
Computing (bi)simulation relations
preserving CTL∗

X for ordinary and fair
Kripke structures1

P. E. Bulychev , I. V. Konnov , V. A. Zakharov

Abstract. The main goal of model checking is to verify whether a model of a given program

satisfies some given specification. In this paper models are regarded as fair or ordinary Kripke

structures whereas specifications are represented by formulae branching-time temporal log-

ics (CTL∗
X or ACTL∗

X). Model checking can be substantially enhanced by reducing the

size of models under consideration. Usually this is achieved by using binary relations on

the set of Kripke structures that preserve the satisfiability of temporal formulae. It is known

that stuttering bisimulation (simulation) relation preserves CTL∗
X (respectively ACTL∗

X)

for ordinary Kripke structures. In this paper we present a fair game stuttering bisimula-

tion(simulation) relation which preserves CTL∗
X (ACTL∗

X) for fair Kripke structures, and

algorithms for computing stuttering (bi)simulation which utilize usual and parity games. If

n is the number of states and m the number of transitions in a finite states transition sys-

tem then our algorithms for computing stuttering simulation and bisimulation for ordinary

Kripke structures is proved to have O(m2) time and space complexity, and our algorithms

for computing the same relations for fair Kripke structures appear to have O(m2n2) time and

O(m2) space complexity. Thus the verification of CTL∗
X-formulae on a model M (ordinary

or fair) can be reduced to the verification of these formulae on a smaller model.

1. Introduction
The main goal of model checking ([6]) is to verify whether the model of the program

satisfies some specification. The model of the program M can be presented in the

form of the ordinary (nonfair) Kripke structure, and specification φ can be given in

the form of the formula of the branching time logic CTL∗ (as well as its restricted

subsets - ACTL∗, CTL∗
X , . . .). The Kripke structures with fairness constraints

are used in some special cases, for example, for modeling asynchronous parallel

1This paper is supported by the grants RFBR 06-01-00106 and INTAS 05-

1000008-8144.

59

composition of programs.

In model checking, usual bisimulation(simulation) relations over the set of Kripke

structures preserving CTL∗(ACTL∗) logic are used. These relations make it pos-

sible to check some property expressed in CTL∗(ACTL∗) logic in the abstracted

(small) model M2 rather than in the original (large) model M1.

Sometimes, however, the weaker relations are to be considered. For instance, logic

CTL∗
X (CTL∗ without the neXttime operator) is sufficient for abstraction method

([6]). Stuttering bisimulation preserves this logic for ordinary Kripke structures ([1],

[3]).

In this paper the game approach is used to compute stuttering (bi)simulation. Let n

be the number of states and let m be the number of transitions. We give algorithms

for computing ordinary(nonfair) stuttering (bi) simulation over Kripke structures

with O(m2) time and space complexity. To the extent of our knowledge no effective

algorithm for computing stuttering simulation have been found till now whereas

the best discovered algorithm for computing stuttering bisimulation has O(mn)
time and O(m) space complexity([8]). Computing simulation is harder than com-

puting bisimulation ([10]) and so the suggested algorithm for computing stuttering

simulation relation over ordinary Kripke structures can be considered as sufficiently

effective.

We define the fair game stuttering bisimulation (simulation) relation which pre-

serves CTL∗
X (ACTL∗

X) logic for fair Kripke structures. Algorithms for computing

these types of fair (bi)simulation are introduced which are based on [2] and in which

parity games are used in Buchi automata reduction. Algorithms for computing fair

game stuttering simulation and bisimulation have O(m2n2) time and O(m2) space

complexity.

Thus the verification of the formula expressed in CTL∗
X logic on the model M (or-

dinary or fair) can be reduced to the verification of this formula on a smaller model.

2. Preliminaries
Definition 1 (Fair Kripke structure). Let AP be a set of atomic propositions. A

fair Kripke structure M over AP is a 5-tuple M = (S, R, S0, L, F), where

• S - nonempty set of states,

• R ⊆ S × S - total transition relation (a transition relation R is total if

for every state s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ R),

60

• S0 ⊆ S - nonempty set of initial states,

• L : S → 2AP - a function that labels each state with the set of atomic

propositions,

• F ⊆ S - nonempty set of fair states.

Definition 2 (Ordinary Kripke structure). Ordinary (nonfair) Kripke structure

is a Kripke structure M = (S, R, S0, L, F), where S = F . I shall denote this

structure M = (S, R, S0, L), for short.

A branching time temporal logic CTL∗ ([6]) is widely used for expressing speci-

fications. There are two trace quantifiers A (∀) and E (∃), and four temporal op-

erators X (neXt), U (Until), F (Follow), G (Global) in CTL∗ . The syntax and

the semantics of this logic is defined in many textbooks; for the sake of space the

corresponding definitions are skipped in this paper.

The logic ACTL∗ is the restricted subset of CTL∗ which does not allow E trace

quantification, and negation in ACTL∗ can be applied only to subformulas which

do not contain modalities.

