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Abstract. A memory subsystem is one of the key components of a microprocessors. It 

consists of a number of storage devices (instruction buffers, address translation buffers, 

multilevel cache memory, main memory, and others) organized into a complex hierarchical 

structure. Huge state space of a memory subsystem makes its functional verification 

extremely labor consuming. Nowadays, the main approach to functional verification of 

microprocessors at a system level is simulation with the use of automatically generated test 

programs. In this paper, a method for generating test programs for functional verification of 

microprocessors’ memory management units is proposed. The approach is based on formal 

specification of memory access instructions, namely load and store instructions, and formal 

specification of memory devices, such as cache units and address translation buffers. The use 

of formal specifications allows automating development of test program generators and 

makes functional verification systematic due to clear definition of testing goals. In the 

suggested approach, test programs are constructed by using combinatorial techniques, which 

means that stimuli (sequences of loads and stores) are created by enumerating all feasible 

combinations of instructions, situations (instruction execution paths) and dependencies (sets 

of conflicts between instructions). It is of importance that test situations and dependencies are 

automatically extracted from the formal specifications. The approach was used in several 

industrial projects on verification of MIPS microprocessors and allowed to discover critical 

bugs in the memory management mechanisms. 
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1. Introduction 

A computer memory is known to be a complex hierarchy of data storage devices 

varying in volume, latency and price [1]. In addition to registers and main memory, 

microprocessors include a multi-level cache memory and address translation 

buffers. The set of devices responsible for handling memory accesses is referred to 

as a memory subsystem or a memory management unit (MMU). Being one of the 

key microprocessor components, the memory subsystem is strongly required to be 

correct and reliable. Due to the complicated structure of the memory, the number of 

situations that can occur in processing load and store instructions is huge; this 

makes it improbable to verify the subsystem “manually”. 

In the current practice, tests – programs in the assembly language of the 

microprocessor under test – are created in an automated way with the intensive use 

of random generation. A tool that constructs test programs is called a test program 

generator (TPG) or an instruction stream generator (ISG) [2]. In a typical use case, 

a TPG accepts probability distributions for instructions types and operand values as 

well as other parameters and produces a set of programs in compliance with the 

settings. Though the randomization-based approach is able to find “high-quality” 

bugs, it is not systematic and does not guarantee the verification completeness. 

In the present work, an approach to generate test program for memory subsystems 

of single-core microprocessors is discussed (the multi-core issues, such as memory 

consistency and cache coherence [3], are out of the scope of the paper). The 

proposed approach complements the random-based testing and enables thoroughly 

checking situations in the MMU behavior. It uses specifications of memory access 

instructions, i.e. load and store instructions, and specifications of memory devices 

including, first of all, caches and address translation buffers. The formal 

specifications serve as a source of test coverage information and allow 

automatically extracting instruction-level situations and dependencies. Test 

programs are built by composing possible situations and dependencies for 

instruction sequences of bounded length. 

The rest of the paper is organized as follows. Section II is a primer on 

microprocessor memory organization. Section III provides a brief overview of the 

related work. Section IV describes in detail the mentioned approach to test program 

generation. Section V considers industrial applications of the described approach. 

Finally, Section VI concludes the paper and outlines directions for future research 

and development. 

2. Memory Subsystem 

In a nutshell, a memory subsystem of a microprocessor is intended for handling 

memory accesses, namely instruction fetch requests, data loads and data stores. Its 

functions include translation of virtual addresses into physical ones, memory 

protection, code and data caching, etc. [1]. Let us consider the essential concepts of 

the memory management. 
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From a programmer’s perspective, a computer memory is a linear array of bytes. 

However, the underlying mechanisms and techniques – usually referred to as a 

virtual memory – are rather sophisticated. A virtual address space, i.e. a range of 

the byte array indices available for programs to use, is commonly divided into 

disjoint segments. Given a segment and a virtual address, the MMU acts as follows. 

