
А.С. Камкин, М.В. Петроченков. Подход к построению тестовых оракулов для подсистем памяти

многоядерных микропроцессоров на основе моделей. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 149-160

149

A Model-Based Approach to Design Test
Oracles for Memory Subsystems of

Multicore Microprocessors

1 Alexander Kamkin <kamkin@ispras.ru>,
2 Mikhail Petrochenkov <petroch_m@mcst.ru>,

1 Institute for System Programming of the Russian Academy of Sciences,

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2 MCST, 24 Vavilov st., Moscow, 119334, Russia.

Abstract. The paper describes a method for constructing test oracles for memory subsystems

of multicore microprocessors. The method is based on using nondeterministic reference

models of systems under test. The key idea of the approach is on-the-fly determinization of

the model behavior by using reactions from the system. Every time a nondeterministic choice

appears in the reference model, additional model instances are created and launched (each

simulating a possible variant of the memory subsystem behavior). When the testbench

receives a reaction from the subsystem under test, it terminates all model instances whose

behavior is inconsistent with that reaction. An error is detected if there is no active instance of

the reference model. A reference model and the test oracle are divided into three levels: (1)

the operation level, (2) the cache line level, and (3) the memory subsystem level. An

operation oracle checks whether processing of a single request of the corresponding type is

correct. A cache line oracle is comprised of the operation oracles and responsible for

checking requests to the given cache line. The memory subsystem oracle combines cache line

oracles and performs overall evaluation of the device behavior. To be implemented

efficiently, the method implies the following two restrictions on the memory subsystem under

test: (1) requests to different cache lines are executed independently; (2) requests to the same

cache line are serialized (at most one request to a cache line is executed at each moment of

time). The suggested method with slight modifications was used for verifying the L3 cache of

the Elbrus-8C microprocessor; as a result, three bugs were found.

Keywords: multicore microprocessors; cache memory; memory consistency; coherence

protocols; functional verification; model-based testing; testbench automation; test oracle;

Elbrus-8C.

DOI: 10.15514/ISPRAS-2015-27(3)-11

For citation: Kamkin A., Petrochenkov M. A Model-Based Approach to Design Test

Oracles for Memory Subsystems of Multicore Microprocessors. Trudy ISP RAN/Proc. ISP

RAS, vol. 27, issue 3, 2015, pp. 149-160. DOI: 10.15514/ISPRAS-2015-27(3)-11.

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore

Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

150

1. Introduction

A key feature of modern microprocessor architectures is multicoreness, which is

implementation of several processing units, so-called cores, on a single chip. To

reduce time to access data from the main memory, each core has a local cache, often

with two levels, L1 and L2; in addition, all cores can share the L3 cache. Presence

of several data storages makes it possible to have multiple copies of the same data

within the system and requires special mechanisms to ensure the storages to be in a

coherent state. At the heart of such mechanisms is a coherence protocol, a set of

rules that governs interactions between storage devices and guarantees memory

consistency for all possible data access scenarios [1].

State-of-the-art coherence protocols are complicated; their implementations in

hardware is difficult and error-prone. Accordingly, thorough verification of memory

subsystems is required [2]. A widely accepted approach to ensure correctness of

complex hardware designs is simulation-based verification, or testing. A test system,

also known as a testbench, solves two main tasks: first, it generates a stream of

stimuli; second, it checks whether the design behavior satisfies the requirements [3].

This paper addresses the second problem, i.e. checking reactions of a memory

subsystem in response to an arbitrary series of stimuli; it introduces a method for

constructing test oracles (reaction checkers) based on high-level reference models

of memory subsystems.

The rest of the paper is organized as follows. Section 2 reviews the existing

techniques for designing test oracles. Section 3 suggests an approach to the

problem. Section 4 describes a case study on using the suggested approach in an

industrial setting. Section 5 concludes the paper.