In reasoning about concurrent systems the neXttime operator refers to the global

next state rather then to the local next state ([9]), so this operator is useless and can

be omitted. The logic CTL∗
X (ACTL∗

X) is the restricted subset of CTL∗ (ACTL∗)

without the operator X .

Let � be some set of fair Kripke structures. Let us say that a relation R ⊆ � × �
preserves a logic Λ for � iff M2 |= φ implies M1 |= φ for every φ ∈ Λ and for every

two structures M1 and M2 such that (M1,M2) ∈ R.

3. Stuttering simulation and bisimulation without
fairness constraints

We start with defining (bi)simulation relation for ordinary Kripke structures.

Definition 3 (Divergence-blind stuttering simulation [3], [1]). Given M1 =
(S1, R1, S01, L1) and M2 = (S2, R2, S02, L2) over AP , a relation H ⊆ S1 × S2

is a divergence-blind stuttering simulation (dbs-simulation) relation over

(M1,M2) iff the following conditions hold:

1. For every s01 ∈ S01 there exists s02 ∈ S02 such that (s01, s02) ∈ H ,

2. For all (s1, s2) ∈ H ,

61

(a) L1(s1) = L2(s2) and

(b) if (s1, s
′
1) ∈ R1 then there exists a sequence t0t1 . . . tn (n ≥ 0)

such that t0 = s2 and for all i < n , (ti, ti+1) ∈ R2 ∧ (s1, ti) ∈ H

and (s′1, tn) ∈ H .

A relation H ∈ S1 × S2 is a dbs-bisimulation relation iff it is a dbs-simulation

relation over (M1,M2) and HT is a dbs-simulation relation over (M2,M1).

M2 dbs-simulates M1 (denoted M1 ≤dbs M2) iff there exists a dbs-simulation re-

lation H ∈ S1 × S2 over (M1,M2). The structures M2 and M1 are dbs-bisimilar

(denoted M1 ≈dbs M2) iff there exists a dbs-bisimulation relation H ∈ S1×S2 over

(M1,M2).

Definition 4. The sequence s0s1 . . . sn such that L(si) = L(sj), (si, si+1) ∈ R

and sn = s0 is called a cycle of identically labeled states.

Dbs-bisimulation (simulation) preserves CTL∗
X (ACTL∗

X) logic only for struc-

tures without cycles of identically labeled states. In the Appendix we consider dbs-

(bi)simulation over slightly modified Kripke structures called divergence-sensitive

stuttering bisimulation (simulation) which preserves CTL∗
X (ACTL∗

X) for Kripke

structures with cycles of identically labeled states ([3]).

Let’s consider Kripke structures without cycles of identically labeled states. Then

the logical properties of stuttering simulation are ([3]):

1. Dbs-bisimulation preserves CTL∗
X logic.

2. Dbs-simulation preserves ACTL∗
X logic.

3.1. Algorithms for computing stuttering simulation and
bisimulation

Let M1 = (S1, R1, S01, L1) and M2 = (S2, R2, S02, L2) be two ordinary Kripke

structures, and m = |R1| + |R2|, n = |S1| + |S2|. We will focus on the following

questions:

• Does there exist a stuttering simulation between M1 and M2? To the best

of my knowledge this problem was not considered in the literature yet. In

this work we present a simulation checking algorithm whose time and space

complexity is O(m2) .

• Does there exist a stuttering bisimulation between M1 and M2? The best

62

algorithm requires O(mn) time and O(m) space([8]). We adduce O(m2)
algorithm.

The analogous problems for usual (bi)simulation were discussed in the literature:

[2], [7], [12], [11].

Computing of usual (bi)simulation can be reduced to finding a winning strategy in

the game of two players. For instance, an effective algorithm (O(mn)) for com-

puting usual simulation by means of this method is given in [2]. Following this

approach we reduce the computation of a stuttering simulation to the search of a

winning strategy in the game of two players.

There are two players in the game - the player D (duplicator) who tries to show

that the chosen relation (simulation or bisimulation) is fulfilled, and the player S

(spoiler) who tries to stuck the player D.

Let’s describe the principles of the game for finding the stuttering simulation. Let

M1 = (S1, R1, S01, L), S01 = {s01} and M2 = (S2, R2, S02, L2), S02 = {s02},

L(s01) = L(s02). Each player has a pebble, the player S moves his pebble on the

graph (S1, R1) and the player D moves his pebble on the graph (S2, R2) corre-

spondingly. Initially the pebbles of the players S and D are placed on the states s01

and s02 respectively and the turn belongs to the player S. Then the game runs in

the following way: if the turn belongs to the player S and his pebble is placed on s1,

then he chooses the state s′1 such that (s1, s
′
1) ∈ R1, reports this state to the player

D and passes the turn to the player D. If the turn belongs to D, the pebbles of the

players are placed on states s1 and s2, and S reported s′1 at the previous turn, then

D can perform one of the actions:

• If L(s′1) = L(s2) then he can move the pebble of the player S to s′1,

• if there exists s′2 such that (s2, s
′
2) ∈ R2 and L(s′2) = L(s1), then he can

move his pebble to s′2,

• if there exists s′2 such that (s2, s
′
2) ∈ R2 and L(s′2) = L(s′1), then he can

move his pebble to s′2 and move the pebble of the player S to s′1.

