
357

Development of a Parallel DBMS on the
Basis of PostgreSQL

C. S. Pan
kvapen@gmail.com

South Ural State University

Abstract. The paper describes the architecture and the design of PargreSQL parallel database
management system (DBMS) for distributed memory multiprocessors. PargreSQL is based
upon PostgreSQL open-source DBMS and exploits partitioned parallelism.

Keywords: partitioned parallelism; postgresql; parallel dbms.

1. Introduction
Currently open-source PostgreSQL DBMS [1] is a reliable alternative for
commercial DBMSes. There are many both practical database applications based
upon PostgreSQL and research projects devoted to extension and improvement of
PostgreSQL.
One of the directions mentioned above is to adapt PostgreSQL for parallel query
processing. In this paper we describe the architecture and design of PargreSQL
parallel DBMS for analytical data processing on distributed multiprocessors.
PargreSQL represents PostgreSQL with embedded partitioned parallelism.
The paper is organized as follows. Section 2 briefly discusses related work. Section
3 gives a description of the PostgreSQL DBMS architecture. Section 4 introduces
design principles and architecture of PargreSQL DBMS. The results of experiments
on the current partial implementation are shown in section 5. Section 6 contains
concluding remarks and directions for future work.

2. Related Work
The research on extension and improvement of PostgreSQL DBMS includes the
following.
In [2] native XML type support in PostgreSQL is discussed. Adding data types to
provide support of HL7 medical information exchange standard in PostgreSQL is
described in [3]. The authors of [4] propose an image-handling extension to

358

PostgreSQL. In [5] an approach to integration of PostgreSQL with the Semantic
Web is presented.
There are papers investigating adoption of PostgreSQL for parallel query processing
as well. In [6] the authors introduce their work on extending PostgreSQL to support
distributed query processing. Several limitations in PostgreSQL’s query engine and
corresponding query execution techniques to improve performance of distributed
query processing are presented. ParGRES [7] is an open-source database cluster
middleware for high performance OLAP query processing. ParGRES exploits intra-
query parallelism on PC clusters and uses adaptive virtual partitioning of the
database. GParGRES [8] exploits database replication and inter- and intra-query
parallelism to efficiently support OLAP queries in a grid. The approach has two
levels of query splitting: grid-level splitting, implemented by GParGRES, and node-
level splitting, implemented by ParGRES.
In [9] building a hybrid between MapReduce and parallel database is explored. The
authors have created a prototype named HadoopDB on the basis of Hadoop and
PostgreSQL, that is as efficient as a parallel DBMS, but as scalable, fault tolerant
and flexible as MapReduce systems. PostgreSQL is used as the database layer and
Hadoop as the communication layer.
Out contribution is embedding partitioned parallelism [10] into PostgreSQL. We use
methods for parallel query processing, proposed in [11] and [12].

3. PostgreSQL Architecture

PostgreSQL is based on the client-server model. A session involves three processes
into interaction: a frontend, a backend and a daemon (see fig. 1).

Fig. 1. PostgreSQL processes

359

The daemon handles incoming connections from frontends and creates a backend
for each one. Each backend executes queries received from the related frontend. The
activity diagram of a PostgreSQL session is shown in fig. 2.

Fig. 2. A PostgreSQL session

There are following steps of query processing in PostgreSQL: parse, rewrite,
plan/optimize, and execute.

Respective PostgreSQL subsystems are depicted in fig. 3. Parser checks the syntax
of the query string and builds a parse tree. Rewriter processes the tree according to
the rules specified by the user (e.g. view definitions). Planner creates an optimal
execution plan for this query tree. Executor takes the execution plan and processes it
recursively from the root. Storage provides functions to store and retrieve tuples and
metadata.

360

Fig. 3. PostgreSQL subsystems

libpq implements frontend-backend interaction protocol and consists of two parts:
the frontend (libpq-fe) and the backend (libpq-be). The former is deployed on the
client side and serves as an API for the end-user application. The latter is deployed
on the server side and serves as an API for libpq-fe, as shown in fig. 4.

