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Abstract. A method of direct memory access subsystem verification used for “Elbrus” series
microprocessors has been described. A peripheral controller imitator has been developed in
order to provide a flexible way to simulate a wide range of workloads of the direct memory
access system without a need for computational overhead caused by simulation of the
initialization and operation of the southbridge and its controllers. The imitator has been
implemented as synthesizable Verilog module used in verification both with the RTL model
and with the FPGA prototype. It can be integrated as a replacement of the I/O link connecting
the integrated northbridge with the southbridge thus eliminating the need to simulate extra
hardware. This connection method allowed to use a single implementation of the imitator
with a complete series of microprocessors compatible with respect to the I/O link interface.
The model of the imitator was also included into the functional machine simulator. A
pseudorandom test generator for verification of the direct memory access subsystem based on
the simulator. The test generator has been developed using library version of the functional
machine simulator that allowed to use the simulator as a reference model during the test
generation. The consistency of the programming interface of the imitator provides ability to
execute generated tests unmodified on the functional machine simulator, the RTL model, the
FPGA prototype and even the fabricated microprocessors when integrated in the FPGA /O
link controller. Employment of this method allowed to find a significant number of bugs in
“Elbrus” series microprocessors being developed.
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1. Introduction

Modern computer systems require very intensive data exchange between the
peripheral devices and the random-access memory. In the most cases this exchange
is performed by the direct memory access (DMA) subsystem. The increasing
demands for the performance of the subsystem lead to an increase in its complexity,
therefore requiring development of effective approaches to DMA subsystem
verification [1,2].

This article is based on a result of a comprehensive project than combined
implementation of a three co-designed verification techniques based on the
consecutive investigation of the DMA subsystem employing one the three models:
1) a functional model written in C++ that corresponds to behavior of the subsystem
in the environment determined by a real computer system configuration, 2) RTL
model in Verilog and 3) FPGA-based prototype. This article describes the first
method that enables verifying correctness of the design at an early stage of the
verification and eliminate a large quantity of bugs using simple tests.
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Figure 1. The structure of the computer systems:
a). Real configuration.
b). Model configuration (integration of the DMA imitator into the northbridge).

The most important problem that significantly affects the quality of the subsystem
verification is the exhaustiveness of the representation of the external devices
connected to it and input vectors they generate. In this case, the problem has been
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solved by introducing a device imitating a peripheral controller and capable of
generating a comprehensive range of DMA subsystem interaction patterns into the
functional model. The basic aspects of DMA imitator implementation are presented
in the second section.

The exhaustiveness of the subsystem in question verification is achieved with a test
generator allowing to provide necessary inputs using the imitator. The generator
produces a test program that performs the DMA imitator scenarios setup for all of
its agents, launches their concurrent execution, provides memory access by the CPU
cores during the DMA access scenarios execution and checks the final memory
state. The generator operation principles are described in the fourth section of the
paper.

The generation of final memory state checking code requires a golden model of the
memory subsystem being available for the generator. A functional model library
that will be described in the third section has been reused from previous projects in
order to fulfill this requirement.

2. Peripheral device imitator

Considering the computer system containing the subsystem (fig.1a) in question it
should be noted that difficulties connected to precise modeling of the south bridge
devices caused by the usage of the complex device drivers can be avoided via
imitating behavior of the real DMA agents. A masked DMA copy operation has
been used as a basic operation that allows to implement the significant number of
the direct memory access scenarios. In order to achieve a high-speed test execution,
the imitator is integrated into the IO link between the northbridge and the chipset
(south bridge, fig.1b). The positioning of the imitator as a standard 10 controller
allowed to apply this scheme to any modern Elbrus series processor.
The imitator represents a simplified version of the southbridge. It includes
adjustable number of identical agents (fig.2), each capable of working in normal or
table modes. In the table mode the memory access scenario specification is
simplified by providing them via tables placed in the memory.
Agent is capable of the following operations:

e copying data from one area of the memory to another in normal and table

modes,
¢ reading copy operation parameters from memory,

e data transformation.
The imitator is implemented as a PCI-compatible device, each agent is an
independent device that is controlled by a common bus via load and store operations
to the configuration space. Agents can perform an exchange with the memory using

standard read and write packets. The commutation between the agents is performed
by the DMA Switch module.
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Figure 2. The structure of the DMA-imitator.

