈ H34, then there is blocks B2 and

B4 such that B2 = s2
1

τ−→ s2
2

τ−→ · · · τ−→ s2
k

a−→ s2
k+1 ∈

MAXI(Event2, s2), B2 matches B1, and B4 = s4
1

τ−→ s4
2

τ−→
· · · τ−→ s4

l
b−→ s4

l+1 ∈ MAXI(Event4, s4), B4 matches B3.

B34 is built by shuffling all the transitions of B3 and B4.

(b) The block B1 is an infinite block and the block B3 is a finite one.

As (s1, s2) ∈ H12, (s3, s4) ∈ H34, then there is blocks B2 and

B4 such that B2 = s2
1

τ−→ s2
2

τ−→ · · · τ−→ s2
k

a−→ s2
k+1 ∈

MAXI(Event2, s2), B2 matches B1, and B4 = s4
1

τ−→ s4
2

τ−→
· · · τ−→ s4

l
b−→ s4

l+1 ∈ MAXI(Event4, s4), B4 matches B3.

B34 is built by shuffling all the transitions of B3 and B4.

(c) The case when the block B1 is a finite one and the block B3 is an

infinite one is similar to the previous case.
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Yet another simulation which has close relationships with quasi-block one is stut-

tering simulation. It was introduced in [3] and enjoys wide applications in the

framework of partial order reduction technique (see [9, 18]).

Let M i =
〈
Si, Si

0, A
i, Ri, Σi, Li

〉
, i = 1, 2, be two LTSs, and Σ0 ⊆ Σ1 ∩ Σ2. A

relation H ⊆ S1 × S2 is called a stuttering simulation w.r.t. Σ0 iff every pair

(s′, s′′) ∈ H comply with the following requirements:

1. L1(s′) ∩ Σ0 = L2(s′′) ∩ Σ0.

2. For every path π′, π′ = s′1
a1−→ s′2

a2−→ . . .
ak−1−→ s′k

ak−→ . . . , s′0 = s′ there

is a path π′′, π′′ = s′′1
a1−→ s′′2

a2−→ . . .
ak−1−→ s′′k

ak−→ . . . , s′′0 = s′′ and

partitions P ′
1P

′
2 . . . , P ′′

1 P ′′
2 . . . of π′ and π′′, such that for every i ≥ 1 the

sub-paths P ′
i and P ′′

i match, i.e. (s′, s′′) ∈ H holds for every pair of states

s′ ∈ P ′ and s′′ ∈ P ′′.

We write M1 �st
Σ0

M2 to indicate the existence of stuttering simulation between

M1 and M2.

Theorem 3. M1 �qb
Σ0

M2 =⇒ M1 �st
Σ0

M2.

A proof this theorem is straightforward.

Since stuttering simulation preserves the satisfiability of temporal formulae from

ACTL−X , Theorem 3 brings us to the following conclusion.

Theorem 4. Suppose that a quasi-block simulation M1 �qb
Σϕ

M2 is well-

formed w.r.t. a ACTL−X-formula ϕ, and M2 |= ϕ. Then M1 |= ϕ as well.

As it may be seen from the definition, stuttering simulation does not take into ac-

count any actions, but even in the case when A1 = A2 = ∅ it is weaker than

quasi-block one.

Example 2. Consider models M1 and M2 below. The evaluation func-

tions associate with every state exactly one of basic propositions from the set

Σ0 = {p1, p2, p3}. It could be directly checked that M1 �st
Σ0

M2.
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τ
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τ

��

u5(p3)
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τ
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��qb u6(p2)

τ

��
s7(p1) u7(p1)

Suppose that there exists a quasi-block simulation on M1 and M2 w.r.t. some sets

of events E1 and E2. It should be noted, that the path π = s1s6s7 may correspond

only to the path π′ = u1u4u6u7 with the partitioning s1; s6; s7 and u1;u4u6;u7

respectively. This means that the transition u4
u−→6 is not in E2. On the other hand,

the path δ = s1s2s4s6s7 may correspond only to the path δ′ = u1u2u4u6u7 with the

partitioning s1; s2s4; s6; s7 and u1;u2u4;u6;u7 respectively. Hence, u4
u−→6 has to

be in E2. This certifies that M1 ��qb
Σ0

M2.

The fact that quasi-block simulation is stronger than stuttering simulation implies

that the former is easy for checking and more feasible for practical applications in

the framework of induction-based verification techniques.

4. Applying quasi-block simulation to the verifica-
tion of asynchronous networks

There are very few papers (in fact, the authors of [4] were not aware of any) where

the induction-based verification technique is applied to asynchronous networks. In

[15] parameterized systems composed of identical asynchronous processes which

are arranged in a ring topology and communicate by passing a boolean token were

considered. They demonstrated that for several classes of indexed CTL∗
−X prop-

erties a cutoff effect takes place, i.e. the verification of the whole parameterized

system can be reduced the model checking of finitely many instances of the system.

In a certain sense, a cutoff plays a role of an invariant for such systems. In [10]
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the results of Emerson and Namjoshi were extended from rings to other classes of

asynchronous networks. Nevertheless, many interesting classes of parameterized

asynchronous systems do not fall into this category.