2. Related Work

A memory subsystem as an object of testing has a number of distinctive features that

should be taken into consideration when designing a test oracle. First, it consists of

many devices that work in parallel and can receive requests (stimuli) and send

responses (reactions) through several input and output channels (interfaces with the

microprocessor cores). Second, its behavior essentially depends on the order of

requests to separate data blocks (cache lines); which, in turn, depends on the time of

the requests initiation as well as on the subsystem’s microarchitecture. Third,

requests to a single cache line are processed mostly one at a time (in other words,

requests are serialized).

It is also to be considered how reference models of memory subsystems are

developed. Many implementation details, like request execution timing, are

typically ignored: operations are described as atomic actions, while interactions

between blocks are modeled by “zero-time” function calls. Such kind of models are

often called functional models. The simplified nature of reference models makes

them more tolerant to changes in the subsystem implementation, but at the same

А.С. Камкин, М.В. Петроченков. Подход к построению тестовых оракулов для подсистем памяти

многоядерных микропроцессоров на основе моделей. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 149-160

151

time makes building test oracles more difficult task. Models of that kind cannot

predict the exact order of request execution basing solely on the request timestamps.

In this sense, functional models are surely nondeterministic. The problem of

building test oracles from nondeterministic models is well known; there are several

approaches to solve it.

In [4], a reference model (specification) and a system under test (implementation)

are represented as Partial Order Input/Output Automata. In such an automaton, each

transition is labeled not by a “stimulus-reaction” pair, but by a partially ordered

multiset (multiple stimuli and reactions are allowed). An implementation is said to

conform to its specification if for each specification trace there is an implementation

trace of the same length, in which the order of events corresponds to the order given

in the specification trace. The similar approach is presented in [5], where a model of

Asynchronous Finite State Machine is used. In both methods, checking is carried out

some time after the last stimulus (the time should be long enough to allow all

reactions to occur and the implementation to enter in a stationary state). The scheme

is applied under the assumption that a stimulus generator is “idle” every now and

then during testing.

In [6], a similar concept of correspondence is used, but the approach focuses on

“continuous” event flows (with no stops in stationary states). A test oracle is based

on a so-called trace matcher, which acts as follows: it receives reactions from the

specification and the implementation and adds them into the corresponding partially

ordered multisets (Y is for the specification, and Z is for the implementation); before

adding reactions, the minimal (in a sense of the precedence relation) events

(min(Y) ∩ min(Z)) are removed from both multisets; if the amount of time a reaction

stays in a multiset exceeds some predefined limit, an error is indicated. As compared

with [4] and [5], the method requires more deterministic reference models: order of

implementation reactions may not be the same as of specification ones, but sets of

specification and implementation reactions should coincide (this requirement can be

weakened by marking some reactions as being optional). To apply the approach to a

complex system, a testbench needs to use “hints” from the implementation that help

to decide, what functionality of the reference model is to be executed [7].

Our work tries to combine [4] and [6]: it allows using nondeterministic models

without restrictions on test sequences and without using “hints” from

implementations. A general approach is as follows. As soon as there are several

possible ways to continue execution of the reference model (such a situation is

referred to as a nondeterministic choice), additional instances of the model are

created and launched (the base instance goes on with one of the branches). When

the testbench receives a reaction from the device under test, the reaction itself and

its characteristics (such as a response type, message data, etc.) are used to determine

what behavior is infeasible and what instances to terminate. If there is no active

instance of the reference model, an error is reported. Obviously, in the general case

the number of states (and variants of behavior) grows exponentially with the

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore

Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

152

number of decision points. However, for memory subsystems the suggested scheme

can be effectively implemented: first, requests to different cache lines are almost

independent (existing dependencies can be neglected); second, requests to a single

cache line are serialized.

3. Suggested Approach

Let us clarify what kind of reference models are used by test oracles for checking

behavior of memory subsystems. Stimuli are divided into two groups: primary

stimuli, which are requests from clients (cores, controllers, etc.) to perform certain

operations with the memory, and secondary stimuli, which are responses of the test

environment to some reactions of the memory subsystem (every reaction and every

secondary stimulus is caused by some primary stimulus). A memory subsystem

model is decomposed into a number of operation models, one for each type of

primary stimulus. An operation model has the following interface (the detailed

structure is not of importance):

• p ← start(x) – the model creates a process p that handles the primary

stimulus x;

• p.receive(x) – the process p receives the secondary stimulus x from the

environment;

• p.send(y) – the process p sends the reaction y to the environment (a

callback function);

• p.finished() – the model checks whether the process p has completed.

