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Abstract. A memory subsystem is one of the key components of a microprocessors. It
consists of a number of storage devices (instruction buffers, address translation buffers,
multilevel cache memory, main memory, and others) organized into a complex hierarchical
structure. Huge state space of a memory subsystem makes its functional verification
extremely labor consuming. Nowadays, the main approach to functional verification of
microprocessors at a system level is simulation with the use of automatically generated test
programs. In this paper, a method for generating test programs for functional verification of
microprocessors’ memory management units is proposed. The approach is based on formal
specification of memory access instructions, namely load and store instructions, and formal
specification of memory devices, such as cache units and address translation buffers. The use
of formal specifications allows automating development of test program generators and
makes functional verification systematic due to clear definition of testing goals. In the
suggested approach, test programs are constructed by using combinatorial techniques, which
means that stimuli (sequences of loads and stores) are created by enumerating all feasible
combinations of instructions, situations (instruction execution paths) and dependencies (sets
of conflicts between instructions). It is of importance that test situations and dependencies are
automatically extracted from the formal specifications. The approach was used in several
industrial projects on verification of MIPS microprocessors and allowed to discover critical
bugs in the memory management mechanisms.
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1. Introduction

A computer memory is known to be a complex hierarchy of data storage devices
varying in volume, latency and price [1]. In addition to registers and main memory,
microprocessors include a multi-level cache memory and address translation
buffers. The set of devices responsible for handling memory accesses is referred to
as a memory subsystem or a memory management unit (MMU). Being one of the
key microprocessor components, the memory subsystem is strongly required to be
correct and reliable. Due to the complicated structure of the memory, the number of
situations that can occur in processing load and store instructions is huge; this
makes it improbable to verify the subsystem “manually”.

In the current practice, tests — programs in the assembly language of the
microprocessor under test — are created in an automated way with the intensive use
of random generation. A tool that constructs test programs is called a fest program
generator (TPQG) or an instruction stream generator (ISG) [2]. In a typical use case,
a TPG accepts probability distributions for instructions types and operand values as
well as other parameters and produces a set of programs in compliance with the
settings. Though the randomization-based approach is able to find “high-quality”
bugs, it is not systematic and does not guarantee the verification completeness.

In the present work, an approach to generate test program for memory subsystems
of single-core microprocessors is discussed (the multi-core issues, such as memory
consistency and cache coherence [3], are out of the scope of the paper). The
proposed approach complements the random-based testing and enables thoroughly
checking situations in the MMU behavior. It uses specifications of memory access
instructions, i.e. load and store instructions, and specifications of memory devices
including, first of all, caches and address translation buffers. The formal
specifications serve as a source of test coverage information and allow
automatically extracting instruction-level situations and dependencies. Test
programs are built by composing possible situations and dependencies for
instruction sequences of bounded length.

The rest of the paper is organized as follows. SectionIl is a primer on
microprocessor memory organization. Section III provides a brief overview of the
related work. Section IV describes in detail the mentioned approach to test program
generation. Section V considers industrial applications of the described approach.
Finally, Section VI concludes the paper and outlines directions for future research
and development.

2. Memory Subsystem

In a nutshell, a memory subsystem of a microprocessor is intended for handling
memory accesses, namely instruction fetch requests, data loads and data stores. Its
functions include translation of virtual addresses into physical ones, memory
protection, code and data caching, etc. [1]. Let us consider the essential concepts of
the memory management.
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From a programmer’s perspective, a computer memory is a linear array of bytes.
However, the underlying mechanisms and techniques — usually referred to as a
virtual memory — are rather sophisticated. A virtual address space, i.e. a range of
the byte array indices available for programs to use, is commonly divided into
disjoint segments. Given a segment and a virtual address, the MMU acts as follows.
If the microprocessor mode satisfies the segment’s privilege level, the virtual
address is translated into the physical address, and an access to the physical memory
is performed; otherwise, an address error exception is thrown.