To the best of our knowledge the only paper where induction-based verification is

applied to asynchronous networks is that of Clarke, Grumberg, and Jha [8]. In

this paper they represented parameterized systems by network grammars, and used

regular languages to express state properties. To generate invariants they developed

an unfolding heuristics: given a parameterized system {Pk}∞k=1 to find n such that

h(Pn+1) � h(Pn), where � is a strong simulation and h is some appropriate ab-

straction. Much attention has been paid to the development of effective technique

for constructing required abstractions. The feasibility of this approach has been

demonstrated by applying it to the verification of Dijkstra’s token ring algorithm.

We extend this approach by replacing strong simulation with quasi-block simula-

tion. This makes it possible to get rid of abstraction h and considerably simplify the

verification algorithm.

4.1. Dijkstra’s token ring algorithm

In Dijkstra’s token ring algorithm a network is composed of similar processes con-

nected in bidirectional ring. A token t is passed in the clockwise direction. Each

process may send a request the token (a signal s) in the counter-clockwise direc-

tion. A process sends the signal s if either it intends acquiring the token, or it

receives the signal from its neighbor on the counter-clockwise side.

A state of each process is described by a word XY Z, where

• X stands for a control state of the process, X ∈ {n, d, c}; state symbols n,

d, and c stand for the neutral state, the delayed state, and the critical section

respectively.

• Y indicates an intention of the process to acquire the token, Y ∈ {b, w};

symbols b and w stand for black (there is a process to the right that wishes

to acquire the token) and white (no one to the right is interested in the token)

respectively.

• Z indicates whether the token is granted to the process or not, Z ∈ {t, e}; t

means that the process has a token, and e means that the process is empty.

The transition relation of each such process is depicted on the table 1. Numbers 1,

2, and 3 are auxiliary counter values. The star symbol admits any allowed element in
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Table 1: Transitions table of Dijkstra’s algorithm

1new
rcvtok−→ 1ntw 1new

rcvsig−→ 2neb 1ntw
rcvsig−→ 3new

1ntw
τ−→ 1ctw 1neb

rcvtok−→ 3new 1new
τ−→ 2deb

1neb
τ−→ 1deb 1dew

rcvsig−→ 1deb 1de*
rcvtok−→ 1ct-

1ctw
rcvsig−→ 1ctb 1ctw

τ−→ 1ntw 1ctb
τ−→ 1ntw

1ctw
rcvsig−→ 1ctb 2***

sndsig−→ 1— 2n**
rcvtok−→ 3–w

2d**
rcvtok−→ 1ct- 3***

sndtok−→ 1—

the position. The dash symbol means that the values of the corresponding element

before and after transition are the same.

Let P0 be a distinguished process with 1wnt as the initial state. All other processes

Pi, 1 ≤ i ≤ n, have 1wne as the initial state. Each process Pi, 0 ≤ i ≤ n, has the

set of actions {rcvsigi, sndsigi, rcvtoki, sndtoki}, and these sets are pairwise dis-

joint. Every process Pi is synchronized with the Pi+1 (modulo n) by the synchro-

nizer Γi = {{rcvsigi, sndtoki}, {rcvsigi → sndsigi+1, sndtoki → rcvtoki+1}}.

Thus we obtain the infinite family of parameterized systems F = {P k}∞k=1 such

that P k = P0‖P1 . . . Pk. This parameterized network can be described in terms of

network diagrams as follows:

S → P0 ‖ A

A → P ‖ A

A → P ‖ P ‖ P

We have implemented in Python a straightforward algorithm to check block simu-

lation of LTSs and apply to the network described above. The results are shown in

table 2.

Since it was found that h(P 4) �qb h(P 3), Theorems 1, 2, and 4 guarantee that

h(P 3) is an invariant of the family F . Unfortunately, abstraction techniques should

be also applied in case of Dijkstra’s algorithm. This experiment lends support to

the feasibility of the using of quasi-block simulation in the framework of invariant-

based verification technique.
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Table 2: Computation of block simulation. Results.

LTSs time have block simulation

P 3 and P 2 0.99s no

P 4 and P 3 17.8s no

abstract P 3 and P 2 0.2s no

abstract P 4 and P 3 0.22s yes

4.2. Tree wave algorithm with neighbor synchronisation

We consider an algorithm in which processes are organized into a binary tree. The

root of a tree sends message to children. Each intermediate tree node executes

synchronous action sync_neighbor (which is synchronized with its sibling) and

sends message to the children. Any leaf node sends a message back on receipt of

the message from the leaf’s parent. Then, intermediate nodes pass messages freely

from the lower nodes to the upper ones.

It may be useful to check the property that the root node eventually receives its mes-

sage back after it has sent a message to the children. This property is satisfied on

the model with root, two intermediate nodes and four leaves. To check the property

on the infinite family of models, we distinguish states of the root nodes as visible

and states of other processes as invisible ones.

There exists a block simulation of the model with two intermediate nodes and four

leaves by the model with two leaves. Thus, we can infer that there exists a quasi-

block simulation of any tree by the tree with two leaves. Note that a block simula-

tion may be unavailable due to the properties of block simulation.

This example does not deal with any property-specific abstraction. After showing

that any model of the family is simulated by the invariant (the tree with two leaves)

it is possible to check any property on visible variables, i.e. any property of the root

node.

5. Conclusions and directions for future research
There is a number of tasks to be solved next to make a good "reputation” for quasi-

block simulation. Certainly, we have to find out some practical case studies that
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could indicate convincingly the advisability of using quasi-block simulation in the

verification of parameterized systems. It depends to a large extent also on how

much effectively quasi-block simulation can be checked. We assume that Theorem

1 could give an essential prerequisite for constructing efficient checking procedures.
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