If the microprocessor mode satisfies the segment’s privilege level, the virtual 

address is translated into the physical address, and an access to the physical memory 

is performed; otherwise, an address error exception is thrown. 

Segments are divided into mapped and unmapped; the latter, in turn, are subdivided 

into cached and uncached. Addresses of mapped segments are translated with the 

help of translation lookaside buffers (TLB), which store the mapping between 

virtual page numbers (VPN) and physical frame numbers (PFN). If there is a match, 

the VPN bits of the virtual address are replaced with the PFN bits, and the process 

continues. Otherwise, a TLB refill exception is thrown, which triggers the operating 

system to look up the page table and update the TLB. Unmapped addresses are 

translated directly with no use of the buffers. Accessing cached segments, as 

opposed to uncached ones, activates the caching mechanisms. 

A cache is an intermediate storage responsible for speeding up access to frequently 

used data. An average microprocessor has two- or three-level cache memory. 

Typically, an Li cache stores a subset of Li+1 contents; the highest-level cache is the 

largest one; it interacts immediately with the main memory. A cache works as 

follows. As soon as data are requested, the cache controller checks whether they are 

in the buffer. If they are (it is said to be a cache hit), the data are taken from there 

and returned to the requester. Otherwise (it is said to be a cache miss), the controller 

chooses a victim among the data blocks stored in the buffer and replaces it with the 

data loaded from the higher-level cache or the main memory. 

In the general case, a cache comprises a number of sets; each set consists of a 

number of lines; each line includes data and a tag. Let S = 2s be the number of sets; 

W be the number of lines in a set; B = 2b be the size of a data block. Depending on 

the values of S and W, the following types of cache memory are recognized: (1) a 

direct-mapped cache (W = 1); (2) a fully associative cache (S = 1); (3) a set-

associative cache (W > 1 and S > 1). The bit representation of an address is 

interpreted as follows: the bits [0, …, b–1] refer to a byte inside a data block; 

[b, …, b+s–1] identify a set; [b+s, …, m–1], where m is the address length, define a 

tag. To determine whether the cache contains data for a given address, first, the set 

is identified; then, the tags of the set’s lines are concurrently compared with the tag 

extracted from the address. If there is a match, then the requested data are available 

in the cache. 

3. Related Work 

There are several TPG tools based on formal specifications of memory subsystems. 

DeepTrans (IBM Research) [4] is one of them. The approach is targeted at testing 

address translation mechanisms and uses a special-purpose modeling language. A 
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process of address translation is depicted as a directed acyclic graph whose vertices 

correspond to the process stages and whose edges relate to the transitions between 

the stages. A path from the source of the graph to the sink defines a particular 

situation in the address translation. Such situations can be referred from high-level 

descriptions of test programs, so-called templates. The latter are processed by the 

Genesys-Pro generator [2], which formulates constraints on instruction operands, 

solves them and transforms the results into the instruction sequences. The major 

advantage of the approach is the use of the highly developed languages for 

modeling address translation and describing test templates. The disadvantage is that 

the tool is not able to automatically extract conflicts and dependencies between 

instructions. Verification engineers have to manually specify such kind of 

information in test templates. 

In [5], the Java programming language coupled with a specialized library is used to 

specify MMU. As in DeepTrans, the situations correspond to the paths in the graph 

describing the subsystem under test; here is an example: {Mapped (data are 

requested via a mapped segment), TLBHit (there is a TLB hit), TLBValid (the 

matched TLB entry is valid), ¬L1Hit (a miss in the first-level cache occurs)}. In 

addition, the approach provides means for specifying instruction dependencies; an 

example is as follows: {¬TLBEqual (instructions use different TLB entries), 

L1IndexEqual (data are mapped to the same set of the first-level cache), 

¬L1TagEqual (data belong to different cache lines)}. Test templates are constructed 

automatically by combining situations and dependencies for short sequences of 

instructions. Building templates and creating programs on their basis is done by the 

MicroTESK generator (ISP RAS) [6]. The strength of the approach is systematic 

test enumeration that takes into consideration instruction execution paths as well as 

dependencies between instructions. The principal weakness is underdeveloped 

specification facilities. 

