
А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

125

An Approach to Test Program Generation
Based on Formal Specifications of Caching

and Address Translation Mechanisms

A. Kamkin <kamkin@ispras.ru>,

A. Protsenko <protsenko@ispras.ru>,

A. Tatarnikov <andrewt@ispras.ru>,

Institute for System Programming of the Russian Academy of Sciences,

 25 Alexander Solzhenitsyn Str., Moscow, 109004, Russian Federation

Abstract. A memory subsystem is one of the key components of a microprocessors. It

consists of a number of storage devices (instruction buffers, address translation buffers,

multilevel cache memory, main memory, and others) organized into a complex hierarchical

structure. Huge state space of a memory subsystem makes its functional verification

extremely labor consuming. Nowadays, the main approach to functional verification of

microprocessors at a system level is simulation with the use of automatically generated test

programs. In this paper, a method for generating test programs for functional verification of

microprocessors’ memory management units is proposed. The approach is based on formal

specification of memory access instructions, namely load and store instructions, and formal

specification of memory devices, such as cache units and address translation buffers. The use

of formal specifications allows automating development of test program generators and

makes functional verification systematic due to clear definition of testing goals. In the

suggested approach, test programs are constructed by using combinatorial techniques, which

means that stimuli (sequences of loads and stores) are created by enumerating all feasible

combinations of instructions, situations (instruction execution paths) and dependencies (sets

of conflicts between instructions). It is of importance that test situations and dependencies are

automatically extracted from the formal specifications. The approach was used in several

industrial projects on verification of MIPS microprocessors and allowed to discover critical

bugs in the memory management mechanisms.

Keywords: microprocessors; memory management; caching; address translation; functional

verification; formal specifications; test program generation; instruction stream generation.

DOI: 10.15514/ISPRAS-2015-27(3)-9

For citation: Kamkin A., Protsenko A., Tatarnikov A. An Approach to Test Program

Generation Based on Formal Specifications of Caching and Address Translation

Mechanisms. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138. DOI:

10.15514/ISPRAS-2015-27(3)-9.

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

126

1. Introduction

A computer memory is known to be a complex hierarchy of data storage devices

varying in volume, latency and price [1]. In addition to registers and main memory,

microprocessors include a multi-level cache memory and address translation

buffers. The set of devices responsible for handling memory accesses is referred to

as a memory subsystem or a memory management unit (MMU). Being one of the

key microprocessor components, the memory subsystem is strongly required to be

correct and reliable. Due to the complicated structure of the memory, the number of

situations that can occur in processing load and store instructions is huge; this

makes it improbable to verify the subsystem “manually”.

In the current practice, tests – programs in the assembly language of the

microprocessor under test – are created in an automated way with the intensive use

of random generation. A tool that constructs test programs is called a test program

generator (TPG) or an instruction stream generator (ISG) [2]. In a typical use case,

a TPG accepts probability distributions for instructions types and operand values as

well as other parameters and produces a set of programs in compliance with the

settings. Though the randomization-based approach is able to find “high-quality”

bugs, it is not systematic and does not guarantee the verification completeness.

In the present work, an approach to generate test program for memory subsystems

of single-core microprocessors is discussed (the multi-core issues, such as memory

consistency and cache coherence [3], are out of the scope of the paper). The

proposed approach complements the random-based testing and enables thoroughly

checking situations in the MMU behavior. It uses specifications of memory access

instructions, i.e. load and store instructions, and specifications of memory devices

including, first of all, caches and address translation buffers. The formal

specifications serve as a source of test coverage information and allow

automatically extracting instruction-level situations and dependencies. Test

programs are built by composing possible situations and dependencies for

instruction sequences of bounded length.

The rest of the paper is organized as follows. Section II is a primer on

microprocessor memory organization. Section III provides a brief overview of the

related work. Section IV describes in detail the mentioned approach to test program

generation. Section V considers industrial applications of the described approach.

Finally, Section VI concludes the paper and outlines directions for future research

and development.

2. Memory Subsystem

In a nutshell, a memory subsystem of a microprocessor is intended for handling

memory accesses, namely instruction fetch requests, data loads and data stores. Its

functions include translation of virtual addresses into physical ones, memory

protection, code and data caching, etc. [1]. Let us consider the essential concepts of

the memory management.

А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

127

From a programmer’s perspective, a computer memory is a linear array of bytes.