Then the turn passes to S.

If one of the players can’t make a move during the run of the game then another

player wins. If the run of the game is infinite then D wins. It will be shown that

M1 ≤dbs M2 iff there exists a winning strategy for player D.

Formally, a game is a triple G = (VD, VS , E) where VD and VS are the sets of the

game states in which the turn belongs to D and S respectively, and E ⊆ (VD ∪

63

s1 :a

s2 :a s3 :z

s4 :y s5 :z

t1 :a

t2 :y t3 :z

(s1, t1)_S

(s1,s3,t1)_D

E1

(s1,s2,t1)_D

E1

(s3, t3)_S

E4

(s2, t1)_S

E2

(s2, s4, t1)_D

E1

(s2, s5, t1)_D

E1

(s4, t2)_S

E4

(s5, t3)_S

E4

M1 M2 Gsim for M1 ≤dbs M2

Figure 1: Gsim

VS) × (VD ∪ VS) is a set of permitted moves. A run of the game G = (VD, VS , E)
is a sequence v0v1v2 . . . (finite or infinite) of states such that (vi, vi+1) ∈ E. A

strategy of the player D (player S) is a function W : VD → VS ∪ {halt} (W : VS →
VD ∪ {halt}). A run of the game defined by the strategy W of the player D (player

S) is a run v0v1 . . . vn−1vn . . . (finite or infinite) such that:

• vi ∈ VD =⇒ vi+1 = W (vi)
(vi ∈ VS =⇒ vi+1 = W (vi)),

• if the run is finite v0v1 . . . vn−1vn and vn ∈ VD, then W (vn) = halt

(if the run is finite v0v1 . . . vn−1vn and vn ∈ VS , then W (vn) = halt)

A strategy W of the player D is winning with initial state v0 iff vn ∈ VS for every

finite run v0v1 . . . vn−1vn defined by W .

64

s1 :a

s2 :a s3 :z

s4 :y s5 :z

t1 :a

t2 :y t3 :z

M1 M2

(s1, t1)_S

(s1,s3,t1)_D1

E1

(s1,s2,t1)_D1

E1

(t1 ,t2 ,s1)_D2

E1’

(t1 ,t3 ,s1)_D2

E1’

(s3, t3)_S

E4

(s2, t1)_S

E2

(s2, s4, t1)_D1

E1

(s2, s5, t1)_D1

E1

(t1 , t2 , s2)_D2

E1’

(t1 , t3 , s2)_D2

E1’

(s4, t2)_S

E4

(s5, t3)_S

E4

E3’E4’

E4’ E4’

Gbis for M1 ≈dbs M2

Figure 2: Gbis

65

3.1.1. Stuttering simulation

Formally, the game graph Gsim = (VD, VS , E) intended for checking a stuttering

simulation is defined as follows:

• VS = {(s1, s2)S |s1 ∈ S1 ∧ s2 ∈ S2 ∧ L(s1) = L(s2)},

• VD = {(s1, s
′
1, s2)D|s1 ∈ S1∧s′1 ∈ S1∧s2 ∈ S2∧L(s1) = L(s2)∧(s1, s

′
1) ∈

R1},

• E = E1 ∪ E2 ∪ E3 ∪ E4 where:

– E1 = {((s1, s2)S , (s1, s
′
1, s2)D)|(s1, s

′
1) ∈ R1},

– E2 = {((s1, s
′
1, s2)D, (s′1, s2)S)|L(s2) = L(s′1)},

– E3 = {((s1, s
′
1, s2)D, (s1, s

′
2)S)|(s2, s

′
2) ∈ R2 ∧ L(s′2) = L(s1)},

– E4 = {((s1, s
′
1, s2)D, (s′1, s

′
2)S)|(s2, s

′
2) ∈ R2 ∧ L(s′2) = L(s′1)}

Definition 5 (Game stuttering simulation). Let M1 = (S1, R1, S01, L) and M2 =
(S2, R2, S02, L2) be two ordinary Kripke structures over AP . We say that M2

gs-simulates M1 (denoted M1 ≤gs M2) iff for every s01 ∈ S01 there exists

s02 ∈ S02 such that L(s01) = L(s02) and the player D has a winning strategy

in the game Gsim with the initial state (s01, s02)S .

Theorem 1. Let M1 and M2 be two ordinary Kripke structures without cycles

of identically labeled states. Then M1 ≤dbs M2 iff M1 ≤gs M2

The proof of the theorem 1 is given in the Appendix.

Two Kripke structures M1 and M2 over AP = {a, y, z} and the game graph for

Gsim are depicted on the Figure 1. M1 and M2 are not total, and only winning

subgraph of Gsim is presented on this Figure, for simple.