4. Approach Description 

The main goal of the presented research is to combine the advantages of the 

methods [4] and [5] as well as to avoid their drawbacks. It can be achieved by using 

formal specifications. Accordingly, microprocessor instructions, an MMU and test 

templates are described in formal domain-specific languages. Specifications are 

analyzed to extract testing knowledge, that is, situations and dependencies. The 

information having been extracted is used to automatically generate test programs 

from templates as well as to automatically construct templates in a systematic way. 

The suggested method is supported by the MicroTESK TPG [7]. 

4.1 Formal Specifications 

Formal specification of a microprocessor under test touches on the instruction set 

and the memory subsystem. Instructions are described in the nML language [8]. 

Descriptions declare the registers and define the assembly syntax, binary image and 
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the semantics of the instructions. Semantics is specified in the usual imperative form 

by means of the bit-vector and floating point operations. Here is an nML 

specification of the MIPS [9] integer addition instruction (ADD): 

op ADD (rd: REG, rs: REG, rt: REG) 
  syntax = format("add %s, %s, %s", 

    rd.syntax, rs.syntax, rt.syntax) 

  image = format("000000%s%s%s00000100000", 

    rs.image, rt.image, rd.image) 

  action = { 

    temp = rs<31>::rs<31..0> + 
           rt<31>::rt<31..0>; 

    if temp<32> != temp<31> then 

      exception("IntegerOverflow"); 
    else 

      rd = coerce(DWORD, temp<31..0>); 
    endif; 

  } 

Being rather simple, nML does not have adequate facilities to describe memory 

management. Though the language is powerful enough to specify caching and 

address translation mechanisms, pure nML specifications of MMU are awkward and 

hardly analyzable; in particular, it is difficult to extract testing knowledge to 

automate test program generation. In that situation, a domain-specific language has 

been introduced. A memory access instruction is described in nML in an intuitive 

manner by reading or writing data from or to the byte array representing the 

physical memory. Every access to the array triggers the MMU logic specified in a 

separate file. An nML specification of the MIPS load byte instruction (LB) may 

look as follows: 

op LB (rt: REG, offset: SHORT, base: REG) 
  syntax = format("lb %s, %d(%s)", 

    rt.syntax, offset, base.syntax) 

  image = format("100000%s%s%s", 

    base.image, rt.image, offset) 

  action = { 

    rt = MEM[base + offset]; 
  } 

where MEM is an array declared as mem MEM[2**36, BYTE]; 2**36 (that is 236) 

is the memory size in bytes. Note that notwithstanding the array is specified as the 

physical memory, it is accessed through the virtual address. 

Memory management is described in a special language. MMU specifications 

include address types, memory segments, buffers, such as TLB and caches, and 

detailed algorithms for handling load and store instructions. Addresses and 

segments are described straightforwardly; buffers are specified with the following 

parameters: the associativity (ways), the number of sets (sets), the entry (line) 

format (entry), the index calculation function (index), the tag calculation function 

(tag) and the data eviction policy (policy). Here is a description of the virtual and 
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physical addresses (VA and PA correspondingly), user segment (XUSEG), address 

translation buffer (TLB) and the first-level cache memory (L1) of a MIPS 

microprocessor: 

address VA (64) 
address PA (36) 

segment XUSEG (va: VA) 
  range  = (0x0, 0x00ffFFFFffff) 

buffer TLB (va: VA) 
  ways   = 64 
  sets   = 1 
  entry  = (VPN2: 27, V0: 1, PFN0: 24, ...) 
  index  = 0 
  tag    = va<39..13> 
  policy = NONE 

