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Abstract. In this paper, we compare three approaches of clustering partial ordered subsets of 
a set of items. First approach was k-medoids clustering algorithm with distance function 
based on Levenshtein distance. The second approach was k-means algorithm with cosine 
distance as distance function after vectorization of partial orders. And the third one was k-
medoids algorithm with Kendall's tau as a distance function. We use Adjusted Rand Index as 
a measure of quality of clustering and find out that clustering with all three methods get 
stable results when variance of number of items ranked is high. Vectorization of partial orders 
get best results if number of items ranked is low. 
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1. Introduction and Motivation 
This investigation is a part of big project of developing clustering module for 
weighted sequences. As an example of such data we can suggest log of WEB site 
pages user opens with time, number clicks etc as characteristics of each state. 
Another data example (less obvious, but it is a real data we use) is set of medical 
treatments, provided in hospitals and polyclinics: sequence of medical treatments, 
which were provided to patient with a diagnosis during some fixed period of time. 
The main problem we try to solve is a development of system, which help 
specialists to analyze such sequences. One of the tools we need to implement is 
clustering module.  
The main problem of research is a distance function between such complex-
structured data. We need to take into account:  

 a set of objects (e.g. medical treatments); 
 parameters of objects; 
 order of objects; 

We start to making our own distance based on Levenshtein (it can be easily 
modified for our purpose), but decide to test new distance on each step to make 
sure, that our new distance is good enough in comparison with other distances. This 
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paper consider first step of our research: comparison Levenshtein distance with 
another distances for partial orders. Partial order is simplest example of weighted 
sequences: there are no repeated objects and no weights. 
So this paper considers the problem of clustering partial orders as a part of problem 
mentioned above. Since the problem of clustering orders does not differ much from 
the problem of clustering any set of objects we focused on distance function 
between objects of clustering. Comparison of partial orders obviously is quite 
difficult problem because if we compare two of them we need to take into account 
not only set of elements, but in addition an order of them. Despite complexity and 
interest of this theme it has surprisingly little work has been done. 
We decide to compare Levenshtein distance as a function of similarity between 
partial orders and compare it with a recently presented approach proposed in [1] and 
well-known Kendall tau rank distance [5] to find out their performance in different 
circumstance. 

2. Definitions and Problem Statement 
According to [1] chain is a ''totally ordered subsets of a set of items, meaning that 
for all items that belong to a chain we know the order, and for items not belonging 
to the chain the order is unknown''. Hence every chain can't include one object more 
than one time. As an example of such data we can suggest a rating of some objects 
(films, music compositions etc). More precisely, when we talk about clustering 
chains we assume, that full data set of chains was generated from some total orders. 
We want to make such clusters, where all chains in one clusters were generated by 
one total order. 
For our analysis we use Lloyd's algorithm, also known as k-means, which is one of 
the most common clustering algorithms and the k-medoids algorithm, which is a 
medoidshift clustering algorithm related to the k-means. Both the k-means and k-
medoids algorithms are partional (breaking the dataset up into groups) and both 
attempt to minimize the distance between points labeled to be in a cluster and a 
point designated as the center of that cluster. In contrast to the k-means algorithm, 
k-medoids chooses datapoints as centers (medoids or exemplars) and works with an 
arbitrary matrix of distances between datapoints [2]. We use two different 
algorithms in depend on distance function and ability to calculate mean value. 

3. Distance Algorithms 
As we mentioned above clustering algorithms themselves does not differ much for 
different objects, but the distance function highly depends on data we want to 
analyze. So we focused on distance function between partial orders and implement 
Levenshtein distance function to calculate distance between them. We also try to 
compare three distance functions: vectorizing algorithm presented in [1] (Ukkonen 
distance), Kendall's tau rank distance and our implementation of Levenshtein 
distance [3]. 
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3.1. Ukkonen Distance 
There were a number of different distances between partial orders in [1]. For 
analysis we choose planted partion model, which is very interesting first of all 
because it help to vectorize partial orders. It doesn't compare two orders directly, but 
firstly vectorize them and then use ordinary mathematical distances (Cosine, 
Euclidian or any other). Additionally it is very simple from computational point of 
view: it needs just O(nm) to compute vectors for n partial orders, when size of total 
order is m. 
The main idea of planted partion model is next. A function f that maps total orders 
to Rm as follows: let τ be a total order on M, and let τ(u) denote the position of uM 
in τ.  Consider the vector fτ where 
 

 
If partial orders are shorter than total order we need to take into account cases, when 
element from total order not exist in partial order (is not ranked). So if π is a partial 
order and u - one of the elements of M: 
 

 
 

And after normalization of function we get: 
 

 
After this vectorization procedure we can use any of classical distances between 
objects, for example, cosine distance which we use in this work. Using this distance 
we can use k-means algorithm, because we can easily calculate mean value of 
number of partial orders. 

3.2 Levenshtein Distance 
In information theory and computer science, the Levenshtein distance is a string 
metric for measuring the difference between two sequences. Informally, the 
Levenshtein distance between two words is the minimum number of single-
character edits (insertion, deletion, substitution) required to change one word into 
the other. 
If we think about total orders as an alphabet, partial orders as a words and elements 
of order as a letter we can draw full analogy from distance between partial orders to 
distance between words: 
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In this case we cannot use k-means algorithm, because mean value of partial orders 
is not defined, so we need to use k-medoids clustering algorithm. 

