
323

A category-driven approach to deriving
domain specific subsets of Wikipedia

Anton V. Korshunov, Denis Yu. Turdakov
{korshunov, turdakov} @ispras.ru

Jinguk Jeong, Minho Lee, Changsung Moon
Convergence Solution Team,

DMC R&D Center,
Samsung Electronics Co., Ltd.

{jinguk.jeong, minho03.lee, albert.moon}

@samsung.com

Abstract. While many researchers attempt to build up different kinds of ontologies by means
of Wikipedia, the possibility of deriving high-quality domain specific subset of Wikipedia
using its own category structure still remains undervalued. We prove the necessity of such
processing in this paper and also propose an appropriate technique. As a result, the size of
knowledge base for our text processing framework has been reduced by more than order,
while the precision of disambiguating musical metadata (ID3 tags) has decreased from 98%
to 64%.

Keywords: Wikipedia; ontology; automated ontology building; category; taxonomy;
semantic relatedness; natural language processing; Texterra.

1. Introduction
There's no need to introduce Wikipedia as a world's largest and most rapidly
expanding source of information on many domains in almost every language. At the
time of drafting this paper, there are 279 Wikipedias in different languages, with
more than 17,870,000 articles, 1,920,000 uploaded images, and 27,540,000
registered users [1]. 39 Wikipedias contain more than 100,000 articles each. The
English edition remains the largest Wikipedia, over three times as large as the
second largest edition, the German Wikipedia. That's why it is reasonable to start
investigating new possibilities with English Wikipedia as a most comprehensive
source.

324

By now, Wikipedia has already got a lot of colorful detailed descriptions.
Conventional features of Wikipedia are well-known and discussed widely in [2, 25].
They include concept identification by ID or URL, multiple and dense link
structure, and category system which is edited and maintained by Wikipedia users
as well as articles.

Researching community has proved more than once that structure and content of
Wikipedia are very peculiar and valuable domains to study. One of the most
promising directions is automated ontology building which may be accomplished by
extracting well-defined concepts and relations among them from Wikipedia. The
latest efforts in this field are DBpedia [3], the work of Ponzetto et al. [4],
YAGO [5], etc. All these approaches mainly exploit the data derived from
infoboxes and category structure. Due to continuous enriching these techniques with
better algorithms and data sources, the quality of resulting ontologies becomes
remarkable.

Despite these successes in automated upper-level ontology building, most of domain
specific ontologies (for instance, UMLS [6]) are still assembled manually. Needless
to say, they are often costly to build and to keep them up to date.

In this paper, we consider the possibility of loosely supervised extraction of domain
specific ontologies from upper-level ones. This is becoming feasible in recent years
as high-quality upper-level ontologies grow more versatile and involve the
knowledge of many new domains. Moreover, many field experts from all around the
world often tend to pay their efforts to expand existing widespread ontologies,
rather than to create their own or refine domain specific ones.

Our interest in this research is caused by necessity of reducing the knowledge base
for our text processing framework Texterra1. This base comprises a number of
textual indices produced by our Wikipedia parser. These indices are loaded into
RAM during the initialization of Texterra server and take roughly 4.5 Gb of disk
space and 2 Gb of RAM. Such a consumption is acceptable for workstations, but not
for mobile devices with restricted amount of memory. Thus, if one would attempt to
build a standalone mobile application intended for text processing, then its data
structures simply would not fit in the RAM. Obviously, such applications - if
developed - would be highly demanded to date.
The disambiguation2 of musical metadata (i.e., ID3 tags of MP3 files) is an
important part of Texterra functionality. These algorithms are well-tuned by the

1 http://modis.ispras.ru/texterra
2 Word sense disambiguation is an open problem of natural language processing, which

governs the process of identifying which sense of a word (i.e. meaning) is used in a sentence,
when the word has multiple meanings (polysemy).

325

moment and show the precision of 98% on our test set. But it's obvious that only a
narrow range of Wikipedia dictionary is utilized during processing ID3 tags of MP3
files. There are mostly named entities, such as musical compositions, song writers,
singers, etc. Generally speaking, the amount of knowledge required to perform such
a disambiguation is likely much less than that available from the entire knowledge
base.

Making the knowledge base more specialized by removing concepts which are
unimportant for this task is what comes to mind first in this case. So, we've
implemented a system intended to produce Wikipedia subsets covering the
knowledge of the given domain. We decided not to narrow the scope of our research
to Wikipedia derivates (such as YAGO). But, although the algorithms have been
evaluated with Wikipedia only, they are applicable to any ontology with well-
defined polyhierarchical taxonomy.

Of many interesting aspects of Wikipedia, here we take into account only
categorization and linkage within its content. The category system in Wikipedia
plays the role of a taxonomy and provides the function to search articles by
narrowing down categories. Given this, the task of deriving domain specific
concepts from Wikipedia dictionary seems to be solvable by mining the category
system for the list of concepts tightly connected with the given base categories.
However, it is impossible to simply determine all concepts belonging to a particular
category. The reason is that the category system of Wikipedia is organized into
network structure, not a perfect tree structure. Furthermore, the lists of parent
categories for many articles are redundant and contradictory. Thus, they don’t allow
detecting the most relevant categories for a given page without analyzing the
neighbour pages.

