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Abstract. Polymorphic and metamorphic viruses are the most sophisticated malicious

programs that give a lot of trouble to virus scanners. Each time when these viruses infect

new executables or replicate themselves they completely modify (obfuscate) their signature

to avoid being detected. This contrivance poses a serious threat to anti-virus software which

relies on classical virus-detection techniques: such viruses do not have any stable specific

sequence of instructions to be looked for. In the ultimate case the only characteristic which

remains invariable for all generations of the same virus is their functionality (semantics). To

all appearance, the only way to detect for sure a metamorphic malicious code is to look for a

pattern which has the same semantics as (i.e. equivalent to) some representative sample of

the virus. Thus, metamorphic virus detection is closely related to the equivalence-checking

problem for programs. In this paper we outline some new automata-theoretic framework

for the designing of virus detectors. Our approach is based on the equivalence-checking

techniques in algebraic models of sequential programs. An algebraic model of programs is

an abstract model of computation where programs are viewed as finite automata operating

on Kripke structures. Models of this kind make it possible to focus on those properties of

program instructions that are widely used in obfuscating transformations. We give a survey

(including the latest results) on the complexity of equivalence-checking problem in various

algebraic models of programs and estimate thus a resilience of some obfuscating transfor-

mation commonly employed by metamorphic viruses.

1. Preliminaries
One of the most important branch in computer security is the designing of anti-

virus software. According to current concepts [23], a computer virus is a self-

replicating computer program which spreads by attaching copies of itself to pro-

grams and/or documents. But very often the term “computer virus" is referred to

many other sorts of malware, such as worms, trojan horses, spyware, etc. The

first anti-virus programs emerged in 1982 almost immediately with the advent of

computer viruses [32]. Since that time we became the witnesses (and sometimes

participants) of the unceasing “arm race" malware designers and anti-virus soft-

ware engineers are involved in. Anti-virus programs attempt to identify, thwart and
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eliminate computer viruses. Clearly, the crucial point is to detect a virus, and a

number of techniques may be used to accomplish this task [22].

The suspicious behavior approach monitors the behavior of all programs. If one

program displays a suspicious behaviour (say, tries to write data to an executable),

the anti-virus software can pin-point such anomalies and alert a user. Unfortu-

nately, modern nonmalicious programs offer many properties that are typical for

viruses, and the boundary between legal and harmful behaviour is swiftly dispers-

ing. Therefore the suspicious behavior approach suffers from the growing number

of false positives and most modern anti-virus software uses this technique less and

less.

A sandbox approach emulates the operating system, runs executables in this simu-

lation and analyzes the sandbox for any changes which might indicate a virus. This

approach is resource consuming and normally it takes place only during on-demand

scans or in combination with the suspicious behaviour approach.

The most effective virus detection technique is based on virus dictionary. An anti-

virus program tries to find virus-patterns inside ordinary programs by scanning

them for so-called virus signatures. A signature is a characteristic byte-pattern

that is a part of a certain virus or family of viruses. If a virus scanner finds such a

pattern in a file, it notifies the user that the file is infected. When searching for virus

signatures a virus scanner refers to a dictionary of known viruses that the authors of

the anti-virus software have identified. Thus, virus detection problem is reduced to

the well-known pattern-matching problem which can be solved by a vast amount

of efficient algorithms.

The virus dictionary technique is effective only if virus signature remains immutable

for all generations of the same virus. Therefore, in order to avoid detection some

viruses attempt to hide their signatures. Polymorphic code was the first technique

that posed a serious threat to virus scanners. Polymorphic viruses (zombie-6.b,

f0sf0r0, Hare) use multiple techniques to prevent signature matching. First, the

virus code is encrypted with a different key for each replica, and only a small routine

remains in-clear to decrypt the code before running the virus. Second, when poly-

morphic virus replicates itself, it not only encrypts its body with a newly-generated

key, but also applies obfuscating transformations [7, 8] to modify the decryption