Fig 4. PostgreSQL deployment

361

4. PargreSQL Architecture

PargreSQL utilizes the idea of partitioned parallelism [12] as shown in fig. 5. This
form of parallelism supposes partitioning relations among the disks of the
multiprocessor system.

Fig. 5. Parallel query processing

The way the partitioning is done is defined by a fragmentation function, which for
each tuple of the relation calculates the number of the processor node which this
tuple should be placed at. A query is executed in parallel on all processor nodes as a
set of parallel agents. Each agent processes its own fragment and generates a partial
query result. The partial results are merged into the resulting relation.
The architecture of PargreSQL, in contrast with PostgreSQL, assumes that a client
connects to two or more servers (see fig. 6).

Fig. 6. PargreSQL processes

362

The interaction sequence is shown in fig. 7. As opposed to PostgreSQL there are
many daemons running in PargreSQL. A frontend connects to each of them, sends
the same query to many backends, and receives the result relation.

Fig. 7. Interaction of PargreSQL clients and servers

Parallel query processing in PargreSQL is done in more steps: parse, rewrite,
plan/optimize, parallelize, execute, and balance. During the query execution each
agent processes its own part of the relation independently so, to obtain the correct
result, transfers of tuples are required. Parallelization stages creation of a parallel
plan by inserting special exchange operators into the corresponding places of the
plan. Balance provides load-balancing of the server nodes.

PargreSQL subsystems are depicted in fig. 8. PostgreSQL is one of them.
PargreSQL development involves changes in Storage, Executor, and Planner
subsystems of PostgreSQL.

The changes in the old code are needed in order to integrate it with the new
subsystems. par_Storage is responsible for storing partitioning metadata of the
relations. par_Exchange encapsulates the exchange operator implementation.
Exchange operator is meant to compute the exchange function ψ for each tuple of
the relation, send “alien” tuples to the other nodes, and receive “own” tuples in
response.

363

Fig. 8. PargreSQL subsystems

There are however some new subsystems which do not require any changes in the
old code: par_libpq-fe and par_Compat. par_libpq-fe is a wrapper around libpq-fe,
it is needed in order to propagate queries from an application to many servers.
par_Compat makes this propagation transparent to the application.

Fig. 9. PargreSQL deployment

364

The only difference of the deployment schemes (see fig. 9) is that there is one more
component on the client side – the libpq-fe wrapper.

4.1. par_libpq Design

par_libpq subsystem consists of par_lib-fe library and a set of macros
(par_Compat).
par_libpq-fe is a library that is linked into frontend applications instead of the
original PostgreSQL libpq-fe, arouch which it is a wrapper. Its design is illustrated
with a class diagram in fig. 10.

Fig. 10. PargreSQL libpq-fe wrapper

The idea is to use the original library for connecting to many servers
simultaneously.
par_Compat is a set of C preprocessor definitions for transparent usage of
par_libpq-fe. An example of what these macros are is given in fig. 11.

Fig. 11. PargreSQL compatibility macros

365

Using these macros an application programmer can switch from PostgreSQL to
PargreSQL without global changes in the application code.

4.2. Exchange Operator Design

Exchange operator [11, 12] serves to exchange tuples between the parallel agents. It
is inserted into execution plans by Parallelizer subsystem. The operator’s
architecture is presented in fig. 12.

Fig. 12. Exchange operator architecture

Fig. 13 shows new classes (grouped in par_Exchange package) that implement
exchange operator.

366

Fig. 13. Exchange operator classes

MPS subsystem (Message Passing System) is used by Scatter and Gather to transmit
tuples. Its interface is like MPI reduced to three methods: ISend, IRecv, and Test.
They are actually implemented on top of MPI.

Figs. 14, 15, 16, and 17 show algorithms for next() method of four exchange
subnodes.