The structure of the DMA-agent is shown at this fig.3. ConfigResigters
module is an array of configuration space registers containing setup operation
modes, base addresses and other parameters. In the normal mode the addresses are
written to the ConfigRegisters are used to access the memory. In the table
mode the TMHandler module uses written address to fetch and process the table
with address of reads and writes. The Format module is responsible for masking
the data and correct merging of data in the table mode. The DMAEngine module is
implemented as a FIFO buffer that performs loads and stores of the data using the
DMA write and DMA read functions provided by the functional model.
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Figure 3. The DMA-agent.
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3. Functional model of the DMA imitator

The approach to the problem is based on presenting the direct memory access as
two independent modules: the simulator, that imitates the work the computer system
architecture objects that are directly employed in the process, and a test generator
that provides the modes and parameters for the direct memory access, sets up the
logic of the these objects and controls the correctness of the outcome (fig.4). The
structural and functional independence of these modules significantly increases the
flexibility of the system in such aspects as content and interaction of objects under
study, the spectrum of generated inputs and results checking.

The configuration of the simulator that has been developed contains four processor
each one containing several general-purpose cores and a northbridge, the
southbridge and an imitator that consists of an array of peripheral devices and their
interfaces [3]. According to the second section the communications of the imitator
and the north bridge are performed by the functions of the programming model
described in the PCI standard.
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Figure 4. Components of the DMA subsystem functional model.

143

V. Kutsevol, A. Meshkov, M. Ryzhov, P. Frolov. An Approach to Direct Memory Access Module Verification. Trudy
ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 139-148

The simulator works according to interpretation principle [4]. In each virtual tick
execution of one command in each of the processor cores is performed. In addition,
different asynchronous actions in respect to the commands execution actions such as
counter and timer ticks and external interrupt handling are also performed during a
single tick.

In order to enable the communication of the simulator with the generator it has been
decided to implement a working cycle of the simulator available through a set of
library functions.

4. Test generator

The generator contains the static initialization code, the memory model and the core
of the generator. The initialization code is a sequence of instructions that performs
the initial setup of the hardware performed by the test.

The core of the generator contains the library control and communication module as
well as the code and data generators [5]. The library control and communication
module is responsible for interaction with the simulator. It invokes the step ()
function that implements execution of instructions of the modeled hardware and the
analysis the result of its execution. The code generator writes the code that controls
the operation of each of the DMA-agents and the data generator writes the blocks of
the data to be send. The flexibility of the DMA-imitator parameterization is fully
supported by the pseudorandom test generator that sets up pseudorandom
parameters for the DMA-exchange such as addresses of the memory buffers, ranges
of the DM A-packet sizes as well as different transfer modes.

Both static initialization code and dynamically generated code is placed into the
code area that is one of the components of the memory model. When code fetch
takes place during the program execution the requests are directed by the callback
function to the code area of the generator. The data area that is another memory
model component is handled in a similar manner. The requests for the data --- the
loads and stores can be initiated by both the CPU cores and the DMA-agents. All of
the requests are redirected to the data structure containing the array dynamically
allocated by the data generator.

The step-by-step algorithm of the simulator main modules interaction with the
generator is presented in the fig.5.

The general scenario of working with the DMA-imitators has the following outline:
the basic system initialization, the initialization of the DMA buffers with the data
designated for transmission, the configuration of the DMA-imitator and the launch
of the DMA-exchange. Such system parameters as number of processors and
available physical address ranges can be varied in a random way to create different
DMA routing scenarios. The system initialization procedure can also turn on
input/output memory management unit (IOMMU) and fill translation table with
random entries.
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Figure 5. The control flow of the generator that employs DMA subsystem functional model.

The initialization of the DMA buffers is performed by the CPU cores causing the
data for the transfer to be located at different levels of the coherent memory
hierarchy that includes both caches and memory [6]. During the configuration of the
imitator the specification of the operation mode and the base address of the memory
to be processed are determined. The DMA exchange is performed while the CPU
cores access memory regions that intersect with the DMA buffers. After the
completion of the exchange the reference values are generated based on the contents
of the memory final state. These values are used to perform self-checking during
test execution on the target model or device. Any test produced by the generator can
be executed on either the RTL model, the simulator or the FPGA-based prototype
without any additional test modification. The test generator provides an opportunity
to use any device connected to real southbridge instead of the DMA imitator such
an Ethernet controller as a source of DMA-packets.
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5. Conclusion