Therefore, we utilized concept vectorization method specialized for the category
system in Wikipedia, with several additional expansion methods, as proposed in [2].
The authors express affiliation relations among concepts as category-based concept
vectors. Each element (dimension) of a concept vector represents not only binary
affiliation information (whether the concept belongs to a certain category or not),
but also the degree of affiliation (called belonging degree in the rest of this paper).
After applying different cutting techniques to the obtained concept vectors, the list
of domain specific concept IDs is outputted. This list is further applied to Texterra
knowledge base resulting in the reduced domain specific version of the latter. The
explanation of our approach is given in Section 4.

Section 2 contains the review of related work. The key features of Wikipedia
category structure are discussed in Section 3.

326

Having a fast access to any point of Wikipedia category structure was one of the
crucial tasks for our research. After a number of unsuccessful tries to reuse the
existing graph libraries, we've coded our own implementation, named WikiGraph.
See Section 5 for details.

Given a set of specialized versions of the knowledge base, we conducted a series of
experiments in order to learn how the reducing of Texterra knowledge base affects
the accuracy of results. Refer to Section 6 for evaluation methodology. Section 7
contains experimental results and discussion.

We conclude in Section 8 with our research findings and discussion about possible
improvements.

2. Related work

2.1 Automated ontology building

The field of automated ontology learning usually acts by taking textual input and
transforming it into a taxonomy or a proper ontology. The texts are usually obtained
from printed sources (books, magazines, newspapers) and Internet (online media,
blogposts, results of querying search engines). However, the learned ontologies are
small and hard-to-update; in addition, evaluations have revealed a rather poor
performance [7].

As mentioned before, the most accurate and, thus, valuable non-human assembled
ontologies are now built by automatically deriving explicit facts from Wikipedia.
One of the early attempts was the work of Gregorowicz and Kramer [8]. They
focused on deriving a term-concept map which consists of terms, concepts, and
relationships between them. Only articles, redirects, and disambiguation pages are
considered. Ponzetto and Strube [4] were deriving a taxonomy from the entire
Wikipedia category structure. Despite their successes, the resulted taxonomy is
rather simple (supports only is-a and not-is-a relations) and domain independent.
The work described in [9] enhances this taxonomy with instance and class
information for each node. Cui et al. [10] introduce even more sophisticated
approach to building the ontology of concepts by making use of infobox structures,
definition sentences, and category labels. Finally, YAGO2 [11] is probably the most
complete and accurate semantic knowledge base derived automatically from
Wikipedia and other sources. The information extraction technique for YAGO2
assumes varied utilization of infoboxes, category structure, redirects, and other data
within Wikipedia. Furthermore, the quality check is performed to find possible

327

mistakes. As a result, the quality of extracted ontology is sufficient for the majority
of IR- and NLP-related tasks.

Notwithstanding the foregoing, newly emerging research fields often require well-
structured and comprehensive domain specific ontologies. Researchers don't need a
huge knowledge base, but an extensible corpus of specific concepts with good
coverage of domain knowledge. If such ontologies were built in a completely
automated way, then this would avoid the necessity of assembling them from
scratch manually. We believe that Wikipedia contains enough information for this
task to be completed. Below is the description of approaches we've applied to
narrowing Wikipedia dictionary to domain specific subset.

2.2 Computing semantic relatedness

We consider the key problem of our study as the computation of semantic
relatedness between base top-level categories and underlying articles. According to
Budanitsky and Hirst [12], semantic relatedness is defined to cover any kind of
lexical or functional association that may exist between two words. This definition
suits us more than semantic similarity, which is typically defined via the lexical
relations of synonymy and hypernymy.

There were many approaches proposed for estimation of semantic relatedness
between concepts in Wordnet (Rada et al., Leacock and Chodorow, Wu and Palmer,
Resnik, Jiang and Conrath, Lin) and between Wikipedia articles [13] (Dice, Jaccard,
SimRank). Among them are purely graph-based measures and those involving
information content. In this paper, we consider only graph-based approaches.

Since a significant part of Wikipedia knowledge is encoded in its graph-like link
structure, it seems reasonable to apply existing graph-based methods or introduce
new ones. Zesch and Gurevych [14] proved that many Wordnet-based semantic
similarity measures are applicable to Wikipedia with minor changes.

Obviously, it’s also attractive to estimate the strength of ties between different
levels of taxonomy (between base categories and its articles, in our case). In this
context, the links among articles appear not so important. Therefore, new category-
based semantic relatedness measures are emerging.

Chernov et al. [15] measured semantic relatedness between categories, not between
concepts and categories, as it's required for our task. Nonetheless, they proposed
several very useful and applicable techniques.

328

Strube and Ponzetto [16] employed Wikipedia, Wordnet, and Google for computing
semantic relatedness between concepts. For two Wikipedia articles being compared,
they extracted two categories lists. Given the category lists, for each category pair
they performed a depth-limited search of maximum depth of 4 for a least common
ancestor. As they noticed, limiting the search improves the results. But this is
obviously inappropriate for computing relatedness between top-level category and
articles from all its subcategories.

2.3 Identifying domain specific concepts

Syed et al. [17] tried to predict the topic of textual documents by matching them
against Wikipedia articles based on cosine similarity3. Then, they extracted
categories of found articles and scored them based on different scoring schemes
with or without spreading activation4. The proposed approach implies scoring the
links with many categories for each given Wikipedia article using bottom-up
traversing of category structure. This is acceptable for a small set of articles, but not
for our task.