routine. A well-written polymorphic virus has no parts that stay the same on each

infection, making it impossible to detect a virus directly by its signature. Anti-virus

software deals with polymorphic viruses by performing heuristic analysis of the code

and emulating the program in a sandbox to catch the virus when it decrypts its body

in the main memory [24, 25].
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Metamorphic viruses (Sobig, Beagle, Smile) attempt to evade heuristic detection

techniques by using more complex obfuscating transformations and rewriting their

bodies completely each time they are to infect new executables. As virus design-

ers employ more complex obfuscating transformations in metamorphic engines,

heuristic virus-detection techniques are bound to fail [34]. Metamorphic viruses

also attempt to “weave" their code into the host program making detection by tra-

ditional heuristics almost impossible since the virus code is mixed with a program

code [18].

Thus, polymorphic and metamorphic viruses throw down a serious challenge to

virus scanners. The key issue which makes these viruses strongly resilient against

conventional virus detection techniques is the using of obfuscating transforma-

tions. An obfuscating transformation O is any semantic-preserving transformation

that brings a program π into such a form O(π) which is far less understandable

than the original program π. Initially, obfuscation was intended to provide the pro-

tection of intellectual property on computer software [7, 8]. But subsequent inves-

tigations [1] have shown that obfuscation may be used for various applications in-

cluding the designing of public-key cryptosystems, protection of “watermarkings"

and mobile agents, and (last but not least) for writing stealth viruses as well. It was

proved (see [1]) that a “black-box" secure obfuscation of all programs is impossible,

though it can be achieved for some specific families of programs [35]. Neverthe-

less, even weak obfuscating transformations [3, 17] may obstruct program analysis

algorithms. Experiments [5, 6] demonstrated that three commercial virus scan-

ners widely used in common practice could be subverted by very simple obfuscat-

ing transformations (code transposition and nop-insertion). This means that fur-

ther improvements of virus scanners to make them effective protection tools against

stealthy viruses require some fundamental research on the potency of obfuscation

and deobfuscation techniques.

It should be noticed that obfuscating transformations change the syntax of a pro-

gram but preserve its semantics. We may assume that in the ultimate case the only

characteristic which remains invariable for all generations of the same metamorphic

virus is its semantics. Hence, the semantics of a virus as its true signature which

is shared by all mutations of the virus code. Therefore, to check if a program Π is

infected with a metamorphic virus π it is sufficient to find out whether Π contains a

piece of code which has the same semantics as (or, in other words, is functionally

equivalent to) π. Unfortunately, as it was demonstrated in [2], the virus detection

problem is undecidable in general. But if we further assume that a transformation

O employed for the obfuscation of the virus π is also known to anti-virus software

engineers then the situation changes drastically. The point is that in practice the
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obfuscating transformation O preserves an equivalence relation on programs ∼O
which is much stronger than the functional equivalence. Therefore, it is quite possi-

ble to capture the equivalence ∼O within some rather simple model of computation

(program model) and then develop an equivalence-checking technique EqCheckO
within this model. The equivalence-checking algorithm EqCheckO may be used

as a basis for constructing an anti-virus program which could carry out signature-

matching modulo ∼O.

This approach to the metamorphic virus detection was initiated by Christodorescu

and Jha [4]. They presented an architecture for detecting malicious pattern in ex-

ecutables that can cope with some simple obfuscating transformations, such as

changes in control flow, register reassignments, and dead code insertion. Experi-

mental results which demonstrate the efficiency of their prototype tool look highly

encouraging. But at the same time the authors of the papers [5, 6] noticed that

more advanced obfuscating transformations (e.g. code transposition) require fur-

ther investigations. Some of these transformations essentially depend on algebraic

properties of typical program instructions. Most of such properties can be specified

in the framework of the theory of algebraic models of sequential programs developed

in the series of papers [16, 20, 27, 28, 37, 40].

