N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test
Generation for Hardware Designs

V1. Melnichenko <igor.melnitxenko@gmail.com>,
2 A. Kamkin <kamkin@ispras.ru>,
28. Smolov <smolov@jispras.ru>,
VINEUM, 24 Vavilova st., Moscow, 119334, Russian Federation
2 Institute for System Programming of the Russian Academy of Sciences,
25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation

Abstract. Model-based test generation is widely spread in functional verification of hardware
designs. The extended finite state machine (EFSM) is known to be a powerful formalism for
modelling digital hardware. As opposed to conventional finite state machines, EFSM models
separate datapath and control, which makes it possible to represent systems in a more
compact way and, in a sense, reduces the risk of state explosion during verification. However,
EFSM state graph traversal problem seems to be nontrivial because of guard conditions that
enable model transitions. In this paper, a new EFSM-based test generation approach is
proposed and compared with the existing solutions. It combines random walk on a state graph
and directed search of feasible paths. The first phase allows covering “easy-to-fire”
transitions. The second one is aimed at “hard-to-fire” cases; the algorithm tries to build a path
that enables a given transition; it is carried out by analyzing control and data dependencies
and applying symbolic execution techniques. Experiments show that the suggested approach
provides better transition coverage with shorter test sequences comparing to the known
methods and achieves a high level of code coverage in terms of statements and branches. Out
future plans include some optimizations aimed at method’s applicability to industrial
hardware designs.

Keywords: hardware design; hardware description language; simulation-based verification;
test generation; modelling; extended finite state machine; graph traversal, random walk;
backjumping; symbolic execution; constraint solving

DOI: 10.15514/ISPRAS-2015-27(3)-12

For citation: Melnichenko I., Kamkin A., Smolov S. An Extended Finite State Machine-
Based Approach to Code Coverage-Directed Test Generation for Hardware Designs. Trudy
ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182. DOIL: 10.15514/ISPRAS-2015-
27(3)-12.

161

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

1. Introduction

Functional verification is a labor-intensive and time-consuming stage of the
hardware design process. According to [1], it spends about 70% of the effort, while
the number of verification engineers is usually twice the number of designers.
Moreover, the “verification gap”, i.e. a difference between verification needs and
capabilities, seems to grow over time [2]. In such a situation, improvement of the
existing verification methods and development of new ones is of high value and
importance. Simulation-based verification, often referred to as testing, is a widely
accepted approach to hardware verification. It requires a testbench [1], a special
environment that generates inputs, so-called stimuli, vectors or patterns, and
optionally observes the outputs, so-called reactions.

Among the methods for stimulus generation, model-based approaches are of
interest. Being formal representations of designs under test, models serve as a
valuable source of “testing knowledge”. There are a lot of model types used for
specifying hardware: finite state machines (FSM) [3], extended FSM (EFSM) [4],
Petri nets [5], etc. The key distinction of the EFSM formalism is clear separation of
data and control flows. It is worth mentioning that EFSM models can be
automatically extracted from HDL descriptions making it possible to generate code
coverage-directed tests [6].

This article advances the FATE approach to EFSM-based functional test generation
(FTG) [7]. The main feature of FATE is backjumping: if an EFSM traverser fails to
cover a transition, it tries to detect a cause of the failure (that is, a transition which
must be traversed in order to enable the target one) and constructs a path directly
from the found transition. Another important part of the approach is a special
heuristic addressing counters and loops. However, FATE is hardly applicable to
hardware designs with complicated data and control dependencies.

The rest of the paper is organized as follows. Section II defines the EFSM model
and briefly describes an EFSM extraction method having been used. Section III
considers the original FATE approach, while Section IV introduces a number of
improvements to it. Section V proposes a new EFSM-based FTG method and shows
how it works by the example of two simple EFSMs. Section VI contains an
experimental comparison of the abovementioned approaches. Section VII concludes
the paper and outlines directions for future improvement of the suggested algorithm.