3.1.2. Stuttering bisimulation

The player S can move either of two pebbles, and the player D should move then

only the pebble different from the pebble moved by S, in the game for computing

stuttering bisimulation.

Formally, the game graph Gbis = (VD, VS , E) corresponding to stuttering bisimu-

lation between M1 = (S1, R1, S01, L1) and M2 = (S2, R2, S02, L2) is defined by:

66

• VS = {(s1, s2)S |s1 ∈ S1 ∧ s2 ∈ S2 ∧ L(s1) = L(s2)},

• VD = VD1 ∪ VD2 where:

– VD1 = {(s1, s
′
1, s2)D1|s1 ∈ S1 ∧ s′1 ∈ S1 ∧ s2 ∈ S2 ∧ L(s1) =

L(s2) ∧ (s1, s
′
1) ∈ R1}

– VD2 = {(s2, s
′
2, s1)D2|s2 ∈ S2 ∧ s′2 ∈ S2 ∧ s1 ∈ S1 ∧ L(s1) =

L(s2) ∧ (s2, s
′
2) ∈ R2}

• E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E′
1 ∪ E′

2 ∪ E′
3 ∪ E′

4 where:

– E1 = {((s1, s2)S , (s1, s
′
1, s2)D1)|(s1, s

′
1) ∈ R1},

– E2 = {((s1, s
′
1, s2)D1, (s′1, s2)S)|L(s2) = L(s′1)},

– E3 = {((s1, s
′
1, s2)D1, (s1, s

′
2)S)|(s2, s

′
2) ∈ R2 ∧ L(s′2) = L(s1)},

– E4 = {((s1, s
′
1, s2)D1, (s′1, s

′
2)S)|(s2, s

′
2) ∈ R2 ∧ L(s′2) = L(s′1)}

– E′
1 = {((s1, s2)S , (s2, s

′
2, s1)D2)|(s2, s

′
2) ∈ R2},

– E′
2 = {((s2, s

′
2, s1)D2, (s1, s

′
2)S)|L(s′2) = L(s1)},

– E′
3 = {((s2, s

′
2, s1)D2, (s′1, s2)S)|(s1, s

′
1) ∈ R1 ∧ L(s2) = L(s′1)},

– E′
4 = {((s2, s

′
2, s1)D2, (s′1, s

′
2)S)|(s1, s

′
1) ∈ R1 ∧ L(s′2) = L(s′1)}

Definition 6 (Game stuttering bisimulation). Let M1 and M2 be two Kripke

structures over AP . M1 and M2 are gs-bisimilar (denoted M1 ≈gs M2) iff

for all s01 ∈ S01 there exists s02 ∈ S02 and for all s′02 ∈ S02 there exists

s′01 ∈ S01 such that L(s01) = L(s02) ∧ L(s′01) = L(s′02) and player D has a

winning strategy in game Gbis with initial states (s01, s02)S and (s′01, s
′
02)S .

Theorem 2. Let M1 and M2 be two ordinary Kripke structures having T-

property. Then M1 ≈dbs M2 iff M1 ≈gs M2.

The game graph for stuttering bisimulation is shown in Figure 2.

3.1.3. Solution of games

Let M1 and M2 be two ordinary Kripke structures having a T-property. The prob-

lem of computing divergence-blind stuttering simulation (bisimulation) between

M1 and M2 can be solved using theorems 1 and 2, by finding the winning strategy

of the player D in the game Gsim (Gbis) or by proving that such the strategy does

not exist.

67

Time Space

ordinary

simulation O(mn) ([7]) —

ordinary

bisimulation O(m log n)([12]) —

ordinary

stuttering simulation O(m2)(*) —

ordinary

stuttering bisimulation O(mn) ([8]) O(m) ([8])

fair game

simulation O(mn3) ([2]) O(mn) ([2])

fair game

bisimulation O(mn3) ([2]) O(mn) ([2])

fair game

stuttering simulation O(m2n2)(*) O(m2)(*)

fair game

stuttering bisimulation O(m2n2)(*) O(m2)(*)

(*) - this paper.

Note: m is the number of transitions, n is the number of states, m > n.

Figure 3: Best complexity of algorithms for computing simulation re-

lations

Let’s consider the game G(VD, VS , E) where m′ = |E| and n′ = |VD| + |VS |.
In [2, 14] it was proved that computing the winning set for the player D can be

performed in time and space O(m′ + n′). As it can be seen from the description of

the games Gsim and Gbis we have m′ = O(m2) and n′ = O(mn) where n is the

number of states and m is the number of transitions in Kripke structures M1 and

M2 to be analyzed. Thus, stuttering simulation and stuttering bisimulation can be

checked in time and space O(m2).

The same approach to the problem of checking stuttering (bi)simulation for fair

Kripke structures. The details can be found in the Appendix.