Segments are divided into mapped and unmapped, the latter, in turn, are subdivided
into cached and uncached. Addresses of mapped segments are translated with the
help of translation lookaside buffers (TLB), which store the mapping between
virtual page numbers (VPN) and physical frame numbers (PFN). If there is a match,
the VPN bits of the virtual address are replaced with the PFN bits, and the process
continues. Otherwise, a TLB refill exception is thrown, which triggers the operating
system to look up the page table and update the TLB. Unmapped addresses are
translated directly with no use of the buffers. Accessing cached segments, as
opposed to uncached ones, activates the caching mechanisms.

A cache is an intermediate storage responsible for speeding up access to frequently
used data. An average microprocessor has two- or three-level cache memory.
Typically, an L; cache stores a subset of L;+; contents; the highest-level cache is the
largest one; it interacts immediately with the main memory. A cache works as
follows. As soon as data are requested, the cache controller checks whether they are
in the buffer. If they are (it is said to be a cache hit), the data are taken from there
and returned to the requester. Otherwise (it is said to be a cache miss), the controller
chooses a victim among the data blocks stored in the buffer and replaces it with the
data loaded from the higher-level cache or the main memory.

In the general case, a cache comprises a number of sets; each set consists of a
number of /ines; each line includes data and a tag. Let S = 2° be the number of sets;
W be the number of lines in a set; B = 2° be the size of a data block. Depending on
the values of S and W, the following types of cache memory are recognized: (1) a
direct-mapped cache (W =1); (2) a fully associative cache (S=1); (3) a set-
associative cache (W>1 and S>1). The bit representation of an address is
interpreted as follows: the bits [0, ..., b—1] refer to a byte inside a data block;
[b, ..., b+s—1] identify a set; [b+s, ..., m—1], where m is the address length, define a
tag. To determine whether the cache contains data for a given address, first, the set
is identified; then, the tags of the set’s lines are concurrently compared with the tag
extracted from the address. If there is a match, then the requested data are available
in the cache.

3. Related Work

There are several TPG tools based on formal specifications of memory subsystems.
DeepTrans (IBM Research) [4] is one of them. The approach is targeted at testing
address translation mechanisms and uses a special-purpose modeling language. A
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process of address translation is depicted as a directed acyclic graph whose vertices
correspond to the process stages and whose edges relate to the transitions between
the stages. A path from the source of the graph to the sink defines a particular
situation in the address translation. Such situations can be referred from high-level
descriptions of test programs, so-called templates. The latter are processed by the
Genesys-Pro generator [2], which formulates constraints on instruction operands,
solves them and transforms the results into the instruction sequences. The major
advantage of the approach is the use of the highly developed languages for
modeling address translation and describing test templates. The disadvantage is that
the tool is not able to automatically extract conflicts and dependencies between
instructions. Verification engineers have to manually specify such kind of
information in test templates.

In [5], the Java programming language coupled with a specialized library is used to
specify MMU. As in DeepTrans, the situations correspond to the paths in the graph
describing the subsystem under test; here is an example: {Mapped (data are
requested via a mapped segment), TLBHit (there is a TLB hit), TLBValid (the
matched TLB entry is valid), —L/Hit (a miss in the first-level cache occurs)}. In
addition, the approach provides means for specifying instruction dependencies; an
example is as follows: {—TLBEqual (instructions use different TLB entries),
LillndexEqual (data are mapped to the same set of the first-level cache),
—L1TagEqual (data belong to different cache lines)}. Test templates are constructed
automatically by combining situations and dependencies for short sequences of
instructions. Building templates and creating programs on their basis is done by the
MicroTESK generator (ISP RAS) [6]. The strength of the approach is systematic
test enumeration that takes into consideration instruction execution paths as well as
dependencies between instructions. The principal weakness is underdeveloped
specification facilities.

4. Approach Description

The main goal of the presented research is to combine the advantages of the
methods [4] and [5] as well as to avoid their drawbacks. It can be achieved by using
formal specifications. Accordingly, microprocessor instructions, an MMU and test
templates are described in formal domain-specific languages. Specifications are
analyzed to extract testing knowledge, that is, situations and dependencies. The
information having been extracted is used to automatically generate test programs
from templates as well as to automatically construct templates in a systematic way.
The suggested method is supported by the MicroTESK TPG [7].