buffer L1 (pa: PA) 
  ways   = 4 
  sets   = 128 
  entry  = (TAG: 24, DATA: 256) 
  index  = pa<11..5> 
  tag    = pa<35..12> 

  policy = LRU 

Processing of loads and stores is specified by requesting the buffers and handling 

their responses. The syntax is similar to nML though allows using such conditions 

as XUSEG(va).hit (the address va belongs to the segment XUSEG) and L1(pa).hit 

(the buffer L1 contains the data for the address pa). Here comes an example: 

mmu MEM (va: VA) 
  ... 
  read = { 
    if XUSEG(va).hit then 

      if TLB(va).hit then 

        tlbEntry = TLB(va); 
      else 

        exception("TLBRefill"); 
      endif; 

      if va<12> == 0 then 

        v   = tlbEntry.V0; 

        pfn = tlbEntry.PFN0; 
        ... 
      endif; 

      if v == 1 then 

        pa = pfn::va<11..0>; 
      else 

        exception("TLBInvalid"); 
      endif; 

      ... 
    endif; 

    if L1(pa).hit then 

      l1Entry = L1(pa); 
      data = l1Entry.DATA; 
      ... 



А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных 

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138 

131 

    endif; 

  } 

  write = { ... } 

4.2 Coverage Extractor 

Formal specifications are parsed and the control flow graph (CFG) is build. A 

coverage extractor traverses the CFG and constructs the set of all possible 

execution paths (the graph is assumed to be acyclic). A single path, so-called a 

situation, describes processing of an individual request and finishes either with a 

memory access or with an exception (incorrect address, TLB refill, etc.). Each 

transition of the path is labeled with a guard, i.e. a condition that enables the 

transition, and an action to be performed. Here is an example of a load situation (for 

the sake of simplicity, the transition actions are omitted): {XUSEG(va).hit, 

TLB(va).hit, va<12> = 0, v = 1, L1(pa).hit}. 

Given a pair of execution paths, the coverage extractor may be demanded to 

construct the set of all possible dependencies. A dependency is a map from the set 

of buffers common for the two given execution paths to the set of conflicts. 

Speaking formally, a dependency is a partial map d: B → C, where B is the set of 

buffers and C is the set of conflicts. The following types of buffer usage conflicts 

are predefined in the tool: 

• AddrEqual – using the same data; 

• AddrNotEqual – using different data: 
o IndexEqual – using data of the same set: 

� TagEqual – using data of the same line; 
� TagReplaced – using data of the replaced line; 
� TagNotReplaced – otherwise; 

o IndexNotEqual – using data of different sets. 

To illustrate the concept, let us consider two simple situations: the first one is {…, 

TLB(va1).hit, …, L1(pa1).hit}; the second is {…, TLB(va2).hit, …, L1(pa2).miss, 

…}. The situations share two buffers, namely TLB and L1. A possible dependency 

is {TLB.TagEqual, L1.IndexNotEqual}, that is, two instructions access the same 

TLB entry (va1<39..13> = va2<39..13>), but use different L1 sets 

(pa1<11..5> ≠ pa2<11..5>). 

4.3 Template Iterator 

A template is a sequence of situations linked together with a number of 

dependencies. A template iterator systematically enumerates templates to cover a 

representative set of cases of the memory subsystem behavior. Let S be the set of 

situations; D be the set of dependencies; n be the length of templates. Formally, a 

test template of the length n is a pair 〈σ, λ〉, where σ = (s1, ..., sn) ∈ Sn is the 

template skeleton and λ = {dij}, where i = 1, ..., n-1 and j = i+1, ..., n, is the template 

ligaments. An example of a two-situation template is given below: 
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s1: {XUSEG(va1).hit, TLB(va1).hit, va1<12> = 1, v1 = 1, L1(pa1).hit}; 

s2: {XUSEG(va2).hit, TLB(va2).hit, va2<12> = 0, v2 = 0}; 

d12: {TLB.TagEqual (va1<39..13> = va2<39..13>)}. 