From the structural point of view, a memory subsystem model consists of cache line

models and a switch. Given a stimulus, the switch determines what cache line is

addressed and sends the stimulus to corresponding model. A cache line model

works as follows. To preserve the order of requests from the same client, it has a set

of request queues, Q1, ..., QN, where N is a number of clients (only requests from the

heads of the queues can be processed). Additionally, it contains a state model,

which represents data stored in the cache line and auxiliary information that affects

behavior of the operation models. A cache line model is nondeterministic and can

be described by the following pseudo-code:

while true do

 wait ∨i=1,N (Qi ≠ ∅)

 Q ← {(head(Qi), i) | i ∈ {1, ..., N} ∧ (Qi ≠ ∅)}

 (x, i) ← select(Q)

 dequeue(Qi)

 pi ← start(x)

 wait pi.finished()

end

If there are requests from clients (∨i=1,N (Qi ≠ ∅)), a set of candidates for processing

(Q) is built. After that, one of the requests is nondeterministically selected ((x, i) ←

А.С. Камкин, М.В. Петроченков. Подход к построению тестовых оракулов для подсистем памяти

многоядерных микропроцессоров на основе моделей. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 149-160

153

select(Q)). The chosen request is removed from the corresponding queue

(dequeue(Qi)), and its processing is initiated (pi ← start(x)). When the process is

completed (pi.finished()), the procedure described above is repeated.

A cache line model has the following interface methods:

• receive(x, i) ≡ enqueue(Qi, x) – the model receives the primary stimulus x

from the client i;

• receive(x) ≡ p.receive(x) – the model receives the secondary stimulus x

from the environment.

Figure 1. Structure of a cache line oracle

The test oracle structure follows from the reference model structure: one can

distinguish a memory subsystem oracle, a cache line oracle and an operation oracle.

An oracle of each type is built upon a model of the corresponding type. Thus, a

memory subsystem oracle consists of cache line oracles and a switch; a cache line

oracle includes request queues, operation oracles, a state model and a message

matcher (functions of this component will be described later on); an operation

oracle contains an operation model. It should be noted that there is a distinction

between oracle and model switches: an oracle switch routes not only stimuli but also

reactions. Design of a cache line oracle based on operation oracles is of the most

interest (see Fig. 1).

An operation oracle checks the correctness of reactions (and possibly validity of

secondary stimuli) for the individual operation (provided that this operation is

processed by the memory subsystem). A cache line oracle does not impose any

restrictions on how operation oracles are implemented. If a set of reactions caused

by the operation depends solely on the cache line state, the approach presented in

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore

Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

154

[6] can be applied. In the simplest case, checking is carried out as follows. Every

time the operation model invokes send(y), the reaction y is added to the multiset Y.

When receiving a reaction z from the implementation, the check(z) method of the

operation oracle is called. It checks whether z belongs to Y: in case of the positive

answer, z is removed from Y; otherwise, the error is indicated. Also, the operation

oracle overrides the finished() method of the operation model: in addition to

checking the operation completion, it tests whether the set Y is empty.

The model does not provide enough information to determine the exact order, in

which requests from different clients are handled. A cache line oracle launches the

operation oracles for all possible request choices in parallel (only one request is to

be processed by the memory subsystem, but for now, one cannot decide which one).