To the best of our knowledge, Cui et al. [18] were the first who introduced an
approach to deriving domain specific corpus from Wikipedia. The main idea is to
generate a domain hierarchy from the hyperlinked pages of Wikipedia. Then, only
articles strongly linked to this hierarchy are selected. They build a so-called
Classification Tree by traversing down the directed graph of Wikipedia category
structure starting from the root node. This tree includes both categories and articles
and in fact is merely a connected branch of Wikipedia classification graph with a
specified root node. Then, the Classification Tree is traversed with a simple
adaption of breadth-first search algorithm. During the traversal, each node is given a
score on the relevance to the specific domain. Once the traversal is completed, the
terminal nodes (article pages) are ranked according to the domain relevance scores.
Pages over a certain threshold are considered domain relevant. The node score can
consider either ingoing or outgoing edges. Despite the proposed technique is quite
simple, the results are remarkable.

3 Cosine similarity is a measure of similarity between two vectors by measuring the

cosine of the angle between them. Calculating the cosine of the angle between two vectors
thus determines whether two vectors are pointing in roughly the same direction. This is often
used to compare documents in text mining.

4 Spreading activation is a method for searching associative networks, neural networks,
or semantic networks. The search process is initiated by labelling a set of source nodes with
weights or "activation" and then iteratively propagating or "spreading" that activation out to
other nodes linked to the source nodes.

329

A more sophisticated algorithm has been proposed later by Shirakawa et al. [2]. The
concept vectorization method is introduced for finding concepts which are highly
correlated with the base category (refer to Section 1 for brief explanation). The main
assumption there is that the relatedness between categories gets lower as the number
of traversed pages (i.e., hopcount) increases. In addition to the number of links for
each node, they also take into account the number of paths between the concept and
the base category, as well as hopcounts of these paths. As it seems to us, this
understanding reflects the nature of Wikipedia classification approach much more
precisely than ever before. Several heuristics are suggested for estimation of
semantic relatedness by counting paths properties in the subgraph of desired base
category. However, authors didn't compute these scores for thousands of articles
with hundreds of paths for each of them at a time, as it's required in this research.
Moreover, the efficiency of both approaches described in [2] and [18] has not been
evaluated in real tasks. In both cases, the evaluation was performed by comparing
the results of algorithms with answers of experts knowledgeable in certain fields.
This looks persuasively when proving the theoretical applicability, but is not enough
for unconditional embedding into the real system.

In this work, we mainly exploited the ideas formulated in [2] and [18]. Our main
goal was to estimate the scalability and practical applicability of these approaches
for real tasks which imply processing of large amount of data.

3. Features of Wikipedia category structure

The advantages of Wikipedia category structure were studied by authors of [14] and
many others. Here we summarize only those features needed for better
understanding of our approach.

Categories of Wikipedia can be organized in a graph, where the nodes are categories
and the edges are hyperlinks. In this work we also add articles to this graph.
However, we still name it the Wikipedia category graph (WCG in the rest of the
paper).

The links expressing which concept belongs to what categories are called category
links. We call them belonging links or belonged links according to their direction. In
this paper, we only consider the belonging links, i.e. links from articles or
subcategories to upper-level categories. The English version of Wikipedia, as of
September 2010, contains ~13 million category links.

330

Fig. 1. Sample XML structure of categorized Wikipedia article page

The typical code of categorized article page is shown at Fig. 1. It combines XML
and Wiki markup. The list of belonging categories is situated at the bottom.
Categories have their own pages similar to articles. Category links at these pages
also express which category belongs to what categories.

Categorization is a useful tool to group articles for ease of navigation, and
correlating similar information. However, not every verifiable fact (or the
intersection of two or more such facts) in an article requires an associated category.
For lengthy articles, this could potentially result in hundreds of categories, most of
which aren't particularly relevant. This may also make it more difficult to find any
particular category for a specific article. Such overcategorization is also known as
"category clutter" [19].

331

For these reasons, the WCG has an extremely complex nature. It is directed and has
not a strong hierarchical structure as some may expect. Any category may branch
into subcategories, and it is possible for a category to be a subcategory of more than
one parent [20]. Upon closer inspection, the WCG is rather a polyhierarchy, or even
a net (Fig. 2).

Fig. 2. A fragment of Wikipedia category structure

The figure has been produced by CatGraph [21]. This tool draws a cloud of links
for the desired category. Each rectangle represents a category. Each arrow
connecting two rectangles denotes a "belongs-to" relation, that is, the destination
category is a subcategory of the initial one (an example of belonging link). The
cloud shown in the figure is for "Recorded music" category (bolded).

It's worth noting here that not every Wikipedia page is categorized. According to
statistics [22, 23], there are thousands of uncategorized articles and categories.
Moreover, certain categories are assigned incorrectly [24]. We suggest considering
these facts as a possible drawbacks for any category-based algorithm. In addition,
automated categorizing (i.e., determining a topic of an uncategorized page) seems to
be a challenging task. This can be done with certain accuracy by processing page
title and text with specific NLP techniques and finding appropriate categories in
WCG.