2. EFSM Model and HDL-to-EFSM Extraction

Let V be a set of variables. A valuation is a function that associates each variable
with a value from the corresponding domain. The set of all valuations over V is
denoted as Dy. A guard is a Boolean function defined on valuations (Dy —
{true, false}). An action is a transformation of valuations (Dy — Dy). A pair y — 9,
where vy is a guard and § is an action, is called a guarded action. When we speak
about a function, it is implied that there is a description of the function in some

162

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

formal language (thus, we can reason about the function’s syntax, not only the
semantics).

An EFSM is a tuple M={(Su, Vi, Ty, where Sy is a set of states,
V= (I Om U Ry) 1s a set of variables, consisting of inputs (Iu), outputs (Oum)
and registers (Ry), and Tu is a set of transitions (all sets are supposed to be finite).
Each transition ¢ € Ty is a tuple (s;, Y0, s';), where s; and s'; are respectively the
initial and the final state of ¢, whereas y; and §; are respectively the guard and the
action of t. A valuation v € Dy, is referred to as a context, while a pair
(s, v) € Surx Dy, is called a configuration. A transition ¢ is said to be enabled for a
configuration (s, v) if s, = s and y/(v) = true.

Given a clock C (a periodic event generator) and an initial configuration (so, Vo), the
EFSM operates as follows. In the beginning, it resets (initializes) the configuration:
(s, V) < (s0, Vo). On every “tick” of C, it computes the set of enabled transitions
E«—{teTu | si=s A yv)=true}. A single transition ¢ € E (chosen non-
deterministically) fires; the EFSM changes the configuration (updates the context
and moves from the initial state to the final one) (s, v) < ("5, 04V)).

In this paper, we do not discuss in detail the way the EFSM models are extracted. At
the experimental phase, we use an implementation of the method introduced in [8].
The method deals with HDL descriptions written in synthesizable subsets of VHDL
and Verilog [9]. The major advantage of the approach is high automation — it
requires no information except HDL code. The method uses heuristics for
identifying states and clock signals and extracts the EFSM from the control flow
graph-based representation. For every process defined in the HDL description, a
single EFSM is usually built; all EFSM models of the description are defined over
the same set of variables. It should be emphasized that EFSM actions have the “flat”
syntax, which means that each action is a linear sequence of assignments.

We have enhanced the cited method by adding a new heuristic aimed at recognizing
the initial configuration. A guarded action y, — 9§, is said to be resetting if the
following properties hold: (1) y. depends on exactly one clock signal, which is
called a reset; (2) O, consists solely of assignments of the kind v=c¢, where
v € (Ou U Ry) and ¢ is a constant expression. Provided that there is only one
resetting action, that action is supposed to lead to the initial EFSM configuration.

3. The Original FATE Algorithm

The aim of the FATE algorithm is to generate a test that covers all transitions of a
given multi-EFSM system. A test is a set of test sequences, i.e. sequences of test
vectors. A test vector is a valuation over the joint set of the EFSMs’ inputs. The
algorithm includes three phases: an EFSM analysis, a random traversal and a
directed traversal.

163

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

3.1 EFSM Analysis

In the beginning, for each EFSM of the system, data and control dependencies
between its transitions are derived. Let ¢ and 1 be transitions and v be a variable. v is
said to be defined in t (v € Def;) if &; contains an assignment to v; v is said to be used
in T (v € Use:) if v appears either in vy (v € Usey,) or in the right hand side of d:
(v € Uses,). It is said that 7 is data dependent on ¢t (via v) if there exists a variable v
such that v € (Def; N Uses,) and there exists a path P = {t;}]=; from 7 to T (s = s4
and s';, = s7) that does not define v. To keep the data dependency between t and ¢, if
v € Defr, there should be 8:’s assignment with v in the right hand side that precedes
the assignments to v. It is said that t is control dependent on ¢t (via v) if there exists a
variable v such that v € (Def; N Usey.,) and there exists a path from ¢ to t that does
not define v.
The derived data and control dependencies are represented by the directed graphs
whose vertices are the transitions and arcs are the dependencies. Thus, each EFSM
is associated with two such graphs (one is for the control dependencies; another is
for the data dependencies).
The second step of the analysis is counter detection. A register r is said to be a
counter if there is a loop in the EFSM such that: (1) there is a transition ¢ that
defines r; (2) r is defined recurrently (the current value depends on the previous
one); (3) there is a transition ¢ that is control dependent on ¢ via r. For each counter,
all data dependency loops are saved.
Let us consider an EFSM M with Ry = {x, y} such that there is a loop which
consists of the following transitions:

1. y=true;d={x =y};

2. y=true;d={y=x+1};

3. y=true;d={x=1};

4. y=(@=3)0=1{.
In this example, y is considered as a counter with a data dependency loop consisting
of transitions 1 and 2.