The cache line oracle is described by the following pseudo-code (pi refers to an

operation oracle for the client i):

while true do

 wait ∨i=1,N enabled(Qi)

 Q ← {(head(Qi), i) | i ∈ {1, ..., N} ∧ enabled(Qi)}

 for (x, i) ∈ Q do

 dequeue(Qi)

 pi ← start(x)

 end

end

enabled(Qi) ≡ (Qi ≠ ∅) ∧ ((pi = null) ∨ pi.finished())

The message matcher analyzes implementation reactions (and possibly secondary

stimuli) and identifies the request being executed by the memory subsystem. Having

received a reaction z from the implementation, the check(z) method of the message

matcher is invoked, which, in turn, calls check(z) in all active ((pi ≠ null) ∧
¬pi.finished()) operation oracles.

count ← 0

for i ∈ {1, …, N} do

 if (pi ≠ null) ∧ ¬pi.finished() then

 if pi.check(z) then

 count ← count + 1

 else
 pi.cancel()

 pi ← null

 push(Qi, x)

 end

 end

end

assert (count ≠ 0)

А.С. Камкин, М.В. Петроченков. Подход к построению тестовых оракулов для подсистем памяти

многоядерных микропроцессоров на основе моделей. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 149-160

155

If an operation oracle (pi) returns the negative verdict (pi.check(z) = false), the

oracle process is forcibly stopped (pi.cancel()), and the primary stimulus having

initiated the process is returned to the head of the corresponding queue (push(Qi, x)).

If there are no active processes (count = 0), then the cache line oracle returns the

negative verdict. Secondary stimuli are handled in a similar way; a difference is that

if an operation oracle’s verdict is positive (pi.check(x) = true), the stimulus is

transmitted to the operation model (pi.receive(x)).

To construct a test oracle in the suggested way, a system under test is expected to

meet the following conditions (in addition to request serialization): first, behavior of

each operation is unambiguously defined by the system state at the operation start

time; second, each operation changes the global state of the system just before its

completion; third, a client being served can be unambiguously identified by

matching primary requests with reactions.

4. Case Study

The presented method for designing test oracles was used to develop a test system

for the L3 cache of the Elbrus-8C octal-core microprocessor (total volume – 16 MB;

size of a cache line – 64 B; number of banks – 8; bank associativity – 16) [8]. The

L3 cache is a point of serialization for the read and write requests from the

microprocessor cores and the snoop requests (auxiliary requests for maintaining

cache coherence) from the system interface controller. For each message it is

possible to identify the affected cache line; for this purpose, the oracle switch stores

a relation between primary request addresses and resource identifiers used in

reactions and secondary stimuli. In general, the cache line oracle follows from the

suggested scheme, but has some particular features described below.

First of all, operations on cache lines of the same set (cache lines located at the same

index) are surely dependent: inclusion of a cache line might trigger eviction of

another one. It should be emphasized that a victim line cannot be determined

without using a cycle-accurate reference model and without getting “hints” from the

implementation. To solve this problem and to make all cache lines to be served

independently, we assume that any cache line (whose state is not Invalid) can be

evicted at any moment. This assumption is implemented by adding a virtual client

Eviction to all cache line oracles (such a trick is legal, because eviction requests are

serialized like any other stimuli).

In most of the cases, a requesting client can be identified based on reactions, but

there are two exceptions. First, writing data with eviction from L2 (Write-Back) – if

the data are not in the L2 cache, the request is canceled (it completes without

sending any reaction and without changing the state). Second, prefetching data into

L3 (Prefetch) – if the data are in the L3 cache, the request is canceled. The first

situation is solved by forcibly stopping a model of the Write-Back operation as soon

as it is known that the core (the L2 cache of the core) has no data (such a solution is

correct, because requests from cores cannot load data into other cores; requests from

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore

Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

156

the requesting core cannot be chosen until the Write-Back operation is completed).

The second problem is solved by “detaching” the prefetch requests from the cores

and moving them to additional clients (completion of a prefetch request is detected

indirectly by identifying completion of one of the following requests from the same

core).

If a cache line (stored in the L3 cache) is in the Shared state and no core has its copy

in the L2 cache, the line can be evicted (become Invalid) without sending messages

to the environment. Therefore, if a cache line model is in the Shared state, it means

that the corresponding cache line of the implementation is either Shared or Invalid.

Being executed in the Shared state (without copies of the data in the cores), an

operation oracle spawns two operation models: one operates in the assumption that

the line is Shared; the other operates in the assumption that the line in Invalid.