However, the underlying mechanisms and techniques – usually referred to as a

virtual memory – are rather sophisticated. A virtual address space, i.e. a range of

the byte array indices available for programs to use, is commonly divided into

disjoint segments. Given a segment and a virtual address, the MMU acts as follows.

If the microprocessor mode satisfies the segment’s privilege level, the virtual

address is translated into the physical address, and an access to the physical memory

is performed; otherwise, an address error exception is thrown.

Segments are divided into mapped and unmapped; the latter, in turn, are subdivided

into cached and uncached. Addresses of mapped segments are translated with the

help of translation lookaside buffers (TLB), which store the mapping between

virtual page numbers (VPN) and physical frame numbers (PFN). If there is a match,

the VPN bits of the virtual address are replaced with the PFN bits, and the process

continues. Otherwise, a TLB refill exception is thrown, which triggers the operating

system to look up the page table and update the TLB. Unmapped addresses are

translated directly with no use of the buffers. Accessing cached segments, as

opposed to uncached ones, activates the caching mechanisms.

A cache is an intermediate storage responsible for speeding up access to frequently

used data. An average microprocessor has two- or three-level cache memory.

Typically, an Li cache stores a subset of Li+1 contents; the highest-level cache is the

largest one; it interacts immediately with the main memory. A cache works as

follows. As soon as data are requested, the cache controller checks whether they are

in the buffer. If they are (it is said to be a cache hit), the data are taken from there

and returned to the requester. Otherwise (it is said to be a cache miss), the controller

chooses a victim among the data blocks stored in the buffer and replaces it with the

data loaded from the higher-level cache or the main memory.

In the general case, a cache comprises a number of sets; each set consists of a

number of lines; each line includes data and a tag. Let S = 2s be the number of sets;

W be the number of lines in a set; B = 2b be the size of a data block. Depending on

the values of S and W, the following types of cache memory are recognized: (1) a

direct-mapped cache (W = 1); (2) a fully associative cache (S = 1); (3) a set-

associative cache (W > 1 and S > 1). The bit representation of an address is

interpreted as follows: the bits [0, …, b–1] refer to a byte inside a data block;

[b, …, b+s–1] identify a set; [b+s, …, m–1], where m is the address length, define a

tag. To determine whether the cache contains data for a given address, first, the set

is identified; then, the tags of the set’s lines are concurrently compared with the tag

extracted from the address. If there is a match, then the requested data are available

in the cache.

3. Related Work

There are several TPG tools based on formal specifications of memory subsystems.

DeepTrans (IBM Research) [4] is one of them. The approach is targeted at testing

address translation mechanisms and uses a special-purpose modeling language. A

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

128

process of address translation is depicted as a directed acyclic graph whose vertices

correspond to the process stages and whose edges relate to the transitions between

the stages. A path from the source of the graph to the sink defines a particular

situation in the address translation. Such situations can be referred from high-level

descriptions of test programs, so-called templates. The latter are processed by the

Genesys-Pro generator [2], which formulates constraints on instruction operands,

solves them and transforms the results into the instruction sequences. The major

advantage of the approach is the use of the highly developed languages for

modeling address translation and describing test templates. The disadvantage is that

the tool is not able to automatically extract conflicts and dependencies between

instructions. Verification engineers have to manually specify such kind of

information in test templates.

In [5], the Java programming language coupled with a specialized library is used to

specify MMU. As in DeepTrans, the situations correspond to the paths in the graph

describing the subsystem under test; here is an example: {Mapped (data are

requested via a mapped segment), TLBHit (there is a TLB hit), TLBValid (the

matched TLB entry is valid), ¬L1Hit (a miss in the first-level cache occurs)}. In

addition, the approach provides means for specifying instruction dependencies; an

example is as follows: {¬TLBEqual (instructions use different TLB entries),

L1IndexEqual (data are mapped to the same set of the first-level cache),

¬L1TagEqual (data belong to different cache lines)}. Test templates are constructed

automatically by combining situations and dependencies for short sequences of

instructions. Building templates and creating programs on their basis is done by the

MicroTESK generator (ISP RAS) [6]. The strength of the approach is systematic

test enumeration that takes into consideration instruction execution paths as well as

dependencies between instructions. The principal weakness is underdeveloped

specification facilities.