68

4. Conclusions
In this paper we developed a uniform approach to the problem of checking stutter-

ing simulation (bisimulation) for fair and ordinary Kripke structures. It was demon-

strated that these problems can be reduced to that of finding winning strategies for

the corresponding parity games. Based on this approach a number of new efficient

simulation and bisimulation checking algorithms are introduced. These algorithms

can be easily adapted to the model checking techniques in the framework of the

abstraction method.

Review of complexity of known algorithms for computing simulation relations is

given in Figure 3.

References
[1] M.C. Browne, E.M. Clarke, O. Grumberg. Characterizing finite Kripke struc-

tures in propositional temporal logic. Theoretical Computer Science, vol. 59 ,

Issue 1-2, pp. 115 - 131, 1988. 60, 61, 71

[2] K. Etessami, T. Wilke, R.A. Schuller. Fair Simulation Relations, Parity

Games, and State Space Reduction for Buchi Automata. SIAM Journal on

Computing, vol. 34, No. 5, pp. 1159-1175, 2001. 60, 63, 68, 72, 73, 75

[3] R. De Nicola , F. Vaandrager. Three Logics for Branching Bisimulation. Jour-

nal of ACM, vol. 42, No. 2, pp. 458-487, 1995. 60, 61, 62, 71

[4] T.A. Henzinger, O. Kupferman, S.K. Rajamani. Fair Simulation. Proc. 8th

Conferance on Concurrency Theory, 1997. 72, 73

[5] D. Bustan, O. Grumberg. Applicability of fair simulation. Information and

Computation, vol. 194, Issue 1, pp. 1 - 18, 2004. 72

[6] E.M. Clarke, O. Grumberg and D.A. Peled. Model Checking. MIT Press,

1999. 59, 60, 61

[7] M. Henzinger, T. Henzinger, P.Kopke. Computing simulations on finite and

infinite graphs. In: Proc. of 36th IEEE Symp. on Foundations of Comp. Sci.,

pp. 453-462, 1995. 63, 68

[8] J.F. Groote, F. Vaandrager. An efficient algorithm for branching bisimulation

and stuttering equivalence. Proceedings of the 17th International Colloquium

on Automata, Languages and Programming, pp.626-638, 1990. 60, 63, 68

69

[9] L. Lamport. What good is temporal logic? Proceedings of IFIP 83, pp. 657-

668, 1983. 61

[10] A. Kucera, R. Mayr. Why Is Simulation Harder than Bisimulation? Lecture

Notes in Computer Science, vol. 2421, pp. 594 - 609, 2002. 60

[11] R. Paige, R.E. Tarjan. Three partition refinement algorithms. SIAM Journal

on Computing, vol. 16 , Issue 6, 1987. 63

[12] J.-C. Fernandez. An Implementation of an Efficient Algorithm for Bisimula-

tion Equivalence. Science of Computer Programming, 1989. 63, 68

[13] M. Jurdzinski. Small Progress Measures for Solving Parity Games. In: Pro-

ceedings of 17th Annual Symposium on Theoretical Aspects of Computer

Science, 2000. 73, 75

[14] H.R. Andersen. Model checking and boolean graphs. Theoretical Computer

Science archive vol. 126 , Issue 1, 1994. 68

5. Appendix

5.1. Divergence-sensitive stuttering (bi)simulation over ordi-
nary Kripke structures

Let’s introduce auxiliary designations.

Let p′ be the special atomic proposition. Let us say that Kripke structure M =
(S, R, S0, L, F) has a T-property if there exists no more than one state s′ such that

p′ ∈ L(s′), and if such the state exists then (s′, s′) ∈ R and there are no outgoing

edges from s′ except the edge (s′, s′), and there are no more cycles of identically

labeled states in M except (possibly) this self-loop. It can be easily seen that if

there are no cycles of identically labeled states in M then M has a T-property. Let

us call (s′, s′) a T-cycle.

Theorem 3. Let M1 and M2 be two ordinary Kripke structures having T-

property. Then:

• M1 ≈dbs M2 iff M1 ≈gs M2.

• M1 ≤dbs M2 iff M1 ≤gs M2

Let M = (S, R, S0, L, F) be a ordinary Kripke structure over AP , p′ �∈ AP , and

s′ �∈ S be a special state. Let introduce the equivalence relation over S in the

70

following way: s1 ∼ s2 iff s1 = s2 or there exists a cycle of identically labeled states

containing s1 and s2. Let [S] be a set of equivalence classes over ∼ on S. Let C =
{[s] ∈ [S]| there is a cycle of identically labeled states in M such that all of it’s state

belong to [s]}. We consider a Kripke structure [M] = ([S]∪ {s′}, [R], [S0], [L], [F])
over AP ∪ {p′}, where:

• [R] = [R]1 ∪ [R]2 ∪ [R]3, where

– [R]1 = {([s1], [s2])|[s1] ∈ [S] ∧ [s2] ∈ [S] ∧ [s1] �= [s2] ∧ ∃s1 ∈
[s1], s2 ∈ [s2] · (s1, s2) ∈ R},

– [R]2 = {(s′, s′)},

– [R]3 = {([s], s′)|[s] ∈ [S] ∧ [s] ∩ F �= ∅ ∧ [s] ∈ C}
• [S0] = {[s0]|[s0] ∈ [S] ∧ [s0] ∩ S0 �= ∅}
• [L]([s]) = L(s) for [s] ∈ [S]∧s ∈ [s] (recall that all states of [s] are identically

labeled).