4.1 Formal Specifications

Formal specification of a microprocessor under test touches on the instruction set
and the memory subsystem. Instructions are described in the nML language [8].
Descriptions declare the registers and define the assembly syntax, binary image and
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the semantics of the instructions. Semantics is specified in the usual imperative form
by means of the bit-vector and floating point operations. Here is an nML
specification of the MIPS [9] integer addition instruction (4DD):

op ADD (rd: REG, rs: REG, rt: REG)

syntax = format ("add %s, %s, %s",
rd.syntax, rs.syntax, rt.syntax)

image = format ("000000%s%s%s00000100000",
rs.image, rt.image, rd.image)

action = {
temp = rs<31>::rs<31..0> +
rt<31>::rt<31..0>;

if temp<32> != temp<31> then
exception ("IntegerOverflow") ;
else
rd = coerce (DWORD, temp<31l..0>);
endif;

}

Being rather simple, nML does not have adequate facilities to describe memory
management. Though the language is powerful enough to specify caching and
address translation mechanisms, pure nML specifications of MMU are awkward and
hardly analyzable; in particular, it is difficult to extract testing knowledge to
automate test program generation. In that situation, a domain-specific language has
been introduced. A memory access instruction is described in nML in an intuitive
manner by reading or writing data from or to the byte array representing the
physical memory. Every access to the array triggers the MMU logic specified in a
separate file. An nML specification of the MIPS load byte instruction (LB) may
look as follows:
op LB (rt: REG, offset: SHORT, base: REG)

syntax = format ("lb %s, %d(%s)",
rt.syntax, offset, base.syntax)

image = format ("100000%s%s%s",
base.image, rt.image, offset)

action = {
rt = MEM[base + offset];
}

where MEM is an array declared as mem MEM[2**36, BYTE]; 2**36 (that is 23%)
is the memory size in bytes. Note that notwithstanding the array is specified as the
physical memory, it is accessed through the virtual address.

Memory management is described in a special language. MMU specifications
include address types, memory segments, buffers, such as TLB and caches, and
detailed algorithms for handling load and store instructions. Addresses and
segments are described straightforwardly; buffers are specified with the following
parameters: the associativity (ways), the number of sets (sets), the entry (line)
format (entry), the index calculation function (index), the tag calculation function
(tag) and the data eviction policy (policy). Here is a description of the virtual and
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physical addresses (VA and PA correspondingly), user segment (XUSEG), address
translation buffer (7LB) and the first-level cache memory (L) of a MIPS
microprocessor:

address VA (64)
address PA (36)

segment XUSEG (va: VA)

range = (0x0, OxOOffFFFFffff)
buffer TLB (va: VA)
ways = 64
sets =1
entry = (VPN2: 27, VO: 1, PFNO: 24, ...)
index = 0
tag = va<39..13>

policy = NONE

buffer L1 (pa: PA)

ways =4

sets = 128

entry = (TAG: 24, DATA: 256)
index = pa<1l1l..5>

tag = pa<35..12>

policy = LRU

Processing of loads and stores is specified by requesting the buffers and handling
their responses. The syntax is similar to nML though allows using such conditions
as XUSEG(va).hit (the address va belongs to the segment XUSEG) and LI(pa).hit
(the buffer L/ contains the data for the address pa). Here comes an example:

mmu MEM (va: VA)
read = {
if XUSEG(va) .hit then

if TLB(va) .hit then
tlbEntry = TLB(va);

else

exception ("TLBRefill");
endif;
if va<l2> == 0 then

v = tlbEntry.vVO0;

pfn = tlbEntry.PEFNO;
endif;
if v == 1 then

pa = pfn::va<ll..O0>;
else

exception ("TLBInvalid");
endif;

endif;
if Ll (pa).hit then

11Entry = L1 (pa);
data = 1lEntry.DATA;
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endif;