Algebraic models of programs approximate operational semantics of real imperative

programs and facilitate thus the development of equivalence-checking algorithms

and optimization transformations for programs. Given two sets of basic program

instructions A and basic predicates P , a program π in the framework of an alge-

braic model is viewed as a deterministic finite state automaton whose input alphabet

is A and output alphabet the set ρ(P) of all possible evaluation of basic predicates.

Such an automaton A operates on a set M of labeled Kripke structures that pro-

vide a semantics of program instructions and predicates. The models of this kind

are called algebraic since in the most practical cases the set M corresponds to some

semigroup which captures the most important algebraic features of operational se-

mantics of real programs. The main advantage of these models is their scalability:

choosing a set of algebraic and logical properties of program instructions and pred-

icates one may build an appropriate model of programs whose semantics captures

exactly the selected set of properties. This is very much convenient for developing

metamorphic virus scanners. Given an obfuscating transformation O employed by

the metamorphic engine of the virus one could

• choose an algebraic model M such that π ∼M O(π) holds for every pro-

gram π; in this case it is said that the obfuscation O is “visible" within the

model M;
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• estimate the complexity of the equivalence-checking problem for programs

in the model M; this gives a rough estimate to the complexity of the virus

detection problem;

• develop (if possible) an equivalence-checking algorithm for the model M
and use it as a scanning tool for those metamorphic viruses that use the

obfuscation O.

The very concept of an algebraic model of programs was introduced by Ianov in his

seminal paper [16]. Since that time the equivalence-checking problem for programs

in algebraic models has been studied extensively and some uniform approaches that

combine automata-theoretic and group-theoretic techniques were developed. It

turns out (see [15, 29, 38, 40]) that for many algebraic models of programs the

equivalence-checking problem is decidable in polynomial time. This causes us to

anticipate that some metamorphic viruses could be detected uniformly in reason-

able time through the advanced signature-matching technique. The similar ap-

proach which relies on abstract interpretation concept instead of algebraic models

of programs was developed in [9, 10, 11] for evaluating the resilience of program

watermarkings.

On the other hand, some latest results show that the equivalence-checking prob-

lem in some natural algebraic models is intractable. This means that obfuscating

transformations in the framework of such models may have rather strong resilience

against equivalence-checking detection machinery. We hope that further investi-

gations will clarify this effect.

The rest of the paper is organized as follows. In Section 2 we introduce formally

algebraic models of programs. In Section 3 and 4 we survey the complexity results

to the equivalence-checking problem for some algebraic models of programs. Fi-

nally, in Section 5 we discuss the impact of these results on the metamorphic virus

detection problem.

2. Algebraic models of programs
Algebraic models of programs deals with sequential computer programs at the

propositional abstraction level. In this section we define the syntax and the se-

mantics of propositional sequential programs (PSPs).

Let A = {a1, . . . , ar} and P = {c1, . . . , ck} be two finite alphabets. In what follows

r and k denote the cardinality of the alphabets A and P respectively. We empha-

size that these parameters are fixed for every algebraic model of programs to be

considered. The elements of A are called basic instructions. Intuitively, each ba-
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sic instruction stands for some assignment statement in imperative program. But

rather well it may corresponds to a library function call, basic block, or any other

fragment of a program which always terminates.

The elements of P are called basic predicates. They stand for elementary built-in

relations on program data. Each basic predicate may be evaluated by false or true.

We write ρ(P) for the powerset of P ; the elements from ρ(P) represent all possible

evaluations of basic predicates.

Definition 1. A propositional sequential program (PSP, for short) is a finite
transition system π = 〈V, entry, exit, T,B〉, where

• V is a non-empty set of program points;

• entry is the initial point of the program;

• exit is the terminal point of the program;

• T : (V − {exit}) × ρ(P) → V is a (total) transition function;

• B : (V − {exit}) → A is a (total) binding function.