4. Deriving a domain specific subsets

The developed system consists of three main parts:

332

1. Link Filter produces a ready-for-load textual representation of

WCG;

2. Topic Deriver performs the main processing;

3. Reducer produces a domain specific version of the Texterra

knowledge base5.

All algorithms evaluated in this paper were implemented in the Java programming
language.

4.1. Link Filter

The input for Link Filter is Wikipedia links file containing information about all
links between Wikipedia pages, along with their type and direction. The result is
category links file that contains only links forming the WCG. Every line of this file
denotes the affiliation of belonging between two pages and sets the type of the
belonging page. For example,

12 780754 0

means that page with ID 12 ("Anarchism") is belonging to the category with ID
780754 ("Category:Anarchism"). Moreover, the belonging page ("Anarchism") is
an article because the last field is "0" ("1" would mean that the belonging page is a
category).

Thus, category links file is a complete textual representation of the WCG and
contains no unwanted data such as page titles and link types. Furthermore, unlike
the authors of [18], we’ve also removed pages of certain types: lists, classifications,
portals, redirects, disambiguation pages, and user pages. This helped us to make the
WCG more lightweight without loss of any meaningful concepts. As a result,
category links file contains 13,001,687 links between 593,796 categories and
3,156,822 articles.

4.2. Topic Deriver
Topic Deriver loads category links file on start and fills in the internal structures of
WikiGraph (refer to Section 5 for details). The workflow for this stage is shown at
the Fig. 3. Here we touch on only the main steps.

5 The Texterra knowledge base for this research has been obtained by parsing the dump of

English Wikipedia, as of September 2010.

333

For our analysis, we denote W as a set of concepts, V as a set of categories, and E
as a set of belonging links. Then, the category system in Wikipedia is expressed as a
directed graph GൌሼW,	V,Eሽ. A path is a sequence of edges that connects one node
with another. The path length (hopcount) is the number of edges along that path.

Musical compositions
Recorded music
Music‐related lists

Texterra knowledge base
ID1

940477
ID2

2722900
ID3

1520543
Wikipedia category graph

"Musical compositions"
SUBGRAPH

"Recorded music"
SUBGRAPH

"Music‐related lists"
SUBGRAPH

"Musical compositions"
VECTOR

"Recorded music"
VECTOR

"Music‐related lists"
VECTOR

16256
723678
90381
2763203
392
84678
280482
1.56
1.12
0.92
0.56
0.35
0.24
0.03

334

1234
491358
76036
386421
6032
16937
1.25
1.042
0.89
0.33
0.19
0.01
67891
2297721
6788201
404313
51578
30557
18358
1.02
0.90
0.78
0.44
0.36
0.20
0.09

LIST OF EXTRACTED CONCEPTS
Knowledge base (complete)

Knowledge base
(domain specific)

Step 1. Get the list of categories to be processed.
Step 2. Get connected to Texterra server and obtain an ID for each category.
Step 3. Explore the pre-loaded Wikipedia category graph and build a separate

subgraph for each category.
Step 5. Apply cutting technique to each vector. Collect the remaining IDs into

common list of extracted concepts.
Step 4. Traverse the subgraphs and build concept vectors. Each vector consists

of "concept ID → belonging degree" pairs.
Step 6. Process Texterra knowledge base in a way to save only records

associated with obtained list.

Fig. 3. Overall architecture of Topic Deriver

335

The key task of Topic Deriver is to obtain the list of concepts connected
semantically with certain domain. Herewith, this connection should be the tightest
one, that is, these concepts should be more relevant to the desired domain than to
others. As this task is computationally complex and, thus, supposed to be run rarely,
it’s allowably to choose the base categories manually for experiments. We’ve
selected 3 base categories that likely cover the majority of concepts required for
disambiguating musical metadata:

 Category:Musical compositions

 Category:Recorded music

 Category:Music-related lists

For each of selected base categories, a separate subgraph is built. This subgraph is
almost the same as Classification Tree in [18]. The base category serves as a root
node, and a tree-like structure of underlying pages is obtained from WCG. The only
difference from approach proposed in [18] is that we use depth-first search (DFS),
not breadth-first search (BFS). The reason for this is that the resulting subgraphs are
often large enough, thus, it’s inappropriate to waste the memory for storing the
FIFO queue required for BFS traversal [26]. Moreover, as depth-first tree is
expected to contain back edges and cross edges, the list of visited nodes has been
added to avoid repetitive visiting and loops.

A concept vector in our research specifies the degree of affiliation between the base
category and each of articles reachable by traversing down the subgraph of the base
category starting from its root node. As mentioned, the heuristics for building
concept vectors have been borrowed from [2] with some modifications. We describe
them briefly below, for more detailed information refer to the source paper.

BVG (Basic Vector Generation method) generates concept vectors by tracking
back parent categories in the category system and calculating the belonging degree
to each concept.

The belonging degree Iሺwi,vjሻ from concept wi to category vj is defined by the
following equation:

Iwi,vjൌ	p∈Pij1dሺtlሻ																																																																				ሺ1ሻ	

Here, Pij denotes a set of paths from wi to vj, tl denotes the hopcount of path pl, d
denotes a monotonically increasing function on the hopcount of path pl (given as
2tl).

