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Abstract. The paper describes the architecture and the design of PargreSQL parallel database 
management system (DBMS) for distributed memory multiprocessors. PargreSQL is based 
upon PostgreSQL open-source DBMS and exploits partitioned parallelism. 
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1. Introduction 
Currently open-source PostgreSQL DBMS [1] is a reliable alternative for 
commercial DBMSes. There are many both practical database applications based 
upon PostgreSQL and research projects devoted to extension and improvement of 
PostgreSQL. 
One of the directions mentioned above is to adapt PostgreSQL for parallel query 
processing. In this paper we describe the architecture and design of PargreSQL 
parallel DBMS for analytical data processing on distributed multiprocessors. 
PargreSQL represents PostgreSQL with embedded partitioned parallelism. 
The paper is organized as follows. Section 2 briefly discusses related work. Section 
3 gives a description of the PostgreSQL DBMS architecture. Section 4 introduces 
design principles and architecture of PargreSQL DBMS. The results of experiments 
on the current partial implementation are shown in section 5. Section 6 contains 
concluding remarks and directions for future work. 

2. Related Work 
The research on extension and improvement of PostgreSQL DBMS includes the 
following. 
In [2] native XML type support in PostgreSQL is discussed. Adding data types to 
provide support of HL7 medical information exchange standard in PostgreSQL is 
described in [3]. The authors of [4] propose an image-handling extension to 
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PostgreSQL. In [5] an approach to integration of PostgreSQL with the Semantic 
Web is presented. 
There are papers investigating adoption of PostgreSQL for parallel query processing 
as well. In [6] the authors introduce their work on extending PostgreSQL to support 
distributed query processing. Several limitations in PostgreSQL’s query engine and 
corresponding query execution techniques to improve performance of distributed 
query processing are presented. ParGRES [7] is an open-source database cluster 
middleware for high performance OLAP query processing. ParGRES exploits intra-
query parallelism on PC clusters and uses adaptive virtual partitioning of the 
database. GParGRES [8] exploits database replication and inter- and intra-query 
parallelism to efficiently support OLAP queries in a grid. The approach has two 
levels of query splitting: grid-level splitting, implemented by GParGRES, and node-
level splitting, implemented by ParGRES. 
In [9] building a hybrid between MapReduce and parallel database is explored. The 
authors have created a prototype named HadoopDB on the basis of Hadoop and 
PostgreSQL, that is as efficient as a parallel DBMS, but as scalable, fault tolerant 
and flexible as MapReduce systems. PostgreSQL is used as the database layer and 
Hadoop as the communication layer. 
Out contribution is embedding partitioned parallelism [10] into PostgreSQL. We use 
methods for parallel query processing, proposed in [11] and [12]. 

3. PostgreSQL Architecture 

PostgreSQL is based on the client-server model. A session involves three processes 
into interaction: a frontend, a backend and a daemon (see fig. 1). 

 

Fig. 1. PostgreSQL processes 
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The daemon handles incoming connections from frontends and creates a backend 
for each one. Each backend executes queries received from the related frontend. The 
activity diagram of a PostgreSQL session is shown in fig. 2. 

 

Fig. 2. A PostgreSQL session 

There are following steps of query processing in PostgreSQL: parse, rewrite, 
plan/optimize, and execute. 

Respective PostgreSQL subsystems are depicted in fig. 3. Parser checks the syntax 
of the query string and builds a parse tree. Rewriter processes the tree according to 
the rules specified by the user (e.g. view definitions). Planner creates an optimal 
execution plan for this query tree. Executor takes the execution plan and processes it 
recursively from the root. Storage provides functions to store and retrieve tuples and 
metadata. 
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Fig. 3. PostgreSQL subsystems 

libpq implements frontend-backend interaction protocol and consists of two parts: 
the frontend (libpq-fe) and the backend (libpq-be). The former is deployed on the 
client side and serves as an API for the end-user application. The latter is deployed 
on the server side and serves as an API for libpq-fe, as shown in fig. 4. 

 

Fig 4. PostgreSQL deployment 
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4. PargreSQL Architecture 

PargreSQL utilizes the idea of partitioned parallelism [12] as shown in fig. 5. This 
form of parallelism supposes partitioning relations among the disks of the 
multiprocessor system. 

 

Fig. 5. Parallel query processing 

The way the partitioning is done is defined by a fragmentation function, which for 
each tuple of the relation calculates the number of the processor node which this 
tuple should be placed at. A query is executed in parallel on all processor nodes as a 
set of parallel agents. Each agent processes its own fragment and generates a partial 
query result. The partial results are merged into the resulting relation. 
The architecture of PargreSQL, in contrast with PostgreSQL, assumes that a client 
connects to two or more servers (see fig. 6). 