4. Approach Description

The main goal of the presented research is to combine the advantages of the

methods [4] and [5] as well as to avoid their drawbacks. It can be achieved by using

formal specifications. Accordingly, microprocessor instructions, an MMU and test

templates are described in formal domain-specific languages. Specifications are

analyzed to extract testing knowledge, that is, situations and dependencies. The

information having been extracted is used to automatically generate test programs

from templates as well as to automatically construct templates in a systematic way.

The suggested method is supported by the MicroTESK TPG [7].

4.1 Formal Specifications

Formal specification of a microprocessor under test touches on the instruction set

and the memory subsystem. Instructions are described in the nML language [8].

Descriptions declare the registers and define the assembly syntax, binary image and

А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

129

the semantics of the instructions. Semantics is specified in the usual imperative form

by means of the bit-vector and floating point operations. Here is an nML

specification of the MIPS [9] integer addition instruction (ADD):

op ADD (rd: REG, rs: REG, rt: REG)
 syntax = format("add %s, %s, %s",

 rd.syntax, rs.syntax, rt.syntax)

 image = format("000000%s%s%s00000100000",

 rs.image, rt.image, rd.image)

 action = {

 temp = rs<31>::rs<31..0> +
 rt<31>::rt<31..0>;

 if temp<32> != temp<31> then

 exception("IntegerOverflow");
 else

 rd = coerce(DWORD, temp<31..0>);
 endif;

 }

Being rather simple, nML does not have adequate facilities to describe memory

management. Though the language is powerful enough to specify caching and

address translation mechanisms, pure nML specifications of MMU are awkward and

hardly analyzable; in particular, it is difficult to extract testing knowledge to

automate test program generation. In that situation, a domain-specific language has

been introduced. A memory access instruction is described in nML in an intuitive

manner by reading or writing data from or to the byte array representing the

physical memory. Every access to the array triggers the MMU logic specified in a

separate file. An nML specification of the MIPS load byte instruction (LB) may

look as follows:

op LB (rt: REG, offset: SHORT, base: REG)
 syntax = format("lb %s, %d(%s)",

 rt.syntax, offset, base.syntax)

 image = format("100000%s%s%s",

 base.image, rt.image, offset)

 action = {

 rt = MEM[base + offset];
 }

where MEM is an array declared as mem MEM[2**36, BYTE]; 2**36 (that is 236)

is the memory size in bytes. Note that notwithstanding the array is specified as the

physical memory, it is accessed through the virtual address.

Memory management is described in a special language. MMU specifications

include address types, memory segments, buffers, such as TLB and caches, and

detailed algorithms for handling load and store instructions. Addresses and

segments are described straightforwardly; buffers are specified with the following

parameters: the associativity (ways), the number of sets (sets), the entry (line)

format (entry), the index calculation function (index), the tag calculation function

(tag) and the data eviction policy (policy). Here is a description of the virtual and

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

130

physical addresses (VA and PA correspondingly), user segment (XUSEG), address

translation buffer (TLB) and the first-level cache memory (L1) of a MIPS

microprocessor:

address VA (64)
address PA (36)

segment XUSEG (va: VA)
 range = (0x0, 0x00ffFFFFffff)

buffer TLB (va: VA)
 ways = 64
 sets = 1
 entry = (VPN2: 27, V0: 1, PFN0: 24, ...)
 index = 0
 tag = va<39..13>
 policy = NONE

buffer L1 (pa: PA)
 ways = 4
 sets = 128
 entry = (TAG: 24, DATA: 256)
 index = pa<11..5>
 tag = pa<35..12>

 policy = LRU

Processing of loads and stores is specified by requesting the buffers and handling

their responses. The syntax is similar to nML though allows using such conditions

as XUSEG(va).hit (the address va belongs to the segment XUSEG) and L1(pa).hit

(the buffer L1 contains the data for the address pa). Here comes an example:

mmu MEM (va: VA)
 ...
 read = {
 if XUSEG(va).hit then

 if TLB(va).hit then

 tlbEntry = TLB(va);
 else

 exception("TLBRefill");
 endif;

 if va<12> == 0 then

 v = tlbEntry.V0;

 pfn = tlbEntry.PFN0;
 ...
 endif;

 if v == 1 then

 pa = pfn::va<11..0>;
 else

 exception("TLBInvalid");
 endif;

 ...
 endif;

 if L1(pa).hit then

 l1Entry = L1(pa);
 data = l1Entry.DATA;
 ...