336

It’s noteworthy that in the original method [2] paths with a hopcount of more than 4
were ignored. We asked the authors for the reasons of this. The response was
“Because long paths scarcely affect values in concept vectors in most cases. Of
course, sometimes long paths affect the values”. We’ve decided to remove this
constraint in our experiments, that is, we consider all paths between two nodes.

As a result, processing time may become too large for base categories from high
levels of the WCG hierarchy. The reason for such behaviour is an exclusive
computational complexity of finding all paths between two arbitrary nodes in the
graph. It's well-known that this task is NP-complete in general case.

Since WCG contains millions of edges, the maximal path length may reach
hundreds of edges, leading to impetuous increase of processing time when trying to
process top-level categories. This is exactly why we've picked up a "safe" set of
categories, which are processed relatively fast and cover the knowledge of field
we've chosen for experiments.

Notwithstanding, we believe that taking all existing paths between two nodes into
account allows to estimate the belonging degree more precisely. However, we didn’t
confirm this assumption experimentally.

To reduce the complexity of finding all paths between two arbitrary nodes, we tried
to re-use one of existing techniques [27-29]. Finally, the APAC algorithm [29] has
been chosen. This algorithm does not need to keep track of all visited vertices and
only stores the feasible paths.

For domain specific areas where categories are excessively segmentalized, the BVG
method cannot extract accurately concept vectors due to the increase in hopcount.
To solve this problem, the Single Parent Integration (SPI) method is proposed.
The authors confirmed from their experiences that a part in the category system
which corresponds to (excessively segmentalized) categories for a domain specific
area forms almost a tree structure. Based on this fact, when a concept or a category
has only one (onehop/multihop) belonging link, the SPI method shortens the
belonging link. This is based on the idea that the characteristic is not dispersed even
when parent categories are tracked back if the concept or category has only one
(onehop or multihop) belonging link.

In the SPI method, if there is only one belonging link ek from node vi (or wi) to
v∈V, the path length of ek is accounted as 0, which results in reformation of E to E',
and then the BVG method is applied to G'ൌሼW,	V,E'ሽ.

337

VVG (Variance-based Vector Generation method) considers the weight of each
category link. This method is based on the idea that the belonging degree from a
certain category (concept) to parent categories depends on the number of parent
categories, thus the weight of each category link is inversely proportional to the
number of parent categories.

Thus, the weight of a category link becomes 1 if the category has only one parent
category. That’s why the authors argue that the VVG method contains the same
feature as the SPI method. Therefore, they didn’t combined VVG with SPI. We, on
the other hand, tried both BVG + SPI and VVG + SPI combinations and confirmed
that VVG + SPI performs slightly better than VVG itself (see Section 7 for details).

In the VVG method, weights are set to all belonging links, and the belonging degree
from concept wi to category vj is calculated according to the weights. When the
number of belonging links from node vi (or wi) to category v∈V is n, weight bek of
each of the belonging links ek is defined as follows:

bekൌ1n																																																																																					ሺ2ሻ	

Then, given all paths Pൌሼp1,p2,…,pnሽ from wi to vj, belonging degree Iሺwi,vjሻ
from concept wi to category vj is defined as follows:

Iwi,vjൌp∈Pcሺplሻ																																																																							ሺ3ሻ	

cሺplሻ is the weight of path pl, calculated by the following equation:

cplൌeh∈Elbeh																																																																						ሺ4ሻ	

Here, Elൌሼe1,e2,…,emሽ denotes a set of all belonging links forming path pl and eh
denotes a belonging link.

After the vector is built and sorted in descending order of belonging degree, it's time
to apply cutting technique to it and get the list of IDs most relevant to the base
category. We've tried out two approaches:

1. belonging degree threshold – concepts with belonging degrees less

than the mean value of belonging degree for each vector are filtered;

2. percent threshold - 25% of concepts with the lowest belonging

degrees are filtered.

Finally, Topic Deriver produces domain concepts file that contains IDs of derived
concepts.

338

4.3. Reducer

Reducer is the final part of the system. It takes domain concepts file as input,
applies the concepts' list to complete Texterra knowledge base, and produces the
reduced domain specific version of the latter. It contains not only concept IDs, but
also full information about each of them, including the part of category structure
that covers selected concepts. Therefore, the domain specific version is consistent
and ready for loading into Texterra.

5. An approach to storing Wikipedia category graph

As showed above, fast access to any point of Wikipedia category structure is
necessary for efficiency of all described computations. In particular, VVG
method requires both entire WCG and subgraph of current base category to be
available simultaneously.

Chernov et al. [15] studied semantic relationships between Wikipedia categories.
They exported the dataset of about 670 thousands pages into a MySQL database.
The data size was ~1.2 Gb. But, like many other researchers, they picked just a
small sample of pages for processing (few thousands). For such small-scale
approaches, even a usual on-disk relational DB is fast enough.
But our goal was to create a technique for fast iterative traversing through even a
top-level categories with millions pages. Thus, we resorted to in-memory storage of
WCG.

5.1. Evaluation results for known graph libraries

We've tried out two third-party libraries for storing the WCG in the JVM's memory.
First of them, JUNG [30], showed satisfying performance results on small-scale
subgraphs. But the entire WCG was impetuously expanding while loading and
didn’t fit in the RAM of the test machine (8 Gb). Second one, JGraphT [31],
demonstrated almost the same behaviour: the WCG consumed a bit less amount of
memory, but still too much. These observations hinder to utilize these libraries as a
solution for WCG storing.