3.2 Random Traversal
After the analysis, the random traversal phase is launched. The phase is
parameterized with two values, L and N, where L is the length of a test sequence and
N is the number of test sequences in the test. The random traversal is described by
the following pseudo-code ({M; = (S;, V, T;)}2, are the EFSMs being tested; result
is the generated test):

result « I

coverage <« J

while |result| < N A coverage # U; T; do

reset ({Mi})

164

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

sequence <« J
while |sequence| < L do
vector <« O
for i € {1, ..., m} do
out < {t € T:i | st = si}
while out # J do
t <« choose (out)
out « out \ {t}
constraint <« refine(y., vector U v)
if isSAT (constraint) then
vector < vector U solve(constraint)
coverage < coverage U {t}
break
end
end // while out
end // for i
apply (vector, {Mi})
sequence <« sequence - {vector}
end // while sequence
result <« result U {sequence}
end // while result
The pseudo-code above is based on the following functions: reset({M;}) initializes
the configurations of the models {M;}; choose(T) returns a random item of the non-
empty set T; refine(y, v) replaces variables of the formula y with their values
according to the partial valuation v; isSA7(y) checks whether the constraint y is
satisfiable; solve(y) returns a valuation v such that y(v) = 1; applh(v, {M;}) assigns
the inputs of the models {M;} according to the partial valuation v and executes the
enabled transitions (uninitialized inputs are randomized). The symbols s; and v
denotes respectively the current state of the model M/; and the context (shared among
all models).
Being defined over the same set of variables, the EFSM models may affect each
other while being co-executed. To minimize the influence, the following technique
is applied. Each EFSM M; is supplied with two parameters, F; and 4;, where F; is a
constant inversely proportional to the number of inputs used in the AM;’s guards (the
more such inputs M; has, the more models are expected to be affected by M;) and 4;
is a so-called aging factor (initially set to zero). The sum (F; + 4;) is supposed to be
the priority for choosing the model M;. The priorities specify the order in which the
models are handled (fori e {1, ..., m} do ... end). The main idea with the aging
factor is as follows. If test vector generation for M; fails (isSAT(constraint) returns
false for an outgoing transition), 4; is increased by a constant A4. Note that [7] has

165

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

no particular definition of A4; we use the value A4 = min;=1» Fi. After the model
selection loop, the aging factor of the most priority model is set to zero.

3.3 Directed Traversal

If there are uncovered transitions after the random traversal, FATE proceeds with
the directed generation. Before describing the phase, let us make a remark. The
procedure below, applies Dijkstra’s algorithm for finding a shortest path in a
graph [10]; it is assumed that an arc weight is the number of registers used in the
transition’s guard. The directed traversal is performed separately for each EFSM.
Here is the pseudo-code (M is the EFSM being tested; result is the generated test):

targets <« Tw \ coverage
while targets # J do

t < choose(targets)
covered = false
for prefix € reach(M, s:) do
reset (M)
sequence <«
for vector € prefix do
apply (vector, M)
sequence <« sequence - {vector}
end // for vector
constraint <« refine(y., V)
if isSAT (constraint) then
vector <« solve(constraint)
apply (vector, M)
sequence <« sequence - {vector}
result <« result U {sequence}
coverage < coverage U {t}
covered <« true
break
end
end // for prefix
if “covered then
if "process (M, t) then
warning “The transition t cannot be reached”
end
end

targets <« targets \ {t}
end // while targets

Besides the auxiliary functions defined above, this pseudo-code uses reach(M, s),
which returns the set of known test sequences reaching the state s of the model M,