The main, but not the only, approach supported by the tool is combinatorial 

generation. Test templates are constructed by enumerating all possible skeletons of 

the given length and creating all possible ligaments for each of them. The template 

iterator checks whether the produced templates are consistent. For each template, it 

formulates the set of constraints and invokes a solver [10]; if the constraints are 

unsatisfiable, the template is discarded. Here is an example of an inconsistency: 

s1: {..., va1<12> = 0, v1 = 1, ...}; 

s2: {..., va2<12> = 0, v2 = 0}; 

d12: {TLB.TagEqual (va1<39..13> = va2<39..13>)}. 

TLB.TagEqual implies that both instructions access the same TLB entry, whereas 

va1<12> = 0 and va2<12> = 0 result in v1 = v2 = tlbEntry.V0, which contradicts to 

v1 = 1 and v2 = 0. 

To avoid the combinatorial explosion, special heuristics are in use. Among them, 

factorization of situations and limitation of the depth of dependencies are essential. 

Description of the heuristics are out of the scope of the paper. 

4.4 Test Data Generator 

Templates are symbolic representation of test programs. To produce a test program 

from a template, the latter should be instantiated. A test data generator plays the 

key role in this activity. Test data, in a sense, are a solution to the constraints 

stipulated in the template. They include virtual addresses to be used by the 

instructions as well as some auxiliary information intended for setting up the state of 

the microprocessor under test such as indices of TLB entries, VPN-to-PFN 

mappings, sequences of addresses to be accessed to load or evict data to or from the 

buffers, etc. 

The test data generator acts in compliance with one of the following strategies: (1) 

heavyweight template elaboration with an attempt to find an exact solution to the 

problem or (2) lightweight processing targeted at constructing an approximate 

solution. In the main, our approach follows the second strategy. Detailed analysis of 

templates makes sense only for accurate MMU specifications, while instruction-

level models are rather abstract. Another argument is that the lightweight approach 

gives a significant benefit in terms of performance, while the quality of testing is 

comparable. 

Given a template 〈(s1, ..., sn), {dij}〉, consider how test data are generated. First, for 

each situation sj of the template, a united dependency depj: B × C → 2{1, ..., j-1} is 

built. For each buffer b and conflict c, depj(b, c) contains indices i < j such that 

b ∈ dom(dij) and dij(b) = c, that is, the situations si and sj access the buffer b and 

there is the access conflict c. Then, the template’s situations are processed one after 



А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных 

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138 

133 

another. Given a situation sj, the buffers affected in sj are sequentially inspected. For 

each buffer b, the actions listed below are performed: 

• if depj(b, AddrEqual) ≠ ∅, then 

data(sj).addr ← data(si).addr, 
where data(sj) denotes the test data associated with sj; addr is the virtual or 
physical address depending on the b type; i is any index from 
depj(b, AddrEqual); 

• otherwise, if depj(b, IndexEqual) ≠ ∅, then 

data(sj).addr<I> ← data(si).addr<I>, 
where I is the bit range given in the index section of the b specification; 

o if depj(b, TagEqual) ≠ ∅, then 

data(sj).addr<T> ← data(si).addr<T>, 
where T is the bit range given in the tag section of the b specification; 

o if depj(b, TagReplaced) = ∅, then 

data(sj).addr<T> ← tagb(data(sj).addr<I>), 
where tagb(index) is a previously unused tag of b for the given index; 

• otherwise (if depj(b, IndexEqual) = ∅), 

data(sj).addr<I> ← indexb, 
where indexb is a previously unused index of b. 

TagReplaced conflicts – referred to as dynamic conflicts – are handled in a special 

way. As soon as all other constraints, including hits and misses (see the next 

paragraph for details), are resolved, the created sequence of instructions is simulated 

on a simplified model derived from the MMU specifications. This enables the 

generator to predict the lines being evicted and replaced with recently accessed data. 