339

But there are a number of other libraries for graph storage which provide handy
interface to stored data. We've found neo4j [32] and WebGraph [33] libraries.
They may appear useful during the further research.

5.2. WikiGraph

The common shortcoming of all Java graph implementations we've tested seemed to
be the redundancy of data stored in the RAM. Thus, the right way is to change the
data storage manner. We put this into practice in WikiGraph.

All the prominent features of WikiGraph are due to the fact that it's intended to store
WCG:

1. It is directed (as category links have a direction);

2. It introduces the notions of category and article and provides a

powerful tooling to store and maintain the data on affiliations between

them;

3. Only IDs and types of pages are stored. Each vertex is presented as

a map consisting of [ID, isCategory] entries. This allows to store page type

as a Boolean variable (TRUE is for category, FALSE is for article). All page

data are saved as primitive variables, not an objects;

4. Incidence list has been chosen as a main data structure (along with

vertices and edges lists). This is particularly important as the WCG is quite

dense: number	 of	 edgesnumber	 of	 verticesൎ41. The incidence list is

organized into a set of [vertex, [list of incident edges]] entries. Each list is

sorted in ascending order of edges IDs just after the loading. This avoids

the need to look over the entire incidence list to get all the edges incident to

an arbitrary vertex. Moreover, due to sorting of the lists, it's allowed to

interrupt the search over them after the edge with greatest expected ID is

found;

5. All kinks (self-to-self links) are removed;

6. Initial capacity of the incidence list is beforehand set to

approximate amount of vertices in WCG (3,500,000 for this case). This

saves some memory allocation costs while loading;

340

7. A set of helper methods is developed also (for instance, a method

for deriving a subgraph of a given base category). This set provides usable

and fast interface to the WCG data.

After the described features were implemented, they allowed us to fit WCG entirely
in the RAM (~4 Gb needed) and lead to significant speed-up of loading and
processing.

6. Evaluation methodology

Obviously, a domain specific subset of Wikipedia should have a good coverage of
domain knowledge. But there is no easy direct way to evaluate quality of such a
subset. The reason is that we must evaluate the completeness of knowledge
available from Wikipedia's articles in resulting subset compared to that of specific
domain. It's clear that this is rather difficult. In addition, the quality of link structure
in the resulting subset should be also evaluated.

Therefore, we applied so called in vivo approach for evaluation. To estimate the
quality of proposed methods, we studied how applying of the extracted subsets
affects the performance of Texterra as a whole.

As mentioned before, one of Texterra parts is the system that enriches ID3 tags for
musical recordings with links to corresponding articles of Wikipedia. This system
utilizes graph structure to compute semantic relatedness between Wikipedia
pages [13]. Then, semantic relatedness is exploited by word sense disambiguation
algorithm. The latter is intended to choose the most relevant Wikipedia page from
several homonymic variants.

We assume that each page of Wikipedia describes one possible meaning. WSD
algorithm selects the most consistent combination of meanings that correspond to
input ID3 tags. For sequence of input tags, it computes similarity between all pairs
of meanings. The weight of a sequence is a sum of weights of all its pairs. Then, the
algorithm detects a sequence with greatest weight.

To show good results, the derived subset should include as much as possible
Wikipedia articles associated with a specific domain. In additional, link structure
should be good enough for relatedness computation. Therefore, this approach allows
evaluating both the quality of dictionary content and the quality of link structure.

For testing purpose, we derived several music-related subsets of Wikipedia by
running different combinations of heuristics and used these subsets for described
system. Then, we consequentially loaded these domain specific versions of

341

knowledge base into Texterra and ran the tests. We used a small corpus of 20
random musical compositions and 49 different tags. Then, we estimated the
precision of automated disambiguation by comparing the results of algorithm with
manually disambiguated tags.

7. Experimental results

The configuration of test workstation was as follows: Intel Core 2 Duo CPU (3.16
GHz), 8 Gb RAM, Windows 7 Enterprise 64 bit, Java SE 6 Development Kit
1.6.0.20.

Sample vectors for different combinations of heuristics are provided in Tables 1-4.
Each sample vector comprises three concepts with highest belonging degree and
three concepts with lowest values. The base category is Category:Musical
compositions. It’s noteworthy that BVG vector differs significantly from VVG one.
Furthermore, enabling SPI affects both vectors.