166

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

and process(M, f), which tries to cover the transition ¢ of the model M by taking into
account the control dependencies (it will be described later on). Note that if targets
includes transitions outgoing from the covered states, choose(targets) returns one of
them; transitions whose initial states has not been reached are selected only if there
are no others. Here is the description of process(M, t):
registers <« Ry M Usey
for reg € registers do
defines « {t € Tu | reg € Def:}
for def € defines do
for prefix € reach (M, sSqer) do
reset (M)
sequence <«
for vector € prefix do
apply(vector, M)
sequence <« sequence - {vector}
end
path <« shortestPath (M, s'der, St)
path « path - {t}
if isCounter (reg) then
constraint <« refine (Yger, V)
vector <« solve(constraint)
apply (vector, M)
sequence < sequence - {vector}

loop <« processCounter (M, s'ger, t, reg)
if loop = null then
return false

end

path « loop - path
else

path <« {def} - path
end

covered <« true
for p € path do
if reg ¢ Def, v p = t then
Y < 7P
else
Y < Yo A Ytireg[8p]
end

constraint <« refine(y, v)
if isSAT (constraint) then

167

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

vector <« solve(constraint)
apply(vector, M)
sequence < sequence - {vector}
else
covered <« false
break
end
end // for p
if covered then
result <« result U {sequence}
coverage < coverage U {t}
return true
end
end // for prefix
end // for def
end // for reg
return false
The following notations are used: shortestPath(M, s, s") finds the shortest path
between the states s and s’ of the M’s state graph using Dijkstra’s algorithm;
isCounter(reg) checks whether the register reg is a counter; vy, denotes the minimal
sub-constraint of the constraint y that depends on the variable v such that y — vy,
holds; y[8] stands for the constraint produced from y by applying the substitution
corresponding to the action d.
Let y=(x = consti A y=const;) and &= {x =z}, where x, y, and z are variables,
while const; and comnst, are constants. In this case, y.=(x=const;) and
v[8] =(z = consti A y = consty).
Here is the pseudo-code for processCounter(M, s, t, reg).
if Yijreg(v) then

return {}
end

loop « null
loopIterator < createloops (M, s, reqg)
while 7Y¢ireq(Vv) do
while hasNext (loopIterator) do
tempContext <« Vv
tempSequence < sequence
loop <« next(looplterator)
for 1 € loop do

constraint <« refine(y:, V)
if isSAT (constraint) then

168

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

vector <« solve(constraint)
apply (vector, M)
sequence < sequence - {vector}
else
v < tempContext
sequence < tempSequence
loop « null
break
end
if loop # null A Ytjreq(Vv) then
return loop
end
end // for loop
end // while hasNext
end // while 7y
return null
The pseudo-code utilizes three special functions: createLoops(M, s, r) constructs all
possible elementary loops in the M’s state graph that start from the state s and
include transitions dependent via the register » and returns the iterator that combines
a bounded number of elementary loops into complex ones (the elementary loops are
constructed by using Dijkstra’s algorithm to connect dependent transitions);
hasNext(i) checks whether the iterator i can produce more loops; next#(i) returns the
next loop and updates the iterator i. Note that the limit on the loop length is chosen
individually for each design.

4. The FATE+ Algorithm

We have implemented a slightly modified version of the original FATE algorithm,
so-called FATE+. Let us consider the changes having been made.

4.1 Transition Selection

In FATE+’s random traversal, choose(T), where T is a non-empty set of transitions,
works a bit differently. If there exist uncovered transitions, the function randomly
chooses one of them; otherwise, it returns an arbitrary item of 7. Our experiments
show that this minor change significantly increases the effectiveness of the random
generation phase.

4.2 Symbolic Execution

FATE implements an approximate method for checking whether a given path is
feasible (for p € path do ... end). Let P be a path, ¢ be the last transition of P, » be a
register used in y;, and v be a context. Given a transition p of P, the algorithm
checks whether p defines r. If it does, the following constraint is constructed and