If there is a TagReplaced conflict between two instructions (template situations, to 

be more precise), the evicted tag having been predicted for the first instruction is 

copied into the address of the second one. 

In between static Equal/NotEqual and dynamic Replaced conflicts, hits and misses 

are considered. For a hit, an access to the designated address is appended to the 

template test data: hit(b).add(data(sj).addr), where hit(b) is a set-separated data 

structure that stores sequences of addresses targeted at loading data into the buffer 

b. For a miss, an address sequence ω is added: miss(b).add(ω), where miss(b) is a 

storage of addresses used to evict data from b, and ω = {addr1, ..., addrW} is a so-

called evicting sequence, that is, addrk<I> = data(sj).addr<I>, addrk<T> ≠ 

data(sj).addr<T> and addrk<T> ≠ addrl<T> for all k, l ∈ {1, ..., W} such that k ≠ l; 

W is the b associativity. Note that appending an address to the hit(b) structure may 

require adding evicting sequences for the preceding buffers with the miss constraint 

having been set. 
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4.5 Test Data Adapter 

Indeed, test data concretize symbolic templates, but being instruction set 

independent they are still too general to be immediately applied to testing. It is a test 

data adapter who translates a template coupled with test data into a sequence of 

specific instructions, so-called a test case. Such a sequence usually consists of two 

parts: a preparation, which sets up the microprocessor state, and a stimulus, which 

performs a series of memory accesses to stress the microprocessor’s MMU. 

Making a stimulus is straightforward: each situation of the template skeleton is 

converted into a load or a store depending on the specification section, read or 

write, the execution path belongs to. A particular type of the instruction, i.e. the size 

of a data block being accessed, is either derived from the template / specifications or 

randomized. The instruction is allowed to use any registers from the user-defined 

set. Note that the procedure requires a mapping from 

{read, write} × {byte, word, ...} to the set of memory access instructions 

implemented in the design. 

Constructing a preparation sequence is more intricate. The main problem is that 

placing data into a buffer may change the state of others. Here is how the problem is 

solved. First, virtual address based buffers, e.g., TLB, are handled before buffers 

accessed by physical addresses, e.g., L1 and L2. Initialization of the latter can be 

carried out by using unmapped addresses, which does not affect the former. Second, 

the “largest buffer first” strategy is applied. Typically, a set of lines of a smaller 

buffer maps several sets of lines of a larger one, which gives a possibility to change 

the smaller buffer with no tangible effect to the larger one. Given a buffer, the 

preparation sequence is cut into pieces corresponding to particular sets of the buffer. 

Each piece is the catenation of the miss and hit sequences. It is implied that each 

buffer is provided with a code pattern to be used to place data for a given address. 

Here comes a simplistic test case for the MIPS architecture: 

// Preparation: 
// Fill TLB: VPN0=0x4, V0=1, PFN0=0x10222 
tlbwi ... 

// Fill L1: VA=0x80261026 (PA=0x261026) 
lui t0, 0x8026 
ori t0, t0, 0x1026 
lb  t0, 0(t0) 

// Address 0: VA=0x80261026 (PA=0x261026) 
lui s0, 0x8026 
ori s0, s0, 0x1026 

// Address 1: VA=0x4059 (PA=0x10222059) 
ori s1, zero, 0x4059 

// Stimulus: 
// KSEG0.hit (Mapped=0), L1.hit 
lb  a0, 0(s0) 

// XUSEG.hit (Mapped=1), TLB.hit, VA[12]=0, V=1 
sb  a1, 0(s1) 
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The instructions here are as follows [9]: TLBWI writes a TLB entry; LUI loads a 

constant into an upper half of a word; ORI does a bitwise OR with a constant; LB 

loads a byte from memory; SB stores a byte to memory. 