A transition function represents the control flow of a program, whereas a binding

function associates with each point some basic instruction. One may also consider

a PSP as a deterministic finite state automaton (DFAs) operating over the input

alphabet ρ(P) and the output alphabet A. By the size |π| of a program π we mean

the cardinality of the set V (assuming that the cardinalities of A and P are fixed).

The semantics of PSPs is defined with the help of semigroup Kripke structures.

Definition 2. A semigroup Kripke structure is a triple M = 〈S, ◦, ξ〉, where

• (S, ◦) is a semigroup generated by the set A of basic instructions, and;

• ξ : S → ρ(P) is a (total) evaluation function.

A semigroup (S, ◦) gives interpretation to the basic instructions. The elements of S

may be viewed as data states, and the neutral element (unit) ε stands for the initial

data state. When an instruction a, a ∈ A, is applied to a data state s, s ∈ S, the

result of execution of a is the data state s′ = s ◦ a. An evaluation function ξ is used

for the interpretation of basic predicates: given a data state s, an evaluation ξ(s)
returns a set of all basic predicates that are evaluated to true on s.

Let π be a PSP, and M be a semigroup Kripke structure. The run of π on M is a

sequence (finite or infinite) of pairs

r(π,M) = (v0, s0), (v2, s2), . . . , (vi, si), (vi+1, si+1), . . . ,

82



such that

1. v0 = entry, s0 = ε is the initial data state of M ;

2. vi+1 = T (vi, ξ(si)), si+1 = si ◦ B(vi) hold for every i, i ≥ 1;

3. the sequence r(π,M) either is infinite (in this case we say that the run loops

and yields no results), or ends with a pair (vn, sn) such that vn = exit (in

this case we say that the run terminates with a result sn).

We denote by [r(π,M)] the result of a run r(π,M) assuming that the result is un-

defined when r(π,M) loops.

By an algebraic model of programs M we mean the set of all PSPs over fixed

alphabets A,P whose semantics is specified by the set M of semigroup Kripke

structures.

Definition 3. Given an algebraic model of programs M, PSPs π1 and π2 are
said to be equivalent on M (π1 ∼M π2 in symbols) iff [r(π1,M)] = [r(π2,M)]
holds for every semigroup Kripke structure M from M.

The equivalence-checking problem (ECP for short) in an algebraic model of pro-

grams M is that of checking, given an arbitrary pair of PSPs π1 and π2, whether

π1 ∼M π2 holds.

As it may be seen from the definitions above, an algebraic model of PSPs is just an

abstract model of computation where programs are regarded as DFAs operating on

Kripke structures. In this connection ECP in algebraic models of PSPs is noth-

ing else but a generalization of the well-known equivalence-checking problem for

DFAs.

We say that an algebraic model M approximates an equivalence relation ≡ on the

set of PSPs if π1 ∼M π2 implies π1 ≡ π2 for every pair of PSPs π1 and π2. Approx-

imation relation constitutes a lattice on the set of all algebraic models of programs

[27, 37]. Hence, given an equivalent (obfuscating) transformation O of programs,

one may consider an algebraic model MO which is the best approximation to the

equivalence relation ≡O induced by the transformation O, and then analyze ECP

forMO. If the problem is undecidable (or intractable) then one may select a suitable

approximation M′ to the model MO and develop an efficient equivalence-checking

algorithm for M′. This algorithm may be employed by deobfuscating virus scanner

for detecting those metamorphic malware whose obfuscation is achieved through

the transformation O.

In the next section we consider in more detail a number of algebraic models of pro-

grams that may be employed to uncover some common obfuscations.
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3. Equivalence-checking problem for basic alge-
braic models of programs

We restrict our attention to the algebraic models of programs M whose structures

M, M ∈ M are based on the same semigroup (S, ◦). Every model M of this kind

is completely specified by the pair (S, L), where L = {ξ : 〈S, ◦, ξ〉 ∈ M} is the set

of admissible evaluation functions. If, moreover, every evaluation function ξ defined

on S is admissible (i.e. 〈S, ◦, ξ〉 ∈ M holds for any ξ) then we will write (S, LS) to

specify such a model M.