It should be noted that L3 under test has no strict requirements on serialization of

so-called special operations (noncoherent reads and uncacheable writes). It is

allowed to concurrently process any number of such operations over the same cache

line. This exception does not complicate the test oracle structure: first, special

requests are permitted only in the Invalid state (otherwise, an eviction starts);

second, special operations do not change the state of the cache and do not affect

other operations.

The use of the suggested approach allowed to discover three errors in the L3 design.

The first one concerns the operation of reading data with storing them in L3 (R32L3

and R64L3) – the internal directory erroneously marks the line as having been stored

in the L2 cache of the requesting core. The second one consists in an unnecessary

delay in data eviction caused by a special operation. Finally, the third one relates to

the reading of invalid data from the write-back buffer.

4. Conclusion

Memory subsystems of multicore microprocessors are extremely complex devices;

their implementation should be thoroughly tested. Test oracles play key role in

testbench automation; the main part of an oracle is a reference model, i.e. a

simplified software implementation of the device under test. Models of memory

subsystems are usually nondeterministic in a sense that given a set of stimuli, one

cannot accurately determine a set of reactions. In this article, we have proposed the

method for designing test oracles for memory subsystems based on reaction-driven

refinement of the set of behavior variants. An error is reported if the refinement

process leads to the empty set of variants. The suggested approach has been applied

to the verification of the L3 cache of the Elbrus-8C microprocessor and allowed to

find three errors.

References

[1]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache

Coherence. Morgan and Claypool, 2011. 195 p.

А.С. Камкин, М.В. Петроченков. Подход к построению тестовых оракулов для подсистем памяти

многоядерных микропроцессоров на основе моделей. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 149-160

157

[2]. Kamkin A., Petrochenkov M. Sistema podderzhki verifikatsii realizatsii protokolov

kogerentnosti s ispol'zovaniem formal'nykh metodov [A system to support formal

methods-based verification of coherence protocol implementations]. Voprosy

radioelektroniki, seriya EVT, 2014, 3. p. 27-38.

[3]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Kluwer

Academic Publishers, 2000. 354 p.

[4]. von Bochmann G., Haar S., Jard C., Jourdan G.V. Testing Systems Specified as Partial

Order Input/Output Automata. ICTSS, 2008. p. 169-183.

[5]. Kuliamin V., Petrenko A., Pakoulin N., Kossatchev A., Bourdonov I. Integration of

Functional and Timed Testing of Real-Time and Concurrent Systems. PSI, 2003. p. 450-

461.

[6]. Chupilko M., Kamkin A. Runtime Verification Based on Executable Models: On-the-

Fly Matching of Timed Traces. MBT, EPTCS 111, 2013, p. 67-81.

[7]. Baratov R., Kamkin A., Maiorova V., Meshkov A., Sortov A., Yakusheva M. Trudnosti

modul'noi verifikatsii apparatury na primere bufera komand mikroprotsessora «El'brus-

2S» [Difficulties of the unit-level hardware verification on the example of the instruction

buffer of the Elbrus-2S microprocessor]. Voprosy radioelektroniki, seriya EVT, 2013, 3.

p. 84-96.

[8]. Kozhin A., Kozhin E., Kostenko V., Lavrov A. Kesh tret'ego urovnya i podderzhka

kogerentnosti mikroprotsessora «El'brus-4S+» [L3 cache and cache coherence support in

«Elbrus-4C+» microprocessor]. Voprosy radioelektroniki, seriya EVT, 2013, 3. p. 26-

38.

Подход к построению тестовых оракулов
для подсистем памяти многоядерных
микропроцессоров на основе моделей

1 Александр Камкин <kamkin@ispras.ru>,

2 Михаил Петроченков <petroch_m@mcst.ru>,
1 Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, дом 25
2 ЗАО «МЦСТ», 119334, Москва, Россия, ул. Вавилова, д. 24.