In this study the problem of the direct memory subsystem verification when applied
to “Elbrus" series microprocessors has been investigated. Employment of the test
generator built using the approach described in this paper allowed to find 45 bugs in
three different “Elbrus” series microprocessors: 24 in a single-cores low-power
CPU and no cache coherence support, 16 in a eight-core CPU supporting up to 32
core per ccNUMA system with coherent DMA and 5 in the next generation eight-
core CPU with ccNUMA and updated coherence protocol. These bugs were found
in spite of rigorous stand-alone verification of the DMA subsystem modules
performed during the generator development. In order to enable the execution of
sufficient number of tests and speeding up the development of the test generators
and bug analysis a method of verification based on the replacement of DMA-
capable real devices with imitator device with a simple programming interface and
ability to completely consume the bandwidth of the direct memory access data path
was introduced. The application of the developed method enables to achieve the
operation modes of the DMA subsystem analogous to the real-world ones. The
unification of the DMA imitator interface for the RTL-model, the computer
complex simulator and the FPGA-based prototype allows to increase the pace of
DMA subsystem tests generator development.
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AHHoOTamus. B crathe ommcaH MeTox BepH(UKANUM IMOJCHUCTEMBI NPSIMOTO JOCTyNa K
MaMATH, MPUMEHEHHbIM K CEeMEWCTBY MHKpOIpoleccopoB «nbdpycy». s obecnedenus
BO3MOXHOCTH MOJEIHPOBAHUS IUPOKOTO CIHEKTPa PEKMMOB pabOTHI MOACUCTEMBI TIPSIMOTO
JOCTyma K maMsaTu 0e3 HeoOXOAMMOCTH MOJEIMPOBATh MHUIHANIN3AIUIO U pabOTy 0KHOTO
MOCTa M €ro KOHTPOJUIEPOB ObUI pa3paboTaH MMMTATOp NEpUPEPUITHBIX KOHTPOIICPOB.
Wmurarop ObUT peann3oBaH KaK CHHTE3HPYeMBIH Moayiab Verilog M MCHONB30BAJICS TPH
Bepudukaruu kak RTL-momenu, tak u ocHoBanHoro Ha [IJIMC mpororuma. UuTepdetic
HMHTAaTOpa MO3BOJIMI BCTPOHTH €r0 BMECTO KaHajda BBOJA-BBIBOJAA, COCIUHSIOIICTO
HMHTETPHAPOBAHHBIN CEBEPHBI MOCT € IIPOIECCOPOM, UTO TAKXKE COKpamaeT HeoOXOIMMOCTb
MOZIENUPOBaTh AONOIHUTENbHOE obopynoBaHue. Takas cxema MOAKIIOYEHHS HMUTAaTOpa
TaKke TO3BOJIMIO HCIONB30BaTh OJAHY peaaM3allMi0o HMUTAaTopa Cco Bced cepueit
MPOLECCOPOB, COBMECTHMBIX OTHOCHTEIBHO MPOTOKOJAa KaHala BBOJA-BbIBOAA. Mogens
UMHUTATOpa NepU(EPUHHBIX KOHTPOJUICPOB OblIa TAKKE BKIIOYEHA B ()YHKIHOHAIbHBIH
CHMYJIATOP BBIYUCIUTENBHOTO KOMIUIEKca. Ha ocHoBe (yHKUMOHaIBHON MoJend Obu1
pa3paboTaH TeHepaTop MCEBAOCITyJalHBIX TECTOB, NPEAHA3HAUYCHHBIX IS BepH()UKAIUH
MOJICUCTEMBI HPSIMOTO JOCTyNIa K INaMsATH. ['eHepaTop pa3paboTaH ¢ HCHOJIB30BAaHHEM
OubanoTeyHoO BepcuM (PYHKIIMOHAIBHOM MOJETH, MCHONB3yeMOH B KauecTBE STaJOHHON
MOJIETM BO BpeMsl TeHepaluM TecTa. YHU(HKAIWsA INPOrpaMMHOTO HHTepdelica Bcex
peanusanuii MMHUTaToOpa II03BOJIMJIA MCHONHATHR TECTHI B HEM3MEHHOM B BHJAE Ha
(YHKIMOHATIBHONW MOJENH BBIYHCIUTENBbHOr0 Komiuiekca, RTL-mozmenu, ocHOBaHHOM Ha
I[IJINMC mnporotume, a TakkKe MNPOU3BEACHHOM MHKpPOCXEME IPH MOMOIIM HHTETpaluu
umuTatopa B peanuzoBaHHyio Ha [IJIMC Bepcuio KOHTpoijiepa JIMHKa BBOZA-BBIBOJA.
Hcnonp30Banue ONMMCAaHHOTO MOAXOMA IO3BOIMIO OOHAPYKUThH CYIIECTBEHHOE KOJINYECTBO
omn0oK B pa3pabdaTbIBaeMbIX MUKPOIIPOLIECCOpaX ceMencTBa «DIBOPYCH.
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