Next we consider several families of algebraic models of programs based on most

simple semigroups. For every model M we discuss which type of obfuscation is

“visible" within this model and estimate the complexity of ECP for M. One may

regard these estimates as some qualitative characteristics of resilience for those

obfuscating transformations that are “visible" in the framework of M.

3.1. Free semigroups. The maximal model M0 = (S0, LS0).

The maximal model M0 is associated with the free semigroup S0 generated by the

set of basic instructions A. This model is called maximal since it approximates any

other algebraic model of programs. Obfuscating transformations in the framework

of M0 may change the structure of control flow of a program but they can’t affect

the order of instructions execution. The maximal model was introduced by Ianov

[16] in 1958 and soon received the name Ianov’s schemes. In [16] it was proved

that ECP for the maximal algebraic model of programs is decidable. In fact, this is

the first positive result which demonstrated the applicability of formal methods for

program analysis. Later in [31] it was shown that ECP for M0 is inter-reducible

with ECP for DFAs. Taking into account the most efficient equivalence-checking

algorithm for DFAs presented in [15] we arrive at

Theorem 1. ECP “π1 ∼M0 π2 ?” in the maximal modelM0 is decidable within
a time O(n log n), where n is the total size of PSPs π1 and π2.

There are many ways of refining the maximal model. For example, it may be as-

sumed that a semigroup S0 contains several unit elements. Every such unit ele-

ment corresponds to a nonessential instructions whose execution does not change

data states (like nop instruction in IA-32 instruction set). It is easy to verify that

the complexity of ECP for this algebraic model is the same as for M0. This fact

explains the effectiveness of a static analyzer for detecting malicious patterns in

executables [4, 6] developed by Christodorescu et al.: it uncovers exactly those ob-

fuscating transformations that are “visible" in the refined variant of the maximal
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algebraic model of programs.

Other refinements of M0 are also of some interest for program obfuscation. Denote

by mod(a) the set of program variables whose values are modified by an instruction

a, and by used(a) (used(p)) the set of program variables whose values are used by

an instruction a (predicate p). Clearly, if mod(a) ∩ used(p) = ∅ then the truth value

of p before and after the execution of a is the same. In this case it is said that the

predicate p is invariant w.r.t. the instruction a. For example, the predicate y==0
is invariant w.r.t. the instruction x++. Usually, a very simple syntactic analysis is

able to check whether some predicate p is invariant w.r.t. a instruction a. Algebraic

models of programs provide a possibility to capture this effect. Let Z : A → 2P be

a mapping (invariant distribution) which associate with every basic instruction a a

set of those basic predicates that are invariant w.r.t. a. We say that an evaluation

function ξ preserves an invariant distribution Z if (p ∈ ξ(s) ⇐⇒ p ∈ ξ(s ◦ a))

holds for every data state s, s ∈ S0, basic instruction a, a ∈ A and basic predicate

p ∈ Z(a). Denote by LZ the set of all evaluation functions preserving an invariant

distribution Z on the free semigroup S0. As it was demonstrated in [16], ECP for

any model M0,Z = (S0, LZ) has the same complexity as ECP for the maximal

model.

Another effect which can be taken into account when refining the maximal model

is that of monotonicity of predicates w.r.t. program instructions. For example, if the

predicate x>0 is true at some stage of program computation then it remains true

after the execution of the instruction x++. We say that an evaluation function ξ is

monotonic for a predicate p if (p ∈ ξ(s) =⇒ p ∈ ξ(s ◦ a)) holds for every data

state s, s ∈ S0, and basic instruction a, a ∈ A. Just as it was done above we may

consider a family of algebraic models M0m = (S0, Lm) whose evaluation functions

are monotonic for some basic predicates. In [36] it was shown that ECP for any

monotonic refinement of maximal algebraic model is decidable in time O(n log n).

