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Abstract. This paper is devoted to known plaintexts cryptanalysis of homomorphic 
cryptosystem proposed by Domingo-Ferrer. In previous works it was shown that at least 

1d   pairs (plaintext, ciphertext) are necessary to recover secret key, where d  is a degree of 
polynomials representing ciphertexts. Here we analyze existing known plaintext attack. And 
also slightly modified attack on this cryptosystem is presented. It allows to reduce the 
necessary number of pairs meaningfully. In particular interception only of two pairs may be 
enough for successful key recovering with overwhelming probability. The running time of 
our attack depends polynomially on d  and logarithmically on plaintexts space size as well as 
for previous attack. We provide the results of computer experiments.  

Key words: known plaintext cryptanalysis; homomorphic encryption; cloud computations. 

1. Introduction 
Homomorphic encryption (HE) is a cryptographic primitive supporting the 
additional property in comparison with ordinary encryption: HE allows computing 
over encrypted data. Let's explain what this means. We assume that plaintexts space 
P  and ciphertexts space C  are rings with operations ,P P   and ,C C   
correspondingly. And let ,E D  be encryption and decryption functions of 
cryptosystem  . The last one is homomorphic if for ,x y P   and 

( ), ( )E x E y C   the following properties are satisfied:  

( ( ) ( )) ,C PD E x E y x y    (1) 

( ( ) ( )) .C PD E x E y x y     (2) 
So the result of computations over ciphertexts will be an encryption of computations 
result over underlying plaintexts. 
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Homomorphic cryptosystems (HC) are of key importance for protecting sensitive 
data in clouds. Computationally weak clients may outsource computations over their 
data while keeping this data in secret. This makes the development of new 
homomorphic cryptosystems and cryptanalysis of existing a hot topic.    
By the present moment a variety of homomorphic cryptosystems were proposed (for 
example see [1-5]). RSA [1] is one of the most well known, because the product of 
RSA ciphertexts is an encryption of corresponding plaintexts product. But 
cryptosystems [1-5] are partially homomorphic, because they allow to compute over 
ciphertexts only functions lying in some bounded class. In particular for [1] only 
property (2) holds (multiplicatively homomorphic cryptosystems). Whereas for 
instance for [2] only (1) holds (additively homomorphic). 
The simplest example of HC holding both (1), (2) was introduced in the 
fundamental paper [6] of Rivest, Adleman and Dertouzos. Encryption function 

: n p qE      works as follows ( mod , mod )nx x p x q  . Unfortunately, in 
[7] such encryption was shown to be unsecure against known plaintext attack 
(KPA). Beginning with [6] lots of cryptosystems with properties (1), (2) were 
suggested. Here two the most important groups may be highlighted. In the first 
group there are cryptosystems [8-11] with unlimited ciphertexts sizes growth during 
computing over them (their security analysis may be founded in [12,13]). Whereas 
cryptosystems of second group have some polynomially bounds on ciphertexts sizes 
growth. In this group for example there are cryptosystems [14-18] belonging to 
direction initiated by innovative work [14] of IBM researcher Craig Gentry. 
Second group obviously is more interesting for practice. But unfortunately existing 
cryptosystems are not enough efficient for usage in real applications. The 
development of Gentry-like HCs now has mostly theoretical character. And in 
practice at the present moment HCs from the first group are used. For instance 
cryptosystems [10, 11] proposed by Domingo-Ferrer are exploited in secure packet 
forwarding in mobile ad hoc networks (see [19-24]). The main reason is a 
conceptual simplicity of constructions from [10, 11].  
In the light of this the analysis of Domingo-Ferrer HCs resistance to different 
attacks is of value. Here we will concentrate on KPA. In [25] the authors described 
KPA on [10] and showed that to recover secret key an adversary   should 
intercept 1t d   pairs (plaintext, ciphertext), where d  is a degree of polynomials 
representing ciphertext. The aim of the present work to demonstrate that [10] may 
be broken using even two pairs (plaintext, ciphertext). We give some theoretical 
reasoning to this fact. And also we provide an experimental confirmation.  