3.3 Kendall's Tau Rank Distance 
The Kendall tau rank distance is a metric that counts the number of pairwise 
disagreements between two ranking lists. The larger the distance, the more 
dissimilar the two lists are. The main problem is that if the chains π1 and π2 have no 
items in common, we have to use a fixed distance between π1 and π2. For example it 
was made for Spearmen's rho by [4]. We can use the same approach also with the 
Kendall distance by defining the distance between the chains π1 and π2 as the 
(normalized) Kendall distance between the permutations that are induced by the 
common items in π1 and π2. If there are no common items we set the distance to 0.5.  
The Kendall tau ranking distance between two lists L1 and L2 is 

 
where τ1 and τ2 are the rankings of the elements in L1 and L2. 

4. Experiments and Results 
For testing these distance functions we produce a number of clusterizations and 
evaluate results of clustering. We assume that quality of clusters is strongly 
correlated to quality of distance functions. Data we use for clustering was artificial: 
we generate a number of partial orders from three total orders. So we have an 
opportunity to use Adjusted Rand Index as a measure of quality of clustering [6,7]. 
For testing we make Python program in which implement K-means clustering 
algorithm with Ukkonen distance function, K-medoids algorithm with Kendall's tau 
distance and K-medoids algorithm with Levenshtein distance. 
First thing we want to test is how the quality of clustering depends on fraction of 
items ranked. It was predictable that the bigger fraction is the easier it is to 
distinguish them from each other, so we produce a number of test with different 
fraction of items ranked. We assume that all partial orders are the same length. 
Results of multiple clustering tests with different number of items ranked and 
different number of items in total order are in fig.1 
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Fig. 1. Quality of clustering in depending on fraction of items ranked (all partial orders 

has the same length) 

We can see, that if number of items ranked is equal to number of elements in total 
order (in other words, all elements of total order are in partial order) all three 
algorithms are quite good, but when partial orders are very little all of them cannot 
perform well.  
In previous test we assume that all partial orders are of equal length. Next test helps 
us to define quality of distance functions in case of comparison of partial orders 
with different length. We want to understand if distance function can correctly 
compare partial orders with different number of elements. So the idea of experiment 
was the next one. We assume that length of chain is a random value generated by 
normal distribution with some mean value and some variance. The mean value is 
not so important in this test, because the main idea is to understand dependency of 
clustering quality on variance of partial orders length, so it was fixed for all 
experiments. Accordingly to this assumption we generate partial orders with 
different lengths (from normal distributions with same mean value and different 
variance). For each variance we evaluate Adjusted Rand Index. Results are in fig.2. 
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Fig. 2. Quality of clustering in depending on variance of number of items ranked.  

All algorithms decreased their quality with increasing variance of number of items 
ranked, but we want to emphasize, that variance of clustering quality with Kendall 
distance significantly increase in comparison with Levenshtein and Ukkonen 
distances.  
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5. Conclusion 
We find out that using Ukkonen distance help to achieve more stable results with 
higher quality than Levenshtein and Kendall distances. Levenshtein distance is 
relatively good when we take into account partial orders with the same number of 
elements in them. But quality of clustering process decreased with increasing 
variance of number of items ranked. 
Kendall’s tau distance get stable result with quality close to Levenshtein distance, 
but there is no reasonable way to modify this distance to compare weighted 
sequences.  
We do not consider that fact in paper, but we cannot to ignore that fact that 
Ukkonen distance showing great promise property: we can vectorize (and in some 
cases vizualize) partial orders using this algorithm while Levenshtein distance is 
applied directly to partial orders and all problems of vizualization. Another good 
property is the computational complexity of the algorithm: we can vectorize n 
objects in O(nm), when the size of the total order is m and use after that simple 
functions to get distances. The main problem of such approach is necessity to know 
size of full order, while other distance functions has no need in such information. 
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Аннотация. В статье предлагается сравнение трех подходов к кластеризации частично 
упорядоченных множеств. Первый подход заключается в применение алгоритма 
кластеризации k-medoids с использованием расстояния Левенштейна. В качестве 
второго подхода рассматривается векторизация частично упорядоченных множеств с 
дальнейшей кластеризацией с помощью алгоритма k-means и косинусного расстояния в 
качестве функции расстояния между объектами. Последним рассматриваемым 
подходом является кластеризация с помощью алгоритма k-medoids и коэффициента 
ранговой корреляции Кендалла в качестве функции расстояния. Для оценки качества 
кластеризации мы использовали Adjusted Rand Index и определили, что кластеризация  
с использованием всех трех подходов дает стабильный результат даже в тех случаях, 
когда количество элементов в кластеризуемых множествах существенно различается. В 
случаях, когда доля ранжированных элементов мала, наилучшие результаты 
показывает метод векторизации частично упорядоченных множеств. 

Ключевые слова: Расстояние Левенштейна; частично упорядоченные множества; 
кластеризация; меры близости; коэффициент корреляции Кендалла. 