Аннотация. В работе представлен метод построения тестовых оракулов для подсистем

памяти многоядерных микропроцессоров. Метод основан на использовании

недетерминированной эталонной модели тестируемой системы. Идея подхода состоит

в динамическом уточнении поведения модели на основе реакций, полученных от

системы. При возникновении недетерминированного выбора в эталонной модели

создаются и запускаются дополнительные экземпляры модели, каждый из которых

моделирует возможный вариант поведения подсистемы памяти. При получении

реакции от тестируемой подсистемы завершаются экземпляры модели, для которых

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore

Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

158

данная реакция является некорректной. Признаком ошибки является отсутствие

активных экземпляров эталонной модели. Эталонная модель и построенный на ее

основе тестовый оракул разделены на три уровня: (1) уровень операции, (2) уровень

кэш-строки и (3) уровень подсистемы памяти. Оракул уровня операции проверяет

корректность обработки отдельного запроса соответствующего типа. Оракул уровня

кэш-строки состоит из оракулов операций и предназначен для проверки запросов к

заданной кэш-строке. Оракул уровня подсистемы памяти объединяет оракулы кэш-

строк и производит общую оценку поведения устройства. Для эффективной

реализации метода необходимо, чтобы тестируемая подсистема памяти удовлетворяла

следующим двум ограничениям: (1) запросы к разным кэш-строкам исполняются

независимо друг от друга; (2) запросы в одну кэш-строку сериализуются (в каждый

момент времени исполняется не более одного запроса к одной кэш-строке).

Предложенный метод с небольшими изменениями использовался для верификации

кэш-памяти третьего уровня микропроцессора «Эльбрус-8C»; в результате было
найдено три ошибки.

Ключевые слова: многоядерные микропроцессоры; кэш-память; консистентность

памяти; протоколы когерентности; функциональная верификация; тестирование на

основе моделей; автоматизация разработки тестов; тестовый оракул; «Эльбрус-8C»

DOI: 10.15514/ISPRAS-2015-27(3)-11

Для цитирования: Камкин А.С., Петроченков М.В. Подход к построению тестовых

оракулов для подсистем памяти многоядерных микропроцессоров на основе моделей.

Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 149-160 (на английском языке). DOI:
10.15514/ISPRAS-2015-27(3)-11.

Список литературы

[1]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache

Coherence. Morgan and Claypool, 2011. 195 p.

[2]. А. Камкин, М. Петроченков. Система поддержки верификации реализаций

протоколов когерентности с использованием формальных методов // Вопросы

радиоэлектроники, сер. ЭВТ. 2014, вып. 3, с. 27-38.

[3]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models. Kluwer

Academic Publishers, 2000. 354 p.

[4]. von Bochmann G., Haar S., Jard C., Jourdan G.V. Testing Systems Specified as Partial

Order Input/Output Automata. ICTSS, 2008. p. 169-183.

[5]. Kuliamin V., Petrenko A., Pakoulin N., Kossatchev A., Bourdonov I. Integration of

Functional and Timed Testing of Real-Time and Concurrent Systems. PSI, 2003. p. 450-

461.

[6]. Chupilko M., Kamkin A. Runtime Verification Based on Executable Models: On-the-

Fly Matching of Timed Traces. MBT, EPTCS 111, 2013, p. 67-81.

[7]. Баратов Р.А., Камкин А.С., Майорова В.М., Мешков А.Н., Сортов А.А.,

Якушева М.А. Трудности модульной верификации аппаратуры на примере буфера

команд микропроцессора «Эльбрус-2S» // Вопросы радиоэлектроники, сер. ЭВТ,

2013, вып. 3. с. 84-96.

А.С. Камкин, М.В. Петроченков. Подход к построению тестовых оракулов для подсистем памяти

многоядерных микропроцессоров на основе моделей. Труды ИСП РАН, том 27, вып. 3, 2015 г., c. 149-160

159

[8]. Кожин А.С., Кожин Е.С., Костенко В.О., Лавров А.В. Кэш третьего уровня и

поддержка когерентности микропроцессора «Эльбрус-4С+» // Вопросы

радиоэлектроники, сер. ЭВТ, 2013, вып. 3. с. 26-38.

A. Kamkin, M. Petrochenkov. A Model-Based Approach to Design Test Oracles for Memory Subsystems of Multicore

Microprocessors. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 149-160

160