Some other refinements of M0 were also studied in [36].

It is worthy of noticing that both properties considered above are well suited for the

designing of opaque constructs [7, 8]. Opaque constructs are intended for hin-

dering program understanding; they are widely used in program obfuscation for in-

serting dead code, modifying control and data flows, etc. Opaque constructs may be

also employed by a metamorphic virus for “weaving" its code with a code of infected

executable and for imitation of legal executables as well. These capabilities of ob-

fuscating transformations have to be taken into account when designing advanced

virus scanners.
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3.2. Commutative semigroups. Models M1 = (S1, LS1) of
PSPs with commutative instructions.

The semantics of some program instructions is such that the result of their ex-

ecution does not depend on the order in which these instructions are executed.

To certify that instructions a and b can commute it is sufficient to check with the

help of simple syntactic analyzer that used(a) ∩ mod(b) = used(b) ∩ mod(a) =
mod(a)∩mod(b) = ∅. This holds, for example, for the instructions x++ and z++=&y.

To account this effect one has to deal with (partially) commutative semigroups S1

specified by a set of defining relationships a ◦ b = b ◦ a. An algebraic model of pro-

grams M1 = (S1, LS1) based on a (partially) commutative semigroups S1 is called

a commutative model.

Code transposition based on the commutativity of instructions is one of the most

simple and effective obfuscating transformation which can “put of the scent" all

current pattern-matching virus scanners [4]. It shuffles the instructions so that

their order in virus replicas is different from the order of instructions assumed in

the signature used by the anti-virus software. Nevertheless an approach to the

designing of efficient equivalence-checking algorithms for PSPs developed in [29,

38, 39] is powerful enough to cope with this problem.

Theorem 2. ECP “π1 ∼M1 π2 ?” in the model M1 of PSPs with commutative
instructions is decidable within a time O(n3 log n), where n is the total size of
PSPs π1 and π2.

3.3. Models M2 = (S2, LS2) of PSPs with suppressed instruc-
tions.

We say that a basic instruction a suppresses an instruction b if a result of execu-

tion of b is always discarded every time when a is executed next. Thus, for example,

the instruction x=y++ suppresses the instruction x++. To certify that an instruction

a suppresses an instruction b one need only to check that mod(b) ⊆ mod(a) and

mod(b) ∩ used(a) = ∅. The insertion/deletion of suppressed instructions is an-

other kind of obfuscating transformation which enables a virus to stealthy change

the length of its code (signature). Since the inserted instructions execute mean-

ingful operations, this may mislead even those anti-virus tools that use a sandbox

emulation approach.

The effect of instruction suppression is well represented by the family of algebraic

models M2 = (S2, LS2) whose semigroup S2 is completely defined by the set of

equalities of the form b ◦ a = a. By applying the techniques developed in [38] we
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proved the following

Theorem 3. ECP “π1 ∼M2 π2 ?” in the model M2 of PSPs with suppressed
instructions is decidable within a time O(n2 log n), where n is the total size of
PSPs π1 and π2.

3.4. Semigroups with right zeros. Models M3 = (S3, LS3) of
PSPs with mode switching instructions.

A run of a program with mode switching is divided into two stages. In the first

stage a program selects an appropriate mode of computation. Several modes may

be tried in turn before making the ultimate choice. Every time when the next mode is

put to the test, the program brings the data to some predefined state. In the second

stage, once a definitive mode is fixed, the final result of computation is generated.

In real programs mode switching may be implemented by restart instructions or

constant assignments like x=(y=0)+(z=1). The characteristic property of a mode

switching instruction a is that used(a) = ∅, and mod(a) includes all variables of

the program. Since any execution of a mode switching instruction always gives the

same result, the further behaviour of a program is well predictable. Therefore the

mode switching instructions are used as a suitable means for generating opaque

predicates whose outcome is known at obfuscation time, but is difficult for the ob-

fuscator to deduce [7].