[L](s′) = {p′}
• [F] = {[s]|[s] ∈ [S] ∧ [s] ∩ F �= ∅} ∪ {s′}

It can be noted that [M] has a T-property.

Definition 7 (divergence-sensitive stuttering (bi)simulation [3], [1]). Let M1 and

M2 be two ordinary(nonfair) Kripke structures over AP . Then

• M2 dss-simulates M1 (denoted M1 ≤dss M2) iff [M1] ≤dbs [M2].

• M2 dss-bisimulates M1 (denoted M1 ≈dss M2) iff [M1] ≈dbs [M2].

Dss-(bi)simulation deals with structures with cycles of identically labeled states.

The logical properties of dss-(bi)simulation are:

1. Dss-bisimulation preserves CTL∗
X logic.

2. Dss-simulation preserves ACTL∗
X logic.

Computing [M] can be performed in linear time, so computing dss-(bi)simulation

using the theorem 3 has the same complexity as dbs-(bi)simulation.

71

5.2. Fair simulation and bisimulation

We define the fair game stuttering simulation(bisimulation) relation preserving

ACTL∗
X (CTL∗

X) logic for fair Kripke structures. Then following an approach

which is analogous to that considered in [2] and we reduce the problem of checking

fair (bi)simulation to that of computing a winning strategy in the parity game.

There exist several definitions of fair usual (bi)simulation: Direct, Delay, Game,

Exists, the review of them is given in [5]. My definition of fair game stuttering sim-

ulation is based on the definition of fair game simulation ([4]).

Let M1 = (S1, R1, S01, L1, F1) and M2 = (S2, R2, S02, L2, F2) be two fair Kripke

structures, and let’s consider the relation of fair stuttering simulation. Players S and

D move their pebbles during the game over graphs (S1, R1) and (S2, R2) according

to the same rules as in ordinary simulation. If the run of the game is finite then the

winner is determined according to the ordinary stuttering simulation game rules.

Let now the run of the game be infinite. In this case the winner is determined by

the following rule: if the player S’s pebble appears in fair states for infinitely many

times, while the player D’s pebble appears not then the player S is consider winning,

otherwise the player D is.

Let’s describe the game formally. Let P be the run of the game (Gsim or Gbis) for

which only game states (s1, s2)S ∈ VS are retained. Considering the sequence of

all the pairs (s1, s2)S in P , one can construct two sequences ρ1 and ρ2 consisting

of states from the sets S1 and S2 correspondingly.

Definition 8 (Fair game stuttering simulation). Given two fair Kripke structures

M1 = (S1, R1, S01, L1, F1) and M2 = (S2, R2, S02, L2, F2) over AP , let’s write

M1 ≤fgs M2 iff for every s01 ∈ S01 there exists some s02 ∈ S02 such that

L(s01) = L(s02) and also exists the winning strategy W of the player D in the

game Gsim with initial state (s01, s02)S such that if inf(ρ1) ∩ F1 �= ∅ is valid

for some run of the game defined by W then inf(ρ2) ∩ F2 �= ∅ is also valid for

this run of the game.

Definition 9 (Fair game stuttering bisimulation). Let’s write M1 ≈fgs M2 iff for

every s01 ∈ S01 there exists s02 ∈ S02 and for every s′02 ∈ S02 there exists s′01 ∈
S01 such that L(s01) = L(s02) ∧ L(s′01) = L(s′02) and there exists a winning

strategy W of the player D in the game Gbis with initial states (s01, s02)S and

(s′01, s
′
02)S such that for every run defined by W :(

inf(ρ1) ∩ F1 �= ∅ ∧ inf(ρ2) ∩ F2 �= ∅)∨(
inf(ρ1) ∩ F1 = ∅ ∧ inf(ρ2) ∩ F2 = ∅)

72

The logical properties of fair game stuttering (bi)simulation are:

1. If [M1] ≤fgs [M2], φ ∈ACTL∗
X and M2 |= φ then M1 |= φ.

2. If [M1] ≈fgs [M2], φ ∈CTL∗
X and M2 |= φ then M1 |= φ.

These properties can be proved analogously to the appropriate theorem in [4] if one

takes into account that there are no cycles of identically labeled states in [M1] and

[M2], except T-cycles.

Let’s reduce the fair stuttering (bi)simulation relation to the parity game ([13], [2]).

Let G = (VD, VS , E) be a usual game. Let d be some natural number. Parity game

is a 4-tuple Gp = (VD, VS , E, p) where p : VD ∪ VS → {0, 1, . . . , d − 1}
is a function that assigns a priority to each game state. If the run of the

game is finite then the winning player is determined according to usual game

rules. Assume that the run of the game {v0v1 . . . } is infinite. Let suppose that

ρ = {m|m = p(vi) for infinitely many i}. Then if min(ρ) is odd, then the player S

wins, otherwise the player D wins.