}

write = { ... }

4.2 Coverage Extractor

Formal specifications are parsed and the control flow graph (CFG) is build. A
coverage extractor traverses the CFG and constructs the set of all possible
execution paths (the graph is assumed to be acyclic). A single path, so-called a
situation, describes processing of an individual request and finishes either with a
memory access or with an exception (incorrect address, TLB refill, etc.). Each
transition of the path is labeled with a guard, i.e. a condition that enables the
transition, and an action to be performed. Here is an example of a load situation (for
the sake of simplicity, the transition actions are omitted): {XUSEG(va).hit,
TLB(va).hit, va<12>=0,v =1, LI(pa).hit}.
Given a pair of execution paths, the coverage extractor may be demanded to
construct the set of all possible dependencies. A dependency is a map from the set
of buffers common for the two given execution paths to the set of conflicts.
Speaking formally, a dependency is a partial map d: B — C, where B is the set of
buffers and C is the set of conflicts. The following types of buffer usage conflicts
are predefined in the tool:
e AddrEqual — using the same data;
e AddrNotEqual — using different data:
o IndexEqual —using data of the same set:

= TagFEqual — using data of the same line;

= TagReplaced — using data of the replaced line;

= TagNotReplaced — otherwise;

o IndexNotEqual — using data of different sets.

To illustrate the concept, let us consider two simple situations: the first one is {...,
TLB(vaj).hit, ..., Li(pa;).hit}; the second is {..., TLB(va).hit, ..., LI(paz).miss,
...}. The situations share two buffers, namely TLB and L1. A possible dependency
is {TLB.TagEqual, LI.IndexNotEqual}, that is, two instructions access the same
TLB entry (va;<39..13>=va»<39..13>), but use different L1 sets
(pa;<11..5> # pa,<11..5>).

4.3 Template Iterator

A template is a sequence of situations linked together with a number of
dependencies. A template iterator systematically enumerates templates to cover a
representative set of cases of the memory subsystem behavior. Let S be the set of
situations; D be the set of dependencies; n be the length of templates. Formally, a
test template of the length n is a pair (o, A), where o= (s, ..., sp) € S" is the
template skeleton and . = {d;}, where i = 1, ..., n-1 and j = i+1, ..., n, is the template
ligaments. An example of a two-situation template is given below:
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si: {AXUSEG(vay).hit, TLB(va;).hit, va;<12>=1,v; =1, Ll(pa,).hit};

s2: {XUSEG(vay).hit, TLB(vay).hit, va;<12>=0, v> = 0};

di2: {TLB.TagEqual (va;<39..13> =va,<39..13>)}.

The main, but not the only, approach supported by the tool is combinatorial
generation. Test templates are constructed by enumerating all possible skeletons of
the given length and creating all possible ligaments for each of them. The template
iterator checks whether the produced templates are consistent. For each template, it
formulates the set of constraints and invokes a solver [10]; if the constraints are
unsatisfiable, the template is discarded. Here is an example of an inconsistency:
s, var<i2>=0,vi=1, ...};

820 {en, vax<12>=0,v,=0};

di2: {TLB.TagEqual (va;<39..13> =va,<39..13>)}.

TLB.TagEqual implies that both instructions access the same TLB entry, whereas
va;<12>=0 and va;<12>=0 result in v; = v, = tlbEntry.V0, which contradicts to
V)= 1 andvz:O.

To avoid the combinatorial explosion, special heuristics are in use. Among them,

factorization of situations and limitation of the depth of dependencies are essential.

Description of the heuristics are out of the scope of the paper.

4.4 Test Data Generator

Templates are symbolic representation of test programs. To produce a test program
from a template, the latter should be instantiated. A test data generator plays the
key role in this activity. Test data, in a sense, are a solution to the constraints
stipulated in the template. They include virtual addresses to be used by the
instructions as well as some auxiliary information intended for setting up the state of
the microprocessor under test such as indices of TLB entries, VPN-to-PFN
mappings, sequences of addresses to be accessed to load or evict data to or from the
buffers, etc.