The effect of mode switching instructions is captured by the algebraic models of

programs M3 = (S3, LS3), where S3 is a free semigroup with several right zeros,

i.e. the elements e that satisfy the equation a ◦ e = e for every basic instruction a.

In [19] it was proved that ECP for programs with mode switching instructions is

decidable. A more efficient equivalence-checking algorithm for M3 was presented

in [30].

Theorem 4. ECP “π1 ∼M3 π2 ?” in the model M3 of PSPs with mode switch-
ing instructions is PSPACE-complete.

3.5. Free groups. Models M4 = (S4, LS4) of PSPs with invert-
ible instructions.

Two instructions a and b are called (mutually) invertible if their successive execu-

tion always brings data to an original state. x++ and x– is the most simple example

of a pair of mutually invertible instructions. Invertible instructions, as well as con-

stant assignments (or mode switching instructions), may be used for bringing data

into some predefined states and, thus, for generating opaque constructs. But since
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a data state which is reached after the execution of a sequence of mutually invertible

instructions is not fixed (unlike the case of mode switching instructions), a superfi-

cial static analysis can’t cope with this effect; it requires a more deep consideration

that involves semantical features of program semantics.

The behaviour of programs with invertible instructions can be analyzed with the

help of algebraic models of programs M4 = (S4, LS4), where S4 is a free group.

In [20, 21] it was shown that ECP for algebraic models of programs with invertible

instructions is decidable. Recently we have estimated the complexity of ECP for

M4.

Theorem 5. ECP “π1 ∼M4 π2 ?” in the model M4 of PSPs with invertible
instructions is PSPACE-complete.

4. Equivalence-checking problem for compound al-
gebraic models of programs

Usually to analyze program behaviour one has to take into account a number of

various semantical properties of program instructions and predicates at once. This

constrain us to consider more complex algebraic models of programs. Some of

them stem from the combination of several basic models discussed above. It turns

out, however, that joining together some rather simple algebraic models of pro-

grams we often obtain a compound model which is far more difficult for the analysis.

Below we give some examples to illustrate this observation.

4.1. Algebraic models of PSPs with commutative instructions
and monotonic predicates.

As it was shown in Subsections 3.1 ECP for algebraic models of programs with

monotonic predicates is decidable in time O(n log n). In Subsection 3.2 we demon-

strated also that the same problem for algebraic models with commutative instruc-

tions is decidable in time O(n3 log n). In both cases the complexity of ECP does

not depend significantly on the cardinality of the sets A and P of basic instruc-

tions and predicates. But if we consider a compound model M0m + M1 which

combines commutative instructions and monotonic predicates then the best known

equivalence-checking algorithm [41] for this model is not as much efficient as those

for M0m and M1.

Theorem 6. ECP “π1 ∼M0 π2 ?” in the compound model M0m + M1 is de-
cidable within a time nO(rk), where n is the total size of PSPs π1 and π2, and r

and k are the cardinalities of the alphabets A and P .
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ECP is even more complicated for algebraic models whose evaluation functions are

subjected to invariant distributions Z. Let M0Z + M1 = (S1, L(S1,Z)) be an al-

gebraic model, where S1 is a free commutative semigroup and Z is an invariant

distribution such that p /∈ Z(a) =⇒ p ∈ Z(b) holds for every pair of basic in-

structions a, b, a �= b, and predicate p. Then ECP for M0Z + M1 is inter-reducible

with ECP for deterministic multi-tape automata. For more than 30 years it was not

known whether the latter problem is decidable until in 1991 Harju and Karhumaki

[14] presented an exponential time decision procedure which solves this problem.

Nevertheless, to the extent of our knowledge, the complexity of ECP for determin-

istic multi-tape automata is still unclear.