It can be noted that usual game is a particular case of parity game.

5.2.1. Fair game stuttering simulation

Let’s define the game Gsim
p = (VD, VS , E, p) for computing fair stuttering simu-

lation between M1 = (S1, R1, S01, L1, F1) and M2 = (S2, R2, S02, L2, F2). Let’s

take for a basis the game Gsim = (VD, VS , E) for computing stuttering simulation.

Let’s assign, in analogy with [2], a priority to each game state VS ∪ VD in such the

way:

p(v) =

⎧⎨
⎩

0, if v = (s1, s2)S ∈ VS ∧ s2 ∈ F2,

1, if v = (s1, s2)S ∈ VS ∧ s2 �∈ F2 ∧ s1 ∈ F1,

2, otherwise.

It can be easily seen that the run of the game Gsim
p is winning for the player D iff

the corresponding infinite run of the game used in the definition 8 is wining for the

player D.

Thus one comes to equivalent definition of fair stuttering simulation:

Definition 10 (Fair fame stuttering simulation). Let write M1 ≤fgs M2 iff for

every s01 ∈ S01 there exists s02 ∈ S02 such that L(s01) = L(s02) and there

exists a winning strategy of the player D in the game Gsim
p with initial state

(s01, s02)S .

73

5.2.2. Fair game stuttering bisimulation

The structure of the game state for fair stuttering bisimulation is more complicated

than for fair stuttering simulation - it will be necessary to keep information which

of two pebbles visited the fair state the last.

For s1 ∈ S1, s2 ∈ S2 and b ∈ {1, 2} let define

new(b, s1, s2) ≡
⎧⎨
⎩

1 if s1 ∈ F1,

2 if s1 �∈ F1 ∧ s2 ∈ F2,

b otherwise.

Formally, the game graph Gbis
p = (VD, VS , E, p) corresponding to fair stuttering

bisimulation between M1 = (S1, R1, S01, L1, F1) and M2 = (S2, R2, S02, L2, F2)
is defined by:

• VS = {(s1, s2, b)S |s1 ∈ S1 ∧ s2 ∈ S2 ∧ L(s1) = L(s2) ∧ b ∈ {1, 2}},

• VD = VD1 ∪ VD2 where:

– VD1 = {(s1, s
′
1, s2, b)D1|s1 ∈ S1 ∧ s′1 ∈ S1 ∧ s2 ∈ S2 ∧ L(s1) =

L(s2) ∧ (s1, s
′
1) ∈ R1 ∧ b ∈ {1, 2}}

– VD2 = {(s2, s
′
2, s1, b)D2|s2 ∈ S2 ∧ s′2 ∈ S2 ∧ s1 ∈ S1 ∧ L(s1) =

L(s2) ∧ (s2, s
′
2) ∈ R2 ∧ b ∈ {1, 2}}

• E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E′
1 ∪ E′

2 ∪ E′
3 ∪ E′

4 where:

– E1 = {((s1, s2, b)S , (s1, s
′
1, s2, b

′)D1)|(s1, s
′
1) ∈ R1 ∧ b′ =

new(b, s1, s2)},

– E2 = {((s1, s
′
1, s2, b)D1, (s′1, s2, b)S)|L(s2) = L(s′1)},

– E3 = {((s1, s
′
1, s2, b)D1, (s1, s

′
2, b)S)|(s2, s

′
2) ∈ R2 ∧L(s′2) = L(s1)},

– E4 = {((s1, s
′
1, s2, b)D1, (s′1, s

′
2, b)S)|(s2, s

′
2) ∈ R2 ∧ L(s′2) = L(s′1)}

– E′
1 = {((s1, s2, b)S , (s2, s

′
2, s1, b

′)D2)|(s2, s
′
2) ∈ R2 ∧ b′ =

new(b, s1, s2)},

– E′
2 = {((s2, s

′
2, s1, b)D2, (s1, s

′
2, b)S)|L(s′2) = L(s1)},

– E′
3 = {((s2, s

′
2, s1, b)D2, (s′1, s2, b)S)|(s1, s

′
1) ∈ R1 ∧L(s2) = L(s′1)},

– E′
4 = {((s2, s

′
2, s1, b)D2, (s′1, s

′
2, b)S)|(s1, s

′
1) ∈ R1 ∧ L(s′2) = L(s′1)}

p(v) =

⎧⎨
⎩

0 if v = (s1, s2, b)S ∈ VS ∧ s(3−b) ∈ F(3−b),

1 if v = (s1, s2, b)S ∈ VS ∧ s(3−b) �∈ F(3−b) ∧ sb ∈ Fb,

2 otherwise.