2. Denotations 
All logarithms are base-2. A probability of event M  is denoted by Pr( )M , ring of 
integers – by  , ring of integers modulo n  – by n , the multiplicative subgroup of 

n  – by *
n . An adversary trying to break cryptosystem will be denoted by  . For 
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symmetric cryptosystem  : P – plaintexts space, C – ciphertexts space, K – secret 
keys space,   – probabilistic distribution over P .  
We denote by $x R  a random element sampled according to uniform 
distribution over ring R  and also by x R  – random ring element generated 
according distribution   over R .  Denotation $( ) [ ]f x R x means that all 
coefficients of polynomial f are random values chosen uniformly and 
independently from R . 

3. Overview of Domingo-Ferrer cryptosystem 
Let's briefly recall cryptosystem from [10]. The author sets nP   ,

[ ] [ ]p qC x x   , * *
p qK    , where n p q  , ,p q – big primes, p q , 

log logp q , i.e. n  – RSA modulus. Its factorization is a secret. Secret key is a 
pair ( , )p qk r r K  . Before encryption public parameter d   is fixed.  

Encryption( na , d  , ,p q , ( , )p qk r r K  ): 

 '( ) [ ]n na a x x    , where 
1

'( ) '
d

i
i

i
a x a x



   and for

$2, 1: 'i ni d a   , $' \ {0}d na    and 
1

1
1

' : ( ' ) mod
d

i
i

a a a n




  . 

 Ciphertext is a pair of polynomials ( ( ), ( ))p qc c x c x , where 
( ) : '( ) modp pc x a r x p   and ( ) : '( ) modq qc x a r x q  . 

One may see that '(1)(mod )a a n (or 
1

' (mod )
d

i
i

a a n


  ). 

Decryption( ( ( ), ( ))p qc c x c x , ,p q , 1 1 1( , )p qk r r   ): 

 1' ( ) : ( ) modp p pa x c r x p  1' ( ) : ( ) modq q qa x c r x q  (clear
' ( ) '( )(mod )pa x a x p  and ' ( ) '( )(mod )qa x a x q ). 

 : ' (1) modp pa a p , : ' (1) modq qa a q  (clear (mod )pa a p , 
(mod )qa a q ). 

 : ( , , , )p qa CRT a a p q , where ( , , , )p qCRT a a p q  means the reconstruction 
of na  by p pa  , q qa   using Chinese reminder theorem. 

In [10] the author suggested two regimes of cryptosystem working. In the first 
variant modulus n  is public and plaintexts and ciphertexts coefficients are treated 
by untrusted party as elements of n . In the second case n  is hidden for providing 
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higher level of security. And then plaintexts and ciphertexts coefficients are treated 
as elements of  . Here we will consider only the first case. 
Homomorphic properties: Let's suppose there are plaintexts 1 2, na a    and 

1 ,1 ,1( ( ), ( ))p qc c x c x ,  2 ,2 ,2( ( ), ( ))p qc c x c x  – its encryptions made on the same key 
( , )p qk r r  and for the same d . In [10] the author proves the following statements. 

Statement 1. Ciphertext ,1 ,2 ,1 ,2(( ( ) ( )) mod , ( ( ) ( )) mod )p p q qc c x c x n c x c x n     is a 
correct encryption of plaintext 1 2( ) mod na a n   for key ( , )p qk r r  and 
parameter d . 
Statement 2. Ciphertext * ,1 ,2 ,1 ,2(( ( ) ( )) mod , ( ( ) ( )) mod )p p q qc c x c x n c x c x n    is a 
correct encryption of plaintext 1 2( ) mod na a n   for key ( , )p qk r r  and 
parameter 2 d . 
One may see that multiplication of ciphertexts causes an unbounded growth of their 
sizes (the size is doubled). So in general this HC isn't good for practice. But its 
simplicity makes it good for applications requiring only computations of some 
special functions (see [19-24]).  
Remark 1. In practice for example log 2048n   may be chosen. Then the size S  
of ciphertext is 2048 d bits. This implies that 500d   should be chosen to obtain 

610S   bits. Such setting seems reasonable because in all latest HCs [14-18] S is 
usually about 610  bits. Larger value of S will make homomorphic computations too 
much expensive. But of course it is suitable only if additive homomorphism is 
necessary. But if multiplicative homomorphism will be exploited then d should be 
smaller. 