Table 1. Sample vector produced by

the BVG method

ID Title Belonging
degree

1784928 Candle in the
Wind 1997

0.54

1523941 Axel F 0.50
1728643 Jeremy (song) 0.49
3720518 Ludwig

Streicher
2.44 *
10-4

2175948 Ian Bousfield 2.44 *
10-4

875344 Willi
Boskovsky

2.44 *
10-4

Table 2. Sample vector produced by

the VVG method

ID Title Belonging
degree

27684606 Niagara Falls
Suite

0.50

20053503 Kumikyoku Nico
Nico Douga

0.50

342

2501716 Megamix 0.50
14054430 Oh, by the Way 6.02 *

10-7

454136 A Collection of
Great Dance
Songs

6.02 *
10-7

361654 Echoes: The Best
of Pink Floyd

6.02 *
10-7

Table 3. Sample vector produced by

the BVG method with SPI enabled

ID Title Belonging
degree

1523941 Axel F 5.53
1815726 I Will Always

Love You
3.88

923235 My Heart Will
Go On

3.50

9010 Dance Dance
Revolution

0.00

4527 Béla Bartók 0.00
1370 Ambrose 0.00

Table 4. Sample vector produced by

the VVG method with SPI enabled

ID Title Belonging
degree

27684606 Niagara Falls
Suite

0.50

20053503 Kumikyoku Nico
Nico Douga

0.50

2501716 Megamix 0.50
9010 Dance Dance

Revolution
0.00

4527 Béla Bartók 0.00
1370 Ambrose 0.00

The results of the experiments with different combinations of vector generation
methods and cutting techniques are presented in Table 5. Contents of all 3 base
categories listed in Section 4.2 are included.

343

Table 5.

Experimental results

 SPI
enabled Threshold Number

of IDs
Size,
Mb

Precision,
%

Basic Vector
Generation

yes
belonging

degree 334,575 112,3 45,10

percent 574,810 251,2 62,75

no
belonging

degree 434,229 159,2 45,10

percent 574,940 251,8 64,71

Variance-
based Vector
Generation

yes
belonging

degree 420,302 154,8 49,02

percent 549,791 244,5 60,78

no
belonging

degree 418,998 150,1 41,18

percent 549,639 245,5 56,86
No threshold — — 675,228 311,5 72,55
Ground truth — — 8,476,942 4528,3 98,04

Ground truth row corresponds to original Texterra knowledge base. As can be seen,
it is huge, but ensures the best accuracy of disambiguation.

No threshold is for case when no cutting technique is applied to the concept vectors.
In other words, this set of IDs exactly matches the set of all articles from subgraphs
of all base categories. This version is much smaller, but the precision gets lower
also. This precision drop (when no threshold is applied yet) is only due to imperfect
choice of base categories. They merely don't cover all concepts required for precise
disambiguation. It's also obvious that all comparisons of heuristics results should be
done with no threshold results, not with ground truth.

As one can see, BVG performs a bit better than VVG. The most accurate
combinations of heuristics are BVG + percent threshold and BVG + SPI + percent
threshold. Enabling SPI for VVG slightly increases the precision of disambiguation.
Percent threshold is definitely better than belonging degree threshold.

What's important here is that the size of Texterra knowledge base (both on disk and
in RAM) depends linearly on the number of concepts. Thus, the challenge is to find
a compromise between the precision of disambiguation and the size (and contents)
of the knowledge base.

344

The conducted experiment was just our first effort of this kind. Implemented
algorithms allowed us to reduce the size of Texterra knowledge base by more than
order, while the precision of disambiguating musical metadata has decreased from
98% to 64%. We believe that these results prove the applicability of proposed
approach for deriving domain specific subset of Wikipedia. Certainly, there're still
many things to improve.

8. Conclusion and future work

According to the results of this study, we outline the following:

 Wikipedia categories network may be utilized for domain specific

subset of Wikipedia;

 Using concept vectors seems to be appropriate way to represent the

affiliations of belonging between Wikipedia pages;

 BVG performs a bit better than VVG;

 SPI often improves the results;

 Percent threshold showed the best results as a cutting technique.

Possible directions of future work include:

1. As noted by the authors of [18], the selection of the root node is

vital to the quality of the domain specific corpus. Thus, it’s reasonable to

introduce some heuristics for automated identifying of the most appropriate

base category given just a set of specific keywords. Moreover, there can be

several base categories with either manually or automatically set relevance

levels. For example, to perform the search for "Musicians of World War II" a

user should provide 2 base categories as an input: Category:Musicians with

relevance level of 0.9 and Category:World_War_II with relevance level of

0.5;

2. Try other cutting techniques for concept vectors (i.e., attempt to

detect the distribution of belonging degrees and utilize it);

345

3. Detect and remove meaningless pages from the WCG (i.e., pages

from administrative section of Wikipedia [4]);

4. Distinguishing between classes and instances among categories [9]

may help to prune and/or reorganize the WCG;

5. Add a facility for storing the results of semantic relatedness

computation to boost the further processing;

6. Develop the approximation algorithm for finding all paths

between two arbitrary nodes in the WCG.

In this work, we’ve demonstrated the possible benefits of automated building of the
domain specific ontologies. Also, we’ve tested different heuristics while
implementing the system for such processing. An original approach to storing WCG
in the RAM has been proposed, along with specific evaluation methodology.

The described approach can be applied to any ontology with well-defined
polyhierarchical taxonomy (for instance, YAGO2). As it seems to us, weighting the
existing semantic connections is always a challenging task while building any more
or less large ontology. This may be helpful for any domain dependent Wikipedia-
related research [34, 35].

9. Acknowledgement

This research was collaborated with and supported by the Samsung
Electronics Co., Ltd. DMC R&D Center Convergence Solution Team.

References

[1] List of Wikipedias - Meta. http://meta.wikimedia.org/wiki/List_of_Wikipedias
[2] M. Shirakawa, K. Nakayama, T. Hara, S. Nishio. Concept Vector Extraction from

Wikipedia Category Network. In Proceedings of 3rd International Conference on
Ubiquitous Information Management and Communication (ICUIMC 2009), pp. 71-
79, 2009.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. G. Ives. Dbpedia: A
nucleus for a web of open data. In ISWC, volume 4825 of LNCS, pages 722–735.
Springer, 2007.