 

Fig. 6. PargreSQL processes 
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The interaction sequence is shown in fig. 7. As opposed to PostgreSQL there are 
many daemons running in PargreSQL. A frontend connects to each of them, sends 
the same query to many backends, and receives the result relation. 

 

Fig. 7. Interaction of PargreSQL clients and servers 

Parallel query processing in PargreSQL is done in more steps: parse, rewrite, 
plan/optimize, parallelize, execute, and balance. During the query execution each 
agent processes its own part of the relation independently so, to obtain the correct 
result, transfers of tuples are required. Parallelization stages creation of a parallel 
plan by inserting special exchange operators into the corresponding places of the 
plan. Balance provides load-balancing of the server nodes. 

PargreSQL subsystems are depicted in fig. 8. PostgreSQL is one of them. 
PargreSQL development involves changes in Storage, Executor, and Planner 
subsystems of PostgreSQL. 

The changes in the old code are needed in order to integrate it with the new 
subsystems. par_Storage is responsible for storing partitioning metadata of the 
relations. par_Exchange encapsulates the exchange operator implementation. 
Exchange operator is meant to compute the exchange function ψ for each tuple of 
the relation, send “alien” tuples to the other nodes, and receive “own” tuples in 
response. 
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Fig. 8. PargreSQL subsystems 

There are however some new subsystems which do not require any changes in the 
old code: par_libpq-fe and par_Compat. par_libpq-fe is a wrapper around libpq-fe, 
it is needed in order to propagate queries from an application to many servers. 
par_Compat makes this propagation transparent to the application. 

 

Fig. 9. PargreSQL deployment 
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The only difference of the deployment schemes (see fig. 9) is that there is one more 
component on the client side – the libpq-fe wrapper. 

4.1. par_libpq Design 

par_libpq subsystem consists of par_lib-fe library and a set of macros 
(par_Compat). 
par_libpq-fe is a library that is linked into frontend applications instead of the 
original PostgreSQL libpq-fe, arouch which it is a wrapper. Its design is illustrated 
with a class diagram in fig. 10. 

 
Fig. 10. PargreSQL libpq-fe wrapper 

The idea is to use the original library for connecting to many servers 
simultaneously. 
par_Compat is a set of C preprocessor definitions for transparent usage of 
par_libpq-fe. An example of what these macros are is given in fig. 11. 

 
Fig. 11. PargreSQL compatibility macros 
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Using these macros an application programmer can switch from PostgreSQL to 
PargreSQL without global changes in the application code. 

4.2. Exchange Operator Design 

Exchange operator [11, 12] serves to exchange tuples between the parallel agents. It 
is inserted into execution plans by Parallelizer subsystem. The operator’s 
architecture is presented in fig. 12. 

 

Fig. 12. Exchange operator architecture 

Fig. 13 shows new classes (grouped in par_Exchange package) that implement 
exchange operator. 
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Fig. 13. Exchange operator classes 

MPS subsystem (Message Passing System) is used by Scatter and Gather to transmit 
tuples. Its interface is like MPI reduced to three methods: ISend, IRecv, and Test. 
They are actually implemented on top of MPI. 

Figs. 14, 15, 16, and 17 show algorithms for next() method of four exchange 
subnodes. 

 
Fig. 14. Split.next() method 
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Split is meant to calculate the exchange function for each tuple and to choose 
whether to keep the tuple on the processor node or send it to other processor node. 

 

Fig. 15. Merge.next() method 

Merge merges tuples from Gather and Split. 
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Fig. 16. Scatter.next() method 

Scatter sends tuples coming from Split to other processor nodes. 

 

Fig. 17. Gather.next() method 

Gather does the opposite, receiving tuples from other processor nodes. 

5. Experimental Evaluation 

At the moment we have implemented par_libpq and par_Exchange subsystems of 
PargreSQL. The implementation has been tested on the following query: 

select * from tab where tab.col % 10000 = 0 
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The query has been run against table tab consisting of  108 tuples. The speedup over 
PostgreSQL is shown in fig. 18. 

 

Fig. 18. PargreSQL speedup 

6. Conclusion 

In this paper we have described the architecture and the design of PargreSQL 
parallel DBNS for distributed memory multiprocessors. PargreSQL is based upon 
PostgreSQL open-source DBMS and exploits partitioned parallelism. 
There are following issues in out future research. We plan to complete the 
implementation and to investigate its speedup and scalability. The future research is 
also going to be concentrated on implementing data updates, transactions and fault 
tolerance. 
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