4. Cryptanalysis of Domingo-Ferrer cryptosystem 

4.1 Existing KPA 
Here we briefly discuss existing results [25] concerning known plaintexts analysis 
of Domingo-Ferrer cryptosystem [10].  Let's suppose   has t  pairs 
( , ), 1,i ia P c C i t    , where ic  is an encryption of ia  and  all ic  are produced for 
the same n ,  ( , )p qk r r  and d . Ciphertexts ic  are pairs 

, ,( ( ) [ ], ( ) [ ])p i p q i qc x x c x x   , where , , ,
1

( ) ,
d

j
p i p i j

j
c x c x



  , , ,
1

( )
d

j
q i q i j

j
c x c x



  . 

 needs to recover ,p q , 1 1 1( , )p qk r r    using n  and ( , ), 1,i ia P c C i t   .  

Remark 2. Here we consider the case of public n . So before recovering ,p q   
works with polynomials , ,( ), ( )p i q ic x c x  modulo n . In [25] the authors also propose 
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an attack for hidden n . And in this case coefficients , , , ,,p i j q i jc c  are treated as 
integers at the first step of KPA. 
According to encryption procedure the following congruences holds:  

1
,

1
,

( ) 0(mod ), (3)

( ) 0(mod ). (4)
p i p i

q i q i

c r a p

c r a q





 

 
 

So polynomials ,( ) ( ) [ ], 1,i p i i nf x c x a x i t     have a common root 1
pr   modulo

p . Similarly ,( ) ( ) [ ], 1,i q i i ng x c x a x i t     have a common root 1
qr
  modulo q . 

And please note that 1
pr  ,  1

qr
  are not obligatory  roots of ( )if x , ( )ig x  modulo n . 

So KPA should proceed in three steps: 
   recovers secret modulus p  and sets /q n p . 

   computes  1
pr   as a common root of ( ), 1,if x i t  modulo p . 

   computes  1
qr
  as a common root of ( ), 1,ig x i t  modulo q . 

4.1.1 Recovering of modulus p  
For computing p  in [25] the authors propose to consider the following matrix 

( 1)t d
n
 A  : 

1 ,1,1 ,1,

2 ,2,1 ,2,

, ,1 , ,

...

...
.

... ... ... ...
...

p p d

p p d

t p t p t d

a c c
a c c

a c c

 
  
 
 
  

A  

According to (3) homogeneous system of linear equations ( | )A 0 has a nontrivial 
solution modulo p : 

1 1 2 1(1, , ( ) ,..., ( ) )T d
p p pr r r  v . 

Therefore for 1t d   A  is a square matrix having zero determinant modulo p . 
Then equality det( ) , {0,1,..., 1}np s s q    A   holds. The last one means that if 

0s  p  may be recovered as follows:  

p : GCD(det( ), ).n A  
According to Chinese reminder theorem we have

1det( ) (det( ) mod ) ( mod )q p p q  A A . So 0s   if and only if det( ) mod 0q A . 
The authors of [25] prove that 

3/ 2 (p 1)Pr(det( ) mod 0) (5)q e   A , 
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 where for large p  value 3/2 (p 1) 1e    . Thus having 1d  pairs (plaintext, ciphertext) 
  may recover p  with probability 1 . Asymptotical complexity of computing p  
using this method is 3 2( log ( ))O d n . 

Remark 3. Inequality (5) in [25] was proven using assumptions that $
, ,p i j pc   

and $modi qa q . But of course this is correct only if probabilistic distribution 
over P  is uniform. For not uniform   (5) is not true. In the worst case   may 
be such that Pr(0) 1  and for moderate values of d  Pr(det( ) mod 0) 1/ 2q  A , 
because if the first column of A  is a zero vector then det( ) mod 0q A holds. So 
for such   the probability of successful cryptanalysis is not so good. In general 
additional study is necessary, because it is not immediately clear how to estimate 
Pr(det( ) mod 0)q A  for arbitrary . 