А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

131

 endif;

 }

 write = { ... }

4.2 Coverage Extractor

Formal specifications are parsed and the control flow graph (CFG) is build. A

coverage extractor traverses the CFG and constructs the set of all possible

execution paths (the graph is assumed to be acyclic). A single path, so-called a

situation, describes processing of an individual request and finishes either with a

memory access or with an exception (incorrect address, TLB refill, etc.). Each

transition of the path is labeled with a guard, i.e. a condition that enables the

transition, and an action to be performed. Here is an example of a load situation (for

the sake of simplicity, the transition actions are omitted): {XUSEG(va).hit,

TLB(va).hit, va<12> = 0, v = 1, L1(pa).hit}.

Given a pair of execution paths, the coverage extractor may be demanded to

construct the set of all possible dependencies. A dependency is a map from the set

of buffers common for the two given execution paths to the set of conflicts.

Speaking formally, a dependency is a partial map d: B → C, where B is the set of

buffers and C is the set of conflicts. The following types of buffer usage conflicts

are predefined in the tool:

• AddrEqual – using the same data;

• AddrNotEqual – using different data:
o IndexEqual – using data of the same set:

� TagEqual – using data of the same line;
� TagReplaced – using data of the replaced line;
� TagNotReplaced – otherwise;

o IndexNotEqual – using data of different sets.

To illustrate the concept, let us consider two simple situations: the first one is {…,

TLB(va1).hit, …, L1(pa1).hit}; the second is {…, TLB(va2).hit, …, L1(pa2).miss,

…}. The situations share two buffers, namely TLB and L1. A possible dependency

is {TLB.TagEqual, L1.IndexNotEqual}, that is, two instructions access the same

TLB entry (va1<39..13> = va2<39..13>), but use different L1 sets

(pa1<11..5> ≠ pa2<11..5>).

4.3 Template Iterator

A template is a sequence of situations linked together with a number of

dependencies. A template iterator systematically enumerates templates to cover a

representative set of cases of the memory subsystem behavior. Let S be the set of

situations; D be the set of dependencies; n be the length of templates. Formally, a

test template of the length n is a pair 〈σ, λ〉, where σ = (s1, ..., sn) ∈ Sn is the

template skeleton and λ = {dij}, where i = 1, ..., n-1 and j = i+1, ..., n, is the template

ligaments. An example of a two-situation template is given below:

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

132

s1: {XUSEG(va1).hit, TLB(va1).hit, va1<12> = 1, v1 = 1, L1(pa1).hit};

s2: {XUSEG(va2).hit, TLB(va2).hit, va2<12> = 0, v2 = 0};

d12: {TLB.TagEqual (va1<39..13> = va2<39..13>)}.

The main, but not the only, approach supported by the tool is combinatorial

generation. Test templates are constructed by enumerating all possible skeletons of

the given length and creating all possible ligaments for each of them. The template

iterator checks whether the produced templates are consistent. For each template, it

formulates the set of constraints and invokes a solver [10]; if the constraints are

unsatisfiable, the template is discarded. Here is an example of an inconsistency:

s1: {..., va1<12> = 0, v1 = 1, ...};

s2: {..., va2<12> = 0, v2 = 0};

d12: {TLB.TagEqual (va1<39..13> = va2<39..13>)}.

TLB.TagEqual implies that both instructions access the same TLB entry, whereas

va1<12> = 0 and va2<12> = 0 result in v1 = v2 = tlbEntry.V0, which contradicts to

v1 = 1 and v2 = 0.

To avoid the combinatorial explosion, special heuristics are in use. Among them,

factorization of situations and limitation of the depth of dependencies are essential.

Description of the heuristics are out of the scope of the paper.

4.4 Test Data Generator

Templates are symbolic representation of test programs. To produce a test program

from a template, the latter should be instantiated. A test data generator plays the

key role in this activity. Test data, in a sense, are a solution to the constraints

stipulated in the template. They include virtual addresses to be used by the

instructions as well as some auxiliary information intended for setting up the state of

the microprocessor under test such as indices of TLB entries, VPN-to-PFN

mappings, sequences of addresses to be accessed to load or evict data to or from the

buffers, etc.