346

[4] Simone P. Ponzetto, Michael Strube. Deriving a large scale taxonomy from
Wikipedia. In AAAI'07: Proceedings of the 22nd national conference on Artificial
intelligence, pp. 1440-1445, 2007.

[5] Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum. YAGO: A Large Ontology
from Wikipedia and WordNet. In Elsevier Journal of Web Semantics, Vol. 6, No. 3,
pp. 203-217, 2008.

[6] Unified Medical Language System (UMLS) - Home.
http://www.nlm.nih.gov/research/umls/

[7] P. Buitelaar, P. Cimiano, B. Magnini (Eds.). Ontology Learning from Text:
Methods, Evaluation and Applications. In Frontiers in Artificial Intelligence and
Applications Series, Vol. 123, IOS Press, July 2005.

[8] A. Gregorowicz, M. A. Kramer. Mining a Large-Scale Term-Concept Network from
Wikipedia. Technical Report #06-1028, The MITRE Corp., Oct. 2006.

[9] Cäcilia Zirn, Vivi Nastase, Michael Strube. Distinguishing between instances and
classes in the Wikipedia taxonomy. In Proc. of ESWC-08, pages 376-387, 2008.

[10] Gaoying Cui, Qin Lu, Wenjie Li, Yi-Rong Chen. Mining Concepts from Wikipedia
for Ontology Construction. In Proceedings of Web Intelligence/IAT Workshops,
pp.287-290, 2009.

[11] J. Hoffart, F. Suchanek, K. Berberich, G. Weikum. YAGO2: A Spatially and
Temporally Enhanced Knowledge Base from Wikipedia. Research Report MPI-I-
2010-5-007, Max-Planck-Institut für Informatik, November 2010.

[12] A. Budanitsky, G. Hirst. Evaluating WordNet-based measures of semantic distance.
In Computational Linguistics, 32(1), pp. 13-47, March 2006.

[13] D. Turdakov, P. Velikhov. Semantic Relatedness Metric for Wikipedia Concepts
Based on Link Analysis and its Application to Word Sense Disambiguation. In Proc.
of SYRCoDIS, 2008.

[14] T. Zesch, I. Gurevych. Analysis of the Wikipedia Category Graph for NLP
Applications. In Proceedings of the TextGraphs-2 Workshop (NAACL-HLT), 2007.

[15] S. Chernov, T. Iofciu, W. Nejdl, X. Zhou. Extracting Semantic Relationships
between Wikipedia Categories. In Proceedings of the First International Workshop
on Semantic Wikis - From Wiki To Semantics, June 2006.

[16] M. Strube, S. P. Ponzetto. WikiRelate! Computing semantic relatedness using
Wikipedia. In Proceedings of the 21st national conference on Artificial intelligence
(AAAI'06), pp. 1419-1424, 2006.

[17] Z. Syed, T. Finin, and A. Joshi. Wikipedia as an Ontology for Describing
Documents. In Proceedings of the Second International Conference on Weblogs and
Social Media, 2008.

[18] G. Y. Cui, Q. Lu, W. J. Li, Y. R. Chen. Corpus Exploitation from Wikipedia for
Ontology Construction. In LREC 2008, Marrakech, pp. 2125-2132, 2008.

[19] Wikipedia:Overcategorization - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Wikipedia:Overcategorization

[20] Wikipedia:Categorization - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Wikipedia:Categorization

[21] Catgraph. http://toolserver.org/~dapete/catgraph/
[22] Wikipedia:WikiProject Categories/uncategorized - Wikipedia, the free

encyclopedia.
http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Categories/uncategorized

347

[23] Wikipedia:Database reports/Uncategorized categories - Wikipedia, the free
encyclopedia.
http://en.wikipedia.org/wiki/Wikipedia:Database_reports/Uncategorized_categories

[24] Category:Better category needed - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Category:Better_category_needed

[25] J. Soto. Wikipedia: A Quantitative Analysis. PhD thesis, 2009.
[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms,

Second Edition. MIT Press and McGraw-Hill, 2001. Section 22.3: Depth-first
search, pp. 540–549.

[27] L.-E. Thorelli. An algorithm for computing all paths in a graph. In BIT 6, 347—
349, 1966.

[28] M. Migliore , V. Martorana , F. Sciortino. An algorithm to find all paths between
two nodes in a graph. In Journal of Computational Physics, v.87 n.1, pp.231-236,
March 1990.

[29] R. Simoes. APAC: An exact algorithm for retrieving cycles and paths in all kinds of
graphs. In Tékhne, no.12, p.39-55, 2009.

[30] JUNG - Java Universal Network/Graph Framework. http://jung.sourceforge.net/
[31] JGraphT - a free Java graph library. http://www.jgrapht.org/
[32] neo4j open source nosql graph database. http://neo4j.org/
[33] WebGraph. http://webgraph.dsi.unimi.it/
[34] Wikipedia:Academic studies of Wikipedia - Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Wikipedia:Academic_studies_of_Wikipedia
[35] Academic studies about Wikipedia - Wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Academic_studies_about_Wikipedia#Natural_languag
e_processing