4.1.2 Recovering of 1 1,p qr r   

Now we suppose 1t d   and p  is recovered using ( , ), 1,i ia P c C i t   . The 
first way to compute 1

pr   is to solve the system of linear equations ( | )A 0 . The 
second way is to compute:  

,1 , 1( ) ( ( ),..., ( )),p p df x GCD f x f x  

where , , .( ) : ( ) mod ( )p i i p i p if x f x p c x a   , . : modp i ia a p . Obviously  
1 0 0

,1 , 1( ) ( ) ( ( ),..., ( ))p p p df x x r GCD f x f x
    

holds, where 0 1
, ,( ) ( ) / ( ) [ ],p i p i p pf x f x x r x   1, 1i d  . If 

0 0
,1 , 1( ( ),..., ( )) 1p p dGCD f x f x   then 1( ) pf x x r   and therefore 1

pr  is recovered. 

Based on assumption that for all 1, 1:i d    
0 $ 0
, ,( ) [ ], deg( ( )) 1p i p p if x x f x d   , the authors of [25] give an estimation  

1 0 0 1
,1 , 1Pr( ( ) ) Pr( ( ( ),..., ( )) 1) (1 1/ ) . (6)d d

p p p df x x r GCD f x f x p 
       

So for large p  and moderate d  the probability to recover 1
pr   becomes close to 1.  

Remark 4. Both ways to compute 1
pr   have equivalent complexity 3 2( log ( ))O d p . 

In [25] the authors didn’t give a proof that all 0
, ( )p if x  are uniformly random. So here 

we fill this gap. 
Statement 3.  Let distribution   is uniform and let there is a polynomial 

( ) ( ) [ ], deg( )p nf x c x a x f d     constructed using pair ( , ( ( ), ( ))p qa c c x c x . 
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Then 0 1( ) ( ) / ( ) [ ]p p p pf x f x x r x    is uniformly random with 
0deg( ( )) 1pf x d  , where ( ) : ( ) modpf x f x p . 

Proof: Let’s look at ,
0

( ) [ ]
d

i
p p i p

i
f x f x x



    . According to encryption procedure 

, : ( ' ) mod , 1,i
p i i pf a r p i d    and ,0

1
: ( ' ) mod (: ( ) mod )

d

p i
i

f a p a p


    . Using 

ordinary polynomial division it’s easy to verify that 
1

0 1 0
,

0
( ) ( ) / ( )

d
i

p p p p i
i

f x f x x r f x






    , where 0
, 1 ' (mod )d

p d p df r a p   , 

0 1
, 2 1( ' ' )(mod )d

p d p d df r a a p
    , …,  0 2

,1 1 2( ' ' ... ' )(mod )p p d df r a a a p      and 
0
,1 1 1( ' ' ... ' )(mod ) (mod )p p d d pf r a a a p r a p       .  Coefficients 0

, , 0, 1p if i d   

are independent random values, where 0 $
, , 1, 2p i pf i d   , 

0 $
, 1 \{0}p d pf   , 0

,0p pf  . So obviously if   is uniform  then
0 $( ) [ ]p pf x x   and 0deg( ( )) 1pf x d  .□ 

One may see that for not uniform   polynomials 0
, ( ), 1, 1p if x i d   are not 

uniformly random . And in this case it is not clear whether estimation (6) is true. 
Thus additional study should be carried out. 
Let’s turn on to the uniform . We would like to note that in this case instead of 
estimation (6) one may obtain the exact value of 0 0

,1 , 1Pr( ( ( ),..., ( )) 1)p p dGCD f x f x  . 
In [26] the following result based on Euclidean algorithm was proved. 
Corollary 1 ([26]). Let 1( ,..., )md d be an ordered m -tuple of nonnegative integers 
(not all zero) and for 1 i m   let $( ) [ ]i pa x x  deg( ( ))i ia x d , where p is a 

prime. Then the probability that 1( ),..., ( )ma x a x are relatively prime is 11 1 / mp  . 

Based on this corollary we have 0 0
,1 , 1Pr( ( ( ),..., ( )) 1) 1 1/ d

p p dGCD f x f x p     that is 
1 for large p . 