The test data generator acts in compliance with one of the following strategies: (1)

heavyweight template elaboration with an attempt to find an exact solution to the

problem or (2) lightweight processing targeted at constructing an approximate

solution. In the main, our approach follows the second strategy. Detailed analysis of

templates makes sense only for accurate MMU specifications, while instruction-

level models are rather abstract. Another argument is that the lightweight approach

gives a significant benefit in terms of performance, while the quality of testing is

comparable.

Given a template 〈(s1, ..., sn), {dij}〉, consider how test data are generated. First, for

each situation sj of the template, a united dependency depj: B × C → 2{1, ..., j-1} is

built. For each buffer b and conflict c, depj(b, c) contains indices i < j such that

b ∈ dom(dij) and dij(b) = c, that is, the situations si and sj access the buffer b and

there is the access conflict c. Then, the template’s situations are processed one after

А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

133

another. Given a situation sj, the buffers affected in sj are sequentially inspected. For

each buffer b, the actions listed below are performed:

• if depj(b, AddrEqual) ≠ ∅, then

data(sj).addr ← data(si).addr,
where data(sj) denotes the test data associated with sj; addr is the virtual or
physical address depending on the b type; i is any index from
depj(b, AddrEqual);

• otherwise, if depj(b, IndexEqual) ≠ ∅, then

data(sj).addr<I> ← data(si).addr<I>,
where I is the bit range given in the index section of the b specification;

o if depj(b, TagEqual) ≠ ∅, then

data(sj).addr<T> ← data(si).addr<T>,
where T is the bit range given in the tag section of the b specification;

o if depj(b, TagReplaced) = ∅, then

data(sj).addr<T> ← tagb(data(sj).addr<I>),
where tagb(index) is a previously unused tag of b for the given index;

• otherwise (if depj(b, IndexEqual) = ∅),

data(sj).addr<I> ← indexb,
where indexb is a previously unused index of b.

TagReplaced conflicts – referred to as dynamic conflicts – are handled in a special

way. As soon as all other constraints, including hits and misses (see the next

paragraph for details), are resolved, the created sequence of instructions is simulated

on a simplified model derived from the MMU specifications. This enables the

generator to predict the lines being evicted and replaced with recently accessed data.

If there is a TagReplaced conflict between two instructions (template situations, to

be more precise), the evicted tag having been predicted for the first instruction is

copied into the address of the second one.

In between static Equal/NotEqual and dynamic Replaced conflicts, hits and misses

are considered. For a hit, an access to the designated address is appended to the

template test data: hit(b).add(data(sj).addr), where hit(b) is a set-separated data

structure that stores sequences of addresses targeted at loading data into the buffer

b. For a miss, an address sequence ω is added: miss(b).add(ω), where miss(b) is a

storage of addresses used to evict data from b, and ω = {addr1, ..., addrW} is a so-

called evicting sequence, that is, addrk<I> = data(sj).addr<I>, addrk<T> ≠

data(sj).addr<T> and addrk<T> ≠ addrl<T> for all k, l ∈ {1, ..., W} such that k ≠ l;

W is the b associativity. Note that appending an address to the hit(b) structure may

require adding evicting sequences for the preceding buffers with the miss constraint

having been set.

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

134

4.5 Test Data Adapter

Indeed, test data concretize symbolic templates, but being instruction set

independent they are still too general to be immediately applied to testing. It is a test

data adapter who translates a template coupled with test data into a sequence of

specific instructions, so-called a test case. Such a sequence usually consists of two

parts: a preparation, which sets up the microprocessor state, and a stimulus, which

performs a series of memory accesses to stress the microprocessor’s MMU.

Making a stimulus is straightforward: each situation of the template skeleton is

converted into a load or a store depending on the specification section, read or

write, the execution path belongs to. A particular type of the instruction, i.e. the size

of a data block being accessed, is either derived from the template / specifications or

randomized. The instruction is allowed to use any registers from the user-defined

set. Note that the procedure requires a mapping from

{read, write} × {byte, word, ...} to the set of memory access instructions

implemented in the design.

Constructing a preparation sequence is more intricate. The main problem is that

placing data into a buffer may change the state of others. Here is how the problem is

solved. First, virtual address based buffers, e.g., TLB, are handled before buffers

accessed by physical addresses, e.g., L1 and L2. Initialization of the latter can be

carried out by using unmapped addresses, which does not affect the former. Second,

the “largest buffer first” strategy is applied. Typically, a set of lines of a smaller

buffer maps several sets of lines of a larger one, which gives a possibility to change

the smaller buffer with no tangible effect to the larger one. Given a buffer, the

preparation sequence is cut into pieces corresponding to particular sets of the buffer.