The test data generator acts in compliance with one of the following strategies: (1)
heavyweight template elaboration with an attempt to find an exact solution to the
problem or (2) lightweight processing targeted at constructing an approximate
solution. In the main, our approach follows the second strategy. Detailed analysis of
templates makes sense only for accurate MMU specifications, while instruction-
level models are rather abstract. Another argument is that the lightweight approach
gives a significant benefit in terms of performance, while the quality of testing is
comparable.

Given a template ((s, ..., Sn), {d;}), consider how test data are generated. First, for
each situation s; of the template, a united dependency dep;: B x C — 21>+ is
built. For each buffer » and conflict ¢, depj(b, ¢) contains indices i <j such that
b € dom(dj) and dj(b) = c, that is, the situations s; and s; access the buffer b and
there is the access conflict ¢. Then, the template’s situations are processed one after
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another. Given a situation s;, the buffers affected in s; are sequentially inspected. For
each buffer b, the actions listed below are performed:
o ifdep(b, AddrEqual) # &, then
data(s)).addr < data(s;).addr,
where data(s;) denotes the test data associated with s;; addr is the virtual or
physical address depending on the b type; i is any index from
depi(b, AddrEqual);
o otherwise, if depi(b, IndexEqual) # &, then
data(s)).addr<I> < data(s;).addr<I>,
where [ is the bit range given in the index section of the b specification;
o if depib, TagEqual) # &, then
data(s;).addr<T> < data(s;).addr<T>,
where T is the bit range given in the tag section of the b specification;
o if depi(b, TagReplaced) = &, then
data(s;).addr<T> < tagy(data(s;).addr<I>),
where tag(index) is a previously unused tag of b for the given index;

o otherwise (if dep(b, IndexEqual) = &),
data(sj).addr<I> < indexy,
where index; is a previously unused index of b.

TagReplaced conflicts — referred to as dynamic conflicts — are handled in a special
way. As soon as all other constraints, including hits and misses (see the next
paragraph for details), are resolved, the created sequence of instructions is simulated
on a simplified model derived from the MMU specifications. This enables the
generator to predict the lines being evicted and replaced with recently accessed data.
If there is a TagReplaced conflict between two instructions (template situations, to
be more precise), the evicted tag having been predicted for the first instruction is
copied into the address of the second one.

In between static Equal/NotEqual and dynamic Replaced conflicts, hits and misses
are considered. For a hit, an access to the designated address is appended to the
template test data: hit(b).add(data(s)).addr), where hit(b) is a set-separated data
structure that stores sequences of addresses targeted at loading data into the buffer
b. For a miss, an address sequence ® is added: miss(d).add(®), where miss(b) is a
storage of addresses used to evict data from b, and ® = {addri, ..., addrw} is a so-
called evicting sequence, that is, addr<I> = data(s)).addr<I>, addr<T> #
data(s;).addr<T> and addri<T> # addr<T> for all k, [ € {1, ..., W} such that k =/,
W is the b associativity. Note that appending an address to the hit(d) structure may
require adding evicting sequences for the preceding buffers with the miss constraint
having been set.
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4.5 Test Data Adapter

Indeed, test data concretize symbolic templates, but being instruction set
independent they are still too general to be immediately applied to testing. It is a test
data adapter who translates a template coupled with test data into a sequence of
specific instructions, so-called a test case. Such a sequence usually consists of two
parts: a preparation, which sets up the microprocessor state, and a stimulus, which
performs a series of memory accesses to stress the microprocessor’s MMU.
Making a stimulus is straightforward: each situation of the template skeleton is
converted into a load or a store depending on the specification section, read or
write, the execution path belongs to. A particular type of the instruction, i.e. the size
of a data block being accessed, is either derived from the template / specifications or
randomized. The instruction is allowed to use any registers from the user-defined
set. Note that the procedure requires a mapping from
{read, write} x {byte, word, ...} to the set of memory access instructions
implemented in the design.
Constructing a preparation sequence is more intricate. The main problem is that
placing data into a buffer may change the state of others. Here is how the problem is
solved. First, virtual address based buffers, e.g., TLB, are handled before buffers
accessed by physical addresses, e.g., L1 and L2. Initialization of the latter can be
carried out by using unmapped addresses, which does not affect the former. Second,
the “largest buffer first” strategy is applied. Typically, a set of lines of a smaller
buffer maps several sets of lines of a larger one, which gives a possibility to change
the smaller buffer with no tangible effect to the larger one. Given a buffer, the
preparation sequence is cut into pieces corresponding to particular sets of the buffer.
Each piece is the catenation of the miss and hit sequences. It is implied that each
buffer is provided with a code pattern to be used to place data for a given address.
Here comes a simplistic test case for the MIPS architecture:

// Preparation:

// Fill TLB: VPN0O=0x4, V0=1, PFN0=0x10222

tlbwi ...

// Fill L1: VA=0x80261026 (PA=0x261026)

lui t0, 0x8026

ori t0, t0, 0x1026

1b t0, 0(t0)

// Address 0: VA=0x80261026 (PA=0x261026)

lui s0, 0x8026

ori s0, s0, 0x1026

// Address 1: VA=0x4059 (PA=0x10222059
ori sl, zero, 0x4059

// Stimulus:

// KSEGO.hit (Mapped=0), Ll.hit

1b a0, 0(s0)

// XUSEG.hit (Mapped=1), TLB.hit, VA[12]=0, V=1
sb al, 0(sl)
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The instructions here are as follows [9]: TLBWI writes a TLB entry; LUI loads a
constant into an upper half of a word; ORI does a bitwise OR with a constant; LB
loads a byte from memory; SB stores a byte to memory.

Preparations may be of significant length, but the tool is able to reduce the volume
of such kind of code. It keeps track of the microprocessor state during test
generation and skips useless initialization (e.g., it does not load data into a buffer if
they are already there). Moreover, the generator can choose a data tag so as to fit the
desired event, a hit or a miss. On the other hand, preparation sequences are of
interest as they — as our experience shows — can stress the memory subsystem and
discover “high-quality” bugs.

8. Industrial Application

The proposed approach is implemented in the MicroTESK test program generator
[6, 7]. Since 2006, different versions of the tool — including one described in [5] —
have been applying to functional verification of several industrial microprocessors
with the MIPS architecture [9]. MMU specifications take into account such buffers
as a JTLB (a joint TLB), a DTLB (a micro TLB used to speed up data address
translation), an L1 (a first-level cache) and an L2 (a second-level cache). Besides,
they involve mapped and unmapped memory segments (XUSEG, KSEGO0, KSEG1
and XKPHYS), TLB control bits (Valid, Dirty and Global) and cache policies
(various combinations of Write-Through, Write-Allocate and Write-Back flags).
Stimuli are composed from load and store instructions. The approach has allowed
revealing a great number of critical bugs (e.g., reading incorrect data from memory)
in the MMU designs, which had not been detected by randomly generated test
programs.