Similarly 1
,1 ,d 1( ) ( ( ),..., ( ))q q qg x GCD g x g x x r

    with probability1 1 / dq , 

where ,( ) ( ) [ ], 1, 1i q i i ng x c x a x i d     , , , ,( ) : ( ) mod ( )q i i q i q ig x g x q c x a   , 

, : modq ia a q . And finally we obtain that the probability to recover 1 1,p qr r   is 

equal to (1 1 / ) (1 1/ )d dp q   . It should be noted that the last one is true because 
according to encryption procedure for uniform  for i  polynomials , ( )p if x  and 

, ( )q ig x  may be considered as independent random polynomials. 
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Summarizing all said above we see that KPA proposed in [25] requires 1t d   
pairs (plaintext, ciphertext) to recover secret key with probability Pr 1  . But 
estimation Pr 1  is proved only for uniform  . The total asymptotical complexity 
of KPA is 3 2( log ( ))O d n . 

4.2 Our improvement of KPA  
Now we discuss how to reduce the number of pairs t  necessary for successful KPA 
on cryptosystem [10]. First we recall the notion of resultant for two polynomials. 

Let there are
1 2

0 0
( ) , ( ) [ ]

d d
i i

i i n
i i

f x f x g x g x x
 

       . One may compose a 

Sylvester matrix 1 2 1 2( ) ( )d d d d
n

  S   for ( ), ( )f x g x : 

1

1

1

2

2

2

0

0

0

0

0

0

... 0 0 ... 0

0 ... 0 ... 0

... ... ... ... ... ... ...
0 ... 0 0 ...

. (7)
... 0 0 ... 0

0 ... 0 ... 0

... ... ... ... ... ... ...
0 ... 0 0 ...

d

d

d

d

d

d

f f

f f

f f

g g

g g

g g

S  

The resultant of polynomials ( ), ( ) [ ]nf x g x x  is defined as follows: 
Re ( ( ), ( )) det( ) mod ns f x g x n   S  . It is well known result that 0  if and 

only if ( )f x and ( )g x  have at least one common root or factor modulo n  (for 
details see [27]). For further discussion we need the following simple statements. 
Statement 4 . If for n p q  polynomials ( ), ( ) [ ]nf x g x x  have at least one 
common root or factor modulo p (or q ) then 0p  (or 0q  ), where 

: modp p   , : modq q   . 

Statement 5. If ,n p q  where , ( , ) 1p q GCD p q  , then 0   if and only if 
0p  , 0q  . 

We skip the proof because this statements may be immediately derived from 
Chinese reminder theorem and congruences properties. 
Let’s return to KPA on cryptosystem [10]. Now we will demonstrate that 
interception only of two pairs (plaintext, ciphertext) may be enough to recover 
factorization of n  and  ( , )p qk r r . 
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4.2.1 Recovering of modulus p   

Let's suppose  intercepted , ,( , ( ( ) [ ], ( ) [ ])), 1, 2i i p i p q i qa c c x x c x x i      , 
where , ,deg( ( )) , deg( ( ))p i q ic x d c x d  . Let’s look at the resultant 

1 2Re ( ( ), ( )) ns f x f x   ,where ,( ) ( ) [ ], 1, 2i p i i nf x c x a x i    . As we’ve 

already seen 1 2( ), ( )f x f x  have a common root 1
pr   modulo p . According to 

statement 4 0p   and hence , {0,1,..., 1}p s s q     . So for 0s   can 
compute p according formula: 

p : GCD( , ).n   

Please note that the last one is true because here q is prime and GCD( , ) 1s q   for 
0,s q . 

As a result we obtain that to recover p  it’s enough to have only two pairs 

( , ), 1,2i ia c i   with 0  . So it’s necessary to find out how much the probability 

0Pr Pr( 0)   for randomly intercepted pairs. To estimate 0Pr we should note that 
according to statement 5 0   if and only if 0q   and then 0Pr Pr( 0)q   .  
Obviously 0q   if and only if ,1 ,2( ( ), ( )) 1q qGCD f x f x  , where 

, ( ) ( ) mod [ ], 1, 2q i i qf x f x q x i   . If ,1 ,2( ), ( )q qf x f x  were uniformly random in 
[ ]q x  then 0Pr Pr( 0)q    would be equal to 1 1/ q  according to corollary 1. 