74

Definition 11 (Fair game stuttering bisimulation). Let M1 and M2 be two

Kripke structures over AP . Let say that M1 and M2 are fgs-bisimilar (de-

noted M1 ≈fgs M2) iff for all s01 ∈ S01 there exists s02 ∈ S02 and for every

s′02 ∈ S02 there exists s′01 ∈ S01 such that L(s01) = L(s02) ∧ L(s′01) = L(s′02)
and the player D has a winning strategy in the game Gbis

p with initial states

(s01, s02, 1)S and (s′01, s
′
02, 1)S .

Definitions 9 and 11 are equivalent.

5.2.3. Solution of parity games

In [2] the modification of Jurdzinski’s algorithm([13]) is given which makes it pos-

sible to compute the winning strategy of the parity game with d = 3 (i.e. the mea-

sure takes values 0,1,2) in time O(m′n1) and space O(m′) where n1 = |p−1(1)|,
n′ is a number of states in the game graph, m′ is a number of transitions in the

game graph. Thus the fair game (bi)simulation can be computed in time O(m2n2)
and space O(m2) by taking into account that n1 ≤ |VS |, |VS | = O(n2) and

m′ = O(m2).

5.3. The proof of the theorem 3.1

Let M1 = (S1, R1, S01, L1) and M2 = (S2, R2, S02, L2) be two ordinary Kripke

structures over AP . There are no cycles of identically labeled states in M1 and M2.

1. If M1 ≤gs M2 then M1 ≤dbs M2

Let WD be a winning strategy for the player D in the game Gsim and VS0 ⊆ S01 ×
S02 be a set of winning initial states for the strategy WD such that for every s01 ∈
S01 there exists s02 ∈ S02 such that (s01, s02) ∈ VS0. The existence of such the

set VS0 is the corollary of the definition 3.3. Let define the simulation relation H ⊆
S1 × S2 in the following way:

H = {(s1, s2)| the game state (s1, s2)S appears in some game run of Gsim defined

by WD with initial state (s01, s02) ∈ VS0)}. It can be easily seen that the first part of

the definition 3.1 is valid. The we prove that the second part of this definition is also

valid. Let (s1, s2) ∈ H . It can be noted that L1(s1) = L2(s2). Let (s1, s
′
1) ∈ R1.

It is necessary to prove that there exists the sequence t0t1 . . . tn (n ≥ 0) such that

t0 = s2, (s′1, tn) ∈ H and, for every i < n, (ti, ti+1) ∈ R2 and (s1, ti) ∈ H .

Let WS be a strategy of the player S:

75

WS((s, t)S) =
{

(s1, s
′
1, t)D, if s = s1,

halt, otherwise.

The game state (s1, s2)S is a winning state for the player D. Thus, the player D can

always move his pebble at his turn. Consider a game run defined by strategies WS

and WD starting at the game state (s1, s2)S . Assuming that t0 = s2 we have to

consider the following 3 scenarios of runs:

1. (s1, t0)S
E1−→ (s1, s

′
1, t0)D

E3−→ (s1, t1)S
E1−→ (s1, s

′
1, t1)D

E3−→ (s1, t2)S
E1−→

. . .

(the run is infinite)

2. (s1, t0)S
E1−→ (s1, s

′
1, t0)D

E3−→ (s1, t1)S
E1−→ · · · E1−→ (s1, s

′
1, tn)D

E2−→
(s′1, tn)S , n ≥ 0,

3. (s1, t0)S
E1−→ (s1, s

′
1, t0)D

E3−→ (s1, t1)S
E1−→ · · · E1−→ (s1, s

′
1, tn−1)D

E4−→
(s′1, tn)S , n ≥ 1,

Actually, the first case can not be put into effect because there are no cycles of

identically labeled states in M2.

It can be easily seen that if the game follows the second or the third scenarios then

the requirements of the divergence-blind stuttering simulation definition are satis-

fied: (s′1, tn) ∈ H , and for every i < n we have (ti, ti+1) ∈ R2 and (s1, ti) ∈ H .

Thus, there exists a divergence-blind stuttering simulation H ⊆ S1 × S2 between

M1 and M2. Therefore M1 ≤dbs M2.

2. If M1 ≤dbs M2 then M1 ≤gs M2

Let H ⊆ S1 × S2 be a stuttering simulation according to the definition 3.1 and let

(s1, s2) ∈ H and (s1, s
′
1) ∈ R1. Then there exists a sequence t0t1 . . . tn (n ≥ 0)

such that t0 = s2, (s′1, tn) ∈ H , and (ti, ti+1) ∈ R2 ∧ (s1, ti) ∈ H for every i < n.

Let define

WD((s1, s
′
1, s2)D) =

⎧⎨
⎩

(s′1, s2)S if n = 0,

(s′1, t1)S if n = 1,

(s1, t1)S if n > 1.

Let’s define additionally WD((s1, s
′
1, s2)D) = halt iff (s1, s2) �∈ H ∨ (s1, s

′
1) �∈ R1

It can be easily seen that if (s1, s2) ∈ H then strategy WD is a winning strategy of

the player D for the initial state (s1, s2)S in the game Gsim. Therefore M1 ≤gs M2.

76