Each piece is the catenation of the miss and hit sequences. It is implied that each

buffer is provided with a code pattern to be used to place data for a given address.

Here comes a simplistic test case for the MIPS architecture:

// Preparation:
// Fill TLB: VPN0=0x4, V0=1, PFN0=0x10222
tlbwi ...

// Fill L1: VA=0x80261026 (PA=0x261026)
lui t0, 0x8026
ori t0, t0, 0x1026
lb t0, 0(t0)

// Address 0: VA=0x80261026 (PA=0x261026)
lui s0, 0x8026
ori s0, s0, 0x1026

// Address 1: VA=0x4059 (PA=0x10222059)
ori s1, zero, 0x4059

// Stimulus:
// KSEG0.hit (Mapped=0), L1.hit
lb a0, 0(s0)

// XUSEG.hit (Mapped=1), TLB.hit, VA[12]=0, V=1
sb a1, 0(s1)

А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

135

The instructions here are as follows [9]: TLBWI writes a TLB entry; LUI loads a

constant into an upper half of a word; ORI does a bitwise OR with a constant; LB

loads a byte from memory; SB stores a byte to memory.

Preparations may be of significant length, but the tool is able to reduce the volume

of such kind of code. It keeps track of the microprocessor state during test

generation and skips useless initialization (e.g., it does not load data into a buffer if

they are already there). Moreover, the generator can choose a data tag so as to fit the

desired event, a hit or a miss. On the other hand, preparation sequences are of

interest as they – as our experience shows – can stress the memory subsystem and

discover “high-quality” bugs.

5. Industrial Application

The proposed approach is implemented in the MicroTESK test program generator

[6, 7]. Since 2006, different versions of the tool – including one described in [5] –

have been applying to functional verification of several industrial microprocessors

with the MIPS architecture [9]. MMU specifications take into account such buffers

as a JTLB (a joint TLB), a DTLB (a micro TLB used to speed up data address

translation), an L1 (a first-level cache) and an L2 (a second-level cache). Besides,

they involve mapped and unmapped memory segments (XUSEG, KSEG0, KSEG1

and XKPHYS), TLB control bits (Valid, Dirty and Global) and cache policies

(various combinations of Write-Through, Write-Allocate and Write-Back flags).

Stimuli are composed from load and store instructions. The approach has allowed

revealing a great number of critical bugs (e.g., reading incorrect data from memory)

in the MMU designs, which had not been detected by randomly generated test

programs.

6. Conclusion

Functional verification of a microprocessor MMU is surely a hard nut to crack.

Automation facilities are undoubtedly of high value and importance. Our work

contributes its mite to improving verification quality and productivity. The proposed

solution is based on the memory subsystem specification, i.e. on formal descriptions

of caching and address translation. The distinctive features of the approach are high

automation and systematicness. The suggested method is implemented in the

MicroTESK test program generator, which is freely distributed open-source

software. The tool has been used and is being used in industrial projects on

microprocessor development. A bad news is that the recent release has no support

for multicore designs. Avoiding this shortcoming is a priority task for the nearest

future. More particularly, we are going to extend the approach to multiprocessor

systems with distributed memory.

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

136

References
[1] Bryant R.E., O’Hallaron D.R. Computer Systems: A Programmer’s Perspective.

Pearson, 2010. 1080 p.

[2] Adir A., Almog E., Fournier L, Marcus E., Rimon M., Vinov M., Ziv A. Genesys-Pro:
Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84-93.

[3] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

[4] Adir A., Fournier L., Katz Y., Koyfman A. DeepTrans – Extending the Model-based
Approach to Functional Verification of Address Translation Mechanisms. High-Level
Design Validation and Test Workshop, 2006. pp. 102-110.

[5] Vorobyev D., Kamkin A. Generatsiya testovykh programm dlya podsistemy upravleniya
pamyat'yu mikroprotsessora [Test Program Generation for Memory Management Units
of Microprocessors]. Trudy ISP RAN [Proceedings of ISP RAS], 2009, vol. 17. pp. 119-
132 (in Russian).

[6] Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. Spring/Summer Young Researchers’ Colloquium on
Software Engineering, 2012, pp. 64-69.