But unfortunately in fact ,i , ,
0

( ) , 1, 2
d

j
q q i j

j

f x f x i


    are not strictly uniform even 

if distribution   is uniform. Indeed for uniform   there are 
$

, , {0,1,..., 1}, 1, 1q i jf p j d    , $
, ,d {1,..., 1}q if p   and $

, ,0q i qf  . 
Estimation  

0Pr 1 1/ (8)q   
we are not ready to prove now. But (8) correlates very good with computer 
experiments. In tables 1,2 we present practical estimation of 0Pr  for uniform   for 
different d . 
Remark 5. Cryptosystem from [10] and presented KPA were implemented using Qt 
1.3.1 and NTL library [28]. For practical estimation of 0Pr two pairs ( , )i ia c  were 
generated randomly 510  times. Then the number of cases with 0q   was counted. 

The case of not uniform   should be studied additionally. The only thing we can 
say now that in the worst case   may be such that Pr(0)  , where 1   and then  

2
0Pr Pr( 0)q      that is 1 . So for such   this KPA fails with overwhelming 

probability. 
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Table 1. Estimations of 0Pr  for different ,p q and 10d  . 

n p q Practical estimation 
of 0Pr  

1 1/ q  

6 2 3 0.67 0.67 
35 5 7 0.86 0.86 
91 7 13 0.922 0.923 
253 11 23 0.956 0.957 

1517 37 41 0.97 0.97 
3599 59 61 0.98 0.99 
9991 97 103 0.99 0.991 

Table 2. Estimations of 0Pr  for different ,p q and 50d  . 

n p q Practical estimation 
of 0Pr  

1 1/ q  

15 3 5 0.8 0.8 
221 13 17 0.92 0.94 

1147 31 37 0.954 0.972 
2173 41 53 0.999 0.999 

13943 103 131 0.999 0.999 
The asymptotical complexity of this method to recover p is 3 2( log ( ))O d n . 
Finally we would like to note that the idea to compute resultant of polynomials for 
recovering p  we borrow from [29]. In [29] the author presented KPA on another 
Doming-Ferrer homomorphic cryptosystem [11]. Encryption in [11] works similar 
to [10]. Plaintext 'na  first is mapped into random polynomial ''( ) [ ]na x x  
such that '(1) (mod ')a a n , deg( '( )) , '(0) 0a x d a  . Ciphertext is a polynomial 

( ) [ ]nc x x  such that ( ) : '( ) modc x a r x n  , where *
nr  – secret key, n  – big 

integer ( log( ) 1000n  ) with many small divisors, ' |n n  and log( ') 100n  . 
Modulus 'n  is hidden and n  is public. It should be pointed out that in spite of 
similarity construction from [10] is not a special case of [11] and vice versa. 
To break cryptosystem [11]   first should compute 'n  and second 

1 1( ') : mod 'r r n   as a common root of polynomials 

( ) ( ) [ ], 1,i i i nf x c x a x i t     modulo 'n . According to congruences properties 
1( ')r   may be used for decryption instead of 1r  . For recovering 'n  in [29] the 

author proposes to compute 1 2 3 3 1'' ( , Re ( , ),Re ( , ),..., Re ( , ))t tn GCD n s f f s f f s f f . 
Obviously 

1 2 3 3 1Pr( '' ') Pr( ( / ', Re ( , ) / n',Re ( , ) / n',...,Re ( , ) / n') 1)t tn n GCD n n s f f s f f s f f    
( /  is integer division) holds. Here in contrast to [10] it’s not enough to take 2t  , 
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because n  has many small divisors. So to estimate 
0 1 2 3 3 1Pr Pr( ( / ',Re ( , ) / n',Re ( , ) / n',..., Re ( , ) / n') 1)t tGCD n n s f f s f f s f f   one 

should involve a known result about the probability that randomly chosen integers 
are coprime. According to this result 0Pr 1/ (t/ 2 1)   holds (we suppose t  is 
even), where  is Riemann’s zeta function. So for 2t   we have 0Pr 0,61 . That 
is not enough of course. To obtain 0Pr 1 one should take 100t  .  
Summarizing all said above we would like to stress out that idea of computing 
resultants doesn’t work so good for cryptosystem [11], because    must intercept 
many pairs to recover secret modulus with overwhelming probability. But for [10] 
computing resultant  allows to decrease t  meaningfully. Now the only case in which 
we while don’t know how to find p  is 1t  . 