Preparations may be of significant length, but the tool is able to reduce the volume 

of such kind of code. It keeps track of the microprocessor state during test 

generation and skips useless initialization (e.g., it does not load data into a buffer if 

they are already there). Moreover, the generator can choose a data tag so as to fit the 

desired event, a hit or a miss. On the other hand, preparation sequences are of 

interest as they – as our experience shows – can stress the memory subsystem and 

discover “high-quality” bugs. 

5. Industrial Application 

The proposed approach is implemented in the MicroTESK test program generator 

[6, 7]. Since 2006, different versions of the tool – including one described in [5] – 

have been applying to functional verification of several industrial microprocessors 

with the MIPS architecture [9]. MMU specifications take into account such buffers 

as a JTLB (a joint TLB), a DTLB (a micro TLB used to speed up data address 

translation), an L1 (a first-level cache) and an L2 (a second-level cache). Besides, 

they involve mapped and unmapped memory segments (XUSEG, KSEG0, KSEG1 

and XKPHYS), TLB control bits (Valid, Dirty and Global) and cache policies 

(various combinations of Write-Through, Write-Allocate and Write-Back flags). 

Stimuli are composed from load and store instructions. The approach has allowed 

revealing a great number of critical bugs (e.g., reading incorrect data from memory) 

in the MMU designs, which had not been detected by randomly generated test 

programs. 

6. Conclusion 

Functional verification of a microprocessor MMU is surely a hard nut to crack. 

Automation facilities are undoubtedly of high value and importance. Our work 

contributes its mite to improving verification quality and productivity. The proposed 

solution is based on the memory subsystem specification, i.e. on formal descriptions 

of caching and address translation. The distinctive features of the approach are high 

automation and systematicness. The suggested method is implemented in the 

MicroTESK test program generator, which is freely distributed open-source 

software. The tool has been used and is being used in industrial projects on 

microprocessor development. A bad news is that the recent release has no support 

for multicore designs. Avoiding this shortcoming is a priority task for the nearest 

future. More particularly, we are going to extend the approach to multiprocessor 

systems with distributed memory. 
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Аннотация. Подсистема памяти является одним из ключевых компонентов 

микропроцессора. Она состоит из запоминающих устройств разного назначения 

(буферов инструкций, буферов трансляции адресов, многоуровневой кэш-памяти, 

основной памяти и других), объединенных в сложную иерархическую структуру. 

Число возможных состояний подсистемы памяти крайне велико, что делает ее 

функциональную верификацию чрезвычайно трудоемкой задачей. В настоящее время 

основным подходом к функциональной верификации микропроцессоров на системном 

уровне является имитационное моделирование с использованием автоматически 

сгенерированных тестовых программ. В данной работе предлагается метод генерации 



А.С. Камкин, А.С. Проценко, А.Д. Татарников. Метод генерации тестовых программ на основе формальных 

спецификаций механизмов кэширования… Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 125-138 

137 

тестовых программ для функциональной верификации модулей управления памятью 

микропроцессоров. В основе предложенного метода лежат формальные спецификации 

инструкций доступа к памяти, а именно инструкций чтения и записи, и формальные 

спецификации устройств памяти, таких как модули кэш-памяти и буферы трансляции 

адресов. Использование формальных спецификаций позволяет автоматизировать 

разработку генераторов тестовых программ и обеспечивает систематичность 

функциональной верификации за счет четкого определения целей тестирования. В 

предложенном подходе тестовые программы конструируются с помощью 

комбинаторных техник, то есть тестовые воздействия (последовательности инструкций 

чтения и записи) создаются путем перебора всех возможных комбинаций инструкций, 

ситуаций (путей исполнения инструкций) и зависимостей (множеств конфликтов 

между инструкциями). Важной особенностью метода является то, что тестовые 

ситуации и зависимости автоматически извлекаются из формальных спецификаций. 

Предложенный подход применялся в нескольких промышленных проектах по 

верификации микропроцессоров архитектуры MIPS и позволил выявить критические 
ошибки в механизмах управления памятью. 

Ключевые слова: микропроцессоры; управление памятью; кэширование; трансляция 
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