[7] MicroTESK page — http://forge.ispras.ru/projects/microtesk

[8] Freericks M. The nML Machine Description Formalism. Technical Report TR SM-
IMP/DIST/08, TU Berlin CS Department, 1993.

[9] MIPS64™ Architecture For Programmers. MIPS Technologies Inc.

[10] Fortress page — http://forge.ispras.ru/projects/solver-api

Метод генерации тестовых программ на
основе формальных спецификаций

механизмов кэширования и трансляции
адресов

А.С. Камкин <kamkin@ispras.ru>.

А.С. Проценко <protsenko@ispras.ru>.

А.Д. Татарников <andrewt@ispras.ru>

Институт системного программирования РАН,

 109004, Россия, г. Москва, ул. А. Солженицына, дом 25.

Аннотация. Подсистема памяти является одним из ключевых компонентов

микропроцессора. Она состоит из запоминающих устройств разного назначения

(буферов инструкций, буферов трансляции адресов, многоуровневой кэш-памяти,

основной памяти и других), объединенных в сложную иерархическую структуру.

Число возможных состояний подсистемы памяти крайне велико, что делает ее

функциональную верификацию чрезвычайно трудоемкой задачей. В настоящее время

основным подходом к функциональной верификации микропроцессоров на системном

уровне является имитационное моделирование с использованием автоматически

сгенерированных тестовых программ. В данной работе предлагается метод генерации

А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138

137

тестовых программ для функциональной верификации модулей управления памятью

микропроцессоров. В основе предложенного метода лежат формальные спецификации

инструкций доступа к памяти, а именно инструкций чтения и записи, и формальные

спецификации устройств памяти, таких как модули кэш-памяти и буферы трансляции

адресов. Использование формальных спецификаций позволяет автоматизировать

разработку генераторов тестовых программ и обеспечивает систематичность

функциональной верификации за счет четкого определения целей тестирования. В

предложенном подходе тестовые программы конструируются с помощью

комбинаторных техник, то есть тестовые воздействия (последовательности инструкций

чтения и записи) создаются путем перебора всех возможных комбинаций инструкций,

ситуаций (путей исполнения инструкций) и зависимостей (множеств конфликтов

между инструкциями). Важной особенностью метода является то, что тестовые

ситуации и зависимости автоматически извлекаются из формальных спецификаций.

Предложенный подход применялся в нескольких промышленных проектах по

верификации микропроцессоров архитектуры MIPS и позволил выявить критические
ошибки в механизмах управления памятью.

Ключевые слова: микропроцессоры; управление памятью; кэширование; трансляция

адресов; функциональная верификация; формальные спецификации; генерация
тестовых программ; генерация потока инструкций.

DOI: 10.15514/ISPRAS-2015-27(3)-9

Для цитирования: Камкин А.С., Проценко А.С., Татарников А.Д. Метод генерации

тестовых программ на основе формальных спецификаций механизмов кэширования и

трансляции адресов. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 125-138 (на

английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-9.

Список литературы
[1] Bryant R.E., O’Hallaron D.R. Computer Systems: A Programmer’s Perspective.

Pearson, 2010. 1080 p.

[2] Adir A., Almog E., Fournier L, Marcus E., Rimon M., Vinov M., Ziv A. Genesys-Pro:
Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84-93.

[3] Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.

[4] Adir A., Fournier L., Katz Y., Koyfman A. DeepTrans – Extending the Model-based
Approach to Functional Verification of Address Translation Mechanisms. High-Level
Design Validation and Test Workshop, 2006. pp. 102-110.

[5] Д.Н. Воробьев, А.С. Камкин. Генерация тестовых программ для подсистемы
управления памятью микропроцессора. Труды ИСП РАН, 17, 2009. с. 119-132.

[6] Kamkin A., Tatarnikov A. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. Spring/Summer Young Researchers’ Colloquium on
Software Engineering, 2012, pp. 64-69.

[7] Страница инструмента MicroTESK — http://forge.ispras.ru/projects/microtesk

[8] Freericks M. The nML Machine Description Formalism. Technical Report TR SM-
IMP/DIST/08, TU Berlin CS Department, 1993.

[9] MIPS64™ Architecture For Programmers. MIPS Technologies Inc.

A. Kamkin et al. An Approach to Test Program Generation Based on Formal Specifications of Caching and Address

Translation Mechanisms. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 125-138

138

[10] Страница библиотеки Fortress — http://forge.ispras.ru/projects/solver-api