4.2.2 Recovering of 1 1,p qr r    

For recovering 1
pr     may compute 

,1 ,2( ) ( ( ), ( )) [ ],p p pf x GCD f x f x x   

where , ,( ) : ( ) mod , ( ) ( ) [ ], 1, 2p i i i p i i nf x f x p f x c x a x i     . For uniform   

according to corollary 1 we obtain 1Pr( ( ) ) 1 1/pf x x r p     that is 1  for large 

p . Similarly 1
qr
  may recovered with probability 1 1/ q . So the total probability to 

find 1 1,p qr r   now is 1Pr (1 1/ ) (1 1/ q)p    . The last one is 1  for large ,p q . 

The asymptotical complexity of computing  1 1,p qr r   now is 2 2( log ( ))O d q . 

To conclude we would like to present the total running time T  of our KPA (time to 
recover ,p q  and 1 1,p qr r   ). Time measurements were done using PC with the 
following characteristics: Quad Core Celerone 1,7 GHz with 4 GB memory. 

Table 3. Running time of KPA. 

d  T for 10 9log 2 , log 2n p   T for 11 10log 2 , log 2n p   
8 38 ms 112 ms 

16 121 ms 387 ms 
32 460 ms 1.5 s 
64 1.9 s 6 s 
128 9.5 s 27 s 
256 52 s 2 min 
512 5 min 12 min 

1024 22 min 50 min 
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5. Conclusion 
We have analysed the existing method [25] of known plaintext cryptanalysis of 
Domingo-Ferrer homomorphic cryptosystem [10]. This analysis shows that it 
provably works with overwhelming probability only for uniform probabilistic 
distribution over plaintexts space. The case of arbitrary  requires the further 
study. Also based on results obtained in [29] we slightly modified KPA  from [25]. 
The obtained KPA works successful even for the number t  of intercepted pairs 
(plaintext, ciphertext) equal to 2 . This is in contrast to [25] where 1t d  must be 
satisfied. But unfortunately our attack also provably recovers secret parameters with 
probability 1  only for uniform  . And the case of arbitrary also should be 
studied additionally. If  is such that Pr(0) 1  than both attack fails with 
probability close to 1. In future we are planning to investigate the resistance of 
Domingo-Ferrer homomorphic cryptosystem to ciphertext only attack. 
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Улучшенная атака по известным 
открытым текстам на гомоморфную 
криптосистему Доминго-Феррера  

А.В. Трепачева <alina1989malina@ya.ru> 
Южный федеральный университет, 

Россия, 344006, г. Ростов-на-Дону, ул. Большая Садовая 105/42. 

Аннотация. Данная работа посвящена криптоанализу по известным открытым текстам 
гомоморфной криптосистемы, предложенной Доминго-Феррером. В предыдущих 
работах было показано, что для раскрытия секретного ключа необходимо перехватить 
по меньшей мере 1d   пару (открытый текст, шифртекст), где d  – степень 
полиномов, являющихся шифртекстами. Здесь мы проводим анализ  существующей 
атаки по известным открытым текстам, а также показываем, как можно её 
модифицировать так, чтобы значительно уменьшить нужное количество 
перехваченных пар. А именно, оказывается, что достаточно всего лишь двух пар для 
раскрытия секретного ключа. Время работы предложенной атаки так же, как и для уже 
существующей, зависит полиномиально от d  и логарифмически от размера 
пространства открытых текстов. Представлены результаты компьютерных 
экспериментов.  

Ключевые слова: атака по известным открытым текстам; гомоморфное шифрование; 
облачные вычисления. 
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