4.2. Algebraic models of PSPs with commutative and mode
switching instructions.

By joining together the algebraic models of programs introduced in Subsection 3.2

and Subsection 3.4 we obtain an algebraic model M1 + M3 whose Kripke struc-

tures are based on a free commutative semigroup augmented with several right

zeros. ECP for this model was studied by Godlevsky; in [12] he presented an

equivalence-checking algorithm for M1 + M3 which has super-exponential time

complexity. The development of more efficient equivalence-checking procedures

and more precise estimation of ECP complexity for this model is a topic of our fu-

ture research.

One may consider also another of combination of M1 and M3 which leads to an

algebraic model whose Kripke structures are based on a direct product of free com-

mutative semigroups each supplied with right zeros. This is the case when program

contains the instructions x++, y++, x=0, and y=0. In [13, 26] it was shown that ECP

for such algebraic models of programs is undecidable.

4.3. Algebraic models of PSPs with commutative and invert-
ible instructions.

If we combine the algebraic models introduced in Subsection 3.2 and Subsection

3.5 then we obtain a model whose Kripke structures are based on Abelian groups.

This model is appropriate for programs that contains such pairs of invertible in-

structions as x++, x–, y++, y–, etc. each affecting its own variable. In [20] it was

shown that ECP for algebraic models M1 + M4 is undecidable.
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4.4. Algebraic models of PSPs with suppressed and commu-
tative instructions.

Nevertheless, in some cases the complexity of ECP for a compound model does not

exceeds considerably the complexity of ECP for its components. Thus, for example,

we may consider an algebraic model M1 + M3 with suppressed and commutative

instructions which is obtained by joining together the models introduced in Sub-

section 3.2 and Subsection 3.3.

Theorem 7. ECP “π1 ∼M2 π2 ?” in the compound model M1 + M3 of PSPs
with suppressed and commutative instructions is decidable within a time
O(n4 log n), where n is the total size of PSPs π1 and π2.

5. Conclusion
As it can be seen from Theorems 1–3 and 7 in some cases equivalence-checking

algorithms for algebraic models of programs are very efficient (have polynomial time

complexity, and the power of polynomials is low). This means that the obfuscating

transformations that are “visible" in such models are far from being secure. If a

metamorphic virus employs only such transformations for obfuscation then its de-

tection can be achieved through an advanced pattern-matching approach based on

the uniform and efficient equivalence-checking procedures.

At the same time ECP for some algebraic models may be very hard and even in-

tractable (see Theorems 4-6). Metamorphic viruses employing obfuscating trans-

formations that are “visible" in these models may be very much stealthy. In these

cases uniform equivalence-checking techniques give no effect. Fortunately, this

also implies that the implementation of such obfuscating transformations is also a

hard task which requires a sophisticated software analysis and consumes a consid-

erable amount of computational resources. Since a computer virus, as a rule, has a

compact code, it is hardly possible that it would employ very complex obfuscation.

Therefore, we assume that the following obfuscating strategy would be the most

appropriate for metamorphic viruses. Suppose that M = Mi1 +Mi2 + · · ·+Mik

is a complex algebraic model which is composed of a number of simple models

Mi1 ,Mi2 , . . . ,Mik
. Suppose also that every model Mij

admits the designing

of compact and efficient engine for generating a sufficient amount of obfuscating

transformations. Then to modify its code a virus π may apply randomly a series

of obfuscating transformations O1,O2, . . . ,ON that are “visible" in the framework

of the models Mi1 ,Mi2 , . . . ,Mik
. The order in which these transformations are

applied is a “secrete key" of the obfuscation O thus obtained. If ECP for M is in-
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tractable then a direct equivalence-checking approach to the deobfuscation of O(π)
may happen to be time-consuming. One may avoid this difficulty by taking into ac-

count the arrangement of M and using deobfuscating procedures for each simple

model M is composed of. But without knowing the “secrete key" of obfuscation it

is also uneasy to find the proper order these procedures have to be applied to O(π).

These considerations conform with the result obtained in the paper [33]

We think that further research on this topic would be very much useful for under-

standing the potency of metamorphic viruses and for designing advanced anti-virus

software.
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