Fig. 14. Split.next() method

367

Split is meant to calculate the exchange function for each tuple and to choose
whether to keep the tuple on the processor node or send it to other processor node.

Fig. 15. Merge.next() method

Merge merges tuples from Gather and Split.

368

Fig. 16. Scatter.next() method

Scatter sends tuples coming from Split to other processor nodes.

Fig. 17. Gather.next() method

Gather does the opposite, receiving tuples from other processor nodes.

5. Experimental Evaluation

At the moment we have implemented par_libpq and par_Exchange subsystems of
PargreSQL. The implementation has been tested on the following query:

select * from tab where tab.col % 10000 = 0

369

The query has been run against table tab consisting of 108 tuples. The speedup over
PostgreSQL is shown in fig. 18.

Fig. 18. PargreSQL speedup

6. Conclusion

In this paper we have described the architecture and the design of PargreSQL
parallel DBNS for distributed memory multiprocessors. PargreSQL is based upon
PostgreSQL open-source DBMS and exploits partitioned parallelism.
There are following issues in out future research. We plan to complete the
implementation and to investigate its speedup and scalability. The future research is
also going to be concentrated on implementing data updates, transactions and fault
tolerance.

References

[1] M. Stonebraker, G. Kemnitz. The POSTGRES next generation database
management system. Commun ACM, 34:78—92. October 1991.

[2] N. Samokhvalov. XML Support in PostgreSQL. In Sergei D. Kuznetsov, Andrey
Fomichev, Boris Novikov, and Dmitry Shaporenkov, editors, SYRCoDIS, volume
256 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[3] Y. Havinga, W. Dijkstra, A. de Keijzer. Adding HL7 version 3 data types to
PostgreSQL. CoRR, abs/1003.3370, 2010.

370

[4] D. Guliato, E. V. de Melo, R M. Rangayyan, R. C. Soares. POSTGRESQL-IE: An
Image-handling Extension for PostgreSQL. J. Digital Imaging, 22(2):149—165,
2009.

[5] D. V. Levshin, A. S. Markov. Algorith,s for integrating PostgreSQL with the
semantic web. Programming and Computer Software, 35(3):136—144, 2009.

[6] R. Lee, M. Zhou. Extending PostgreSQL to Support Distributed/Heterogeneous
Query Processing. In Kotagiri Ramamohanarao, P. Radha Krishna, Mukesh
K. Mohania, and Ekawit Nantajeewarawat, editors, DASFAA, volume 4443 of
Lecture Notes in Computer Science, pages 1086—1097. Springer, 2007.

[7] M. Paes, A. A. B. Lima, P. Valduriez, M. Mattoso. High-Performance Query
Processing of a Real-World OLAP Database woth ParGRES. In Jose M. Laginha
M. Pal ma, Patrick Amestoy, Michel K. Dayde, Marta Mattoso, and Joao Correia
Lopes, editors, VECPAR, volume 5336 of Lecture Notes in Computer Science,
pages 188—200. Springer, 2008.

[8] N. Kotowski, A. A. B. Lima, E. Pacitti, P. Valduriez, M. Mattoso. Parallel query
processing for OLAP in grids. Concurrency and Computation: Practice and
Experience, 20(17):2039—2048, 2008.

[9] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, A. Silberschatz.
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. PVLDB, 2(1):922—933, 2009.

[10] D. J. DeWitt, J. Gray. Parallel Database Systems: The Future of High Performance
Database Systems. Commun. ACM, 35(6):85—98, 1992.

[11] L. B. Sokolinsky. Organization of Parallel Query Processing in Multiprocessor
Database Machines with Hierarchical Architecture. Programming and Computer
Software, 27(6):297—308, 2001.

[12] A. V. Lepikhov, L. B. Sokolinsky. Query Processing in a DBMS for cluster
systems. Programming and Computer Software, 36(4):205—215, 2010.