6. Conclusion

Functional verification of a microprocessor MMU is surely a hard nut to crack.
Automation facilities are undoubtedly of high value and importance. Our work
contributes its mite to improving verification quality and productivity. The proposed
solution is based on the memory subsystem specification, i.e. on formal descriptions
of caching and address translation. The distinctive features of the approach are high
automation and systematicness. The suggested method is implemented in the
MicroTESK test program generator, which is freely distributed open-source
software. The tool has been used and is being used in industrial projects on
microprocessor development. A bad news is that the recent release has no support
for multicore designs. Avoiding this shortcoming is a priority task for the nearest
future. More particularly, we are going to extend the approach to multiprocessor
systems with distributed memory.
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Annoramms. [logcucrema mnaMsaTH SBIASETCS OJHMM U3  KIIOYEBBIX KOMIIOHEHTOB
Mukponporeccopa. OHa COCTOMT M3 3allOMHHAIOIIMX YCTPOMCTB pa3sHOr0 Ha3HAUCHUS
(6ydepoB uHCTpYKIMH, OyhepoB TpaHCISIIUK aIpPecOB, MHOTOYPOBHEBOH KOII-NAMSITH,
OCHOBHOH MNaMATH M APYrHX), OOBEOMHEHHBIX B CIOXKHYIO HEPapXU4YecKyio CTPYKTYpY.
Uncino BO3MOXXHBIX COCTOSHHM ITOJCHCTEMBI IIAMSATH KpaiHe BEIMKO, YTO MENaeT ee
(YHKIMOHATBHYIO BepH(HUKAUIO YpEe3BBIUAHO TPYHOEMKOIl 3amadeii. B HacTosmee Bpems
OCHOBHBIM MOAXO/OM K (DYHKIIHOHAIFHOH BepHU(HKAILIMY MHKPOIIPOIIECCOPOB HAa CHCTEMHOM
YPOBHE SIBISICTCS. MMHTAIMOHHOE MOJIETHPOBAHHE C HCIIOJIH30BAaHUEM aBTOMAaTHYECKU
CTEHEPUPOBAHHBIX TECTOBBIX IporpaMM. B naHHO# paboTe mpeuiaraetcs METO[ eHepaluu
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TECTOBBIX NMPOrpaMM Ui (YHKIMOHAIBHON BepUHKALMU MOAYJICH YIPaBICHHUS HNaMATHIO
MHKpOIPOIeccOpoB. B ocHOBe mpeuIoxkeHHOro MeTo ia Jiexar (hopMallbHbIE CIIeH(UKAIIIH
HMHCTPYKIMH JOCTyHa K IaMsTH, a HMEHHO MHCTPYKLIUH YTEHHs U 3aliCH, ¥ (GopManbHbIe
crerM(pUKAINN YCTPOUCTB MaMSITH, TAKAX KaK MOIYIH K3II-IIAMSITH B Oy(epsl TpaHCIIIN
anpecoB. Mcrnomp3zoBanne (OpMaIBHEIX CHeMU(UKANNA II03BOJISIET aBTOMAaTHU3MPOBAaTh
pa3pabOTKy TeHepaTOpOB TECTOBEIX IIPOrpaMM M  00ECIeYHMBAeT CHUCTEMAaTHYHOCTD
(GyHKIMOHATBHOW BepU(HKAIMK 332 CYET YETKOIO ONpEeIeieHHs Leleid TecTUpoBaHus. B
NpPEUIOKEHHOM — MOJXOAE TECTOBBIE IMPOTrpaMMbl  KOHCTPYHPYIOTCSI C  ITOMOIIBIO
KOMOMHATOPHBIX TEXHHK, TO €CTh TECTOBBIE BO3AEHCTBUS (IIOCIEA0BATENBHOCTH HHCTPYKIINI
YTECHUS U 3allUCH) CO3JAI0TCA IMyTeM Iepedopa BceX BO3MOXKHBIX KOMOMHALUI MHCTPYKIHUH,
curyanuii (IlyTeil HCIIOTHEHMS HHCTPYKLIUH) M 3aBHCHMOCTEH (MHOXXECTB KOH(MIMKTOB
MEXIy HHCTpYyKOusiMu). BakHOH 0COOEHHOCTBIO MeTOHa SIBISIETCS TO, YTO TECTOBEHIC
CUTyallUH M 3aBHCHUMOCTH aBTOMAaTHYECKH H3BIEKAIOTCS M3 (DOPMAIBHBIX CHEIH(UKaInii.
IIpemnokeHHBI NOAXOX NPHMEHSIICS B HECKOJIBKMX IPOMBIIUICHHBIX MPOEKTaX IO
BepHUKALUH MHKPOIPOLIECCOPOB apXUTeKTypsl MIPS M no3sBosmi BBIIBUTH KPUTHUYECKHE
OLIMOKH B MEXaHM3MaX YIPaBJIEHUs HaMSITEIO.
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TECTOBBIX MPOrPaMM; T€HepaIysl MOTOKAa HHCTPYKLHUH.
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