169

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

tried to be satisfied: v <— v, A v4,[8p). It is worth reminding that y,, is the minimal
conjunctive member of y, that includes all occurrences of r, while v,4,{5,] is the
formula produced from y, by applying the forward substitution corresponding to
the action J,. The method looks inadequate in the sense that if y is unsatisfiable for
some p, it does not really mean that P is infeasible.
We suggest replacing the approximate approach with full-scale symbolic execution
that takes into consideration all the variables defined and used along the path. To be
more precise, we suggest using the well-known method for computing the weakest
precondition of a loop-free program, i.e. a sequence of guarded actions, with respect
to a postcondition [11]. The main idea is as follows. Let y = frue. Starting from the
end of P, for each transition p, including ¢, the following transformation of y is
performed: y <— v, A 7[8,]. Note that the input variables are renamed in such a way
that each transition refers to a unique copy of the inputs. As soon as P is processed,
all occurrences of the registers are replaced by the values taken from v:
y < refine(y, v). P is feasible if and only if y is satisfiable. A test sequence can be
constructed by solving the constraint.
Let us consider an EFSM M with Iy = {i0, i1, i2} and Ry = {x, y, z} such that there
is a path which consists of the following transitions:

1. y=true; 6= {z=1i0},;

2. y=@1=1)0={x=z};

3. y=true; 5= {y=1i2};

4. y=x=4ry=2);06={}.
For this path, y = (i0[0] =4 A i1[1] =1 A i2[2] = 2) is produced.

4.3 Test Reduction

In FATE, there is a frequent situation where multiple test vectors cover the same
transition. To overcome the issue, we have introduced a simple test reduction
technique. While generating tests, each test sequence is associated with the
transitions having been covered. At the end of the process, the set of test sequences
W and the set of covered transitions 7¢,, are available. The technique is as follows.
First, the transitions reached by unique test sequences are identified. Each test
sequence that covers at least one such transition is moved from W to the reduced test
R; all transitions covered by the sequence are excluded from 7¢,,. Then, while T¢,, is
not empty, the following actions are performed. The test sequences that cover
largest subsets of T, are determined; among them, a shortest one is chosen. The
selected sequence is moved from W to R, while the covered transitions are removed
from Toy.

5. The RETGA Algorithm

The algorithm proposed in this paper is called RETGA (Retrascope EFSM-based
Test Generation Algorithm). It has the same phases as FATE; moreover, the EFSM

170

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

analysis phase is identical to FATE’s one. As FATE+, it uses the modified
choose(T) function and applies the test reduction. Let us consider the main phases in
more detail.

5.1 Random Traversal

As in FATE, the EFSM models are processed one-by-one; though a different
arbitration principle is used. The priority of a model depends on the coverage
having been achieved: the better the coverage is, the less the priority is. Such a
strategy is to avoid a situation when a covered EFSM of the highest priority
prevents generating inputs for poorly covered models.
The pseudo-code for the random traversal is as follows (as before, {M; =
(S;,V,T;)}%, are the EFSMs being tested; result is the generated test):
result « O
coverage <«
ignored <« 0
Lo« (Z: 1T:l) / (25 18Sil)
while ignored £ L. A coverage # U; T; do
reset ({M;i})
sequence <« J
usefulSequence <« false
transitions « ¢
buffer « ¢
while |buffer| < L do
vector «
usefulVector « false
for i € {1, ..., m} do
out « {t € T; | st = s;}
while out # J do
t <« choose (out)
out <« out \ {t}

constraint <« refine(y., vector U v)
if i1isSAT (constraint) then

vector <« vector U solve(constraint)
if t ¢ coverage then
usefulSequence <« true

coverage <« coverage U {t}
end

if t ¢ transitions then
usefulVector <« true

transitions <« transitions U {t}
171

end
break
end
end // while out
end // for i
apply (vector, {M})
buffer <« buffer - {vector}
if usefulVector then
sequence < sequence - buffer
buffer «
end
end // while sequence
if usefulSequence then
result <« result U {sequence}
else
ignored <« ignored + 1
end
end // while result

5.2 Directed Traversal
Before describing the directed traversal phase, let us give some definitions. A
piecewise path is a sequence of paths, so-called pieces, for which there is a path
including all of the pieces (with no overlaps) in the given order. Given a register r, a
partial definition path is a piecewise path that propagates at least one input to » and
has no transitions not taking part in the propagation.
The propagation of an input to a register is inductively defined as follows. If there
exist a transition # and a variable " such that &, contains an assignment to 7 that
involves x, then x is said to be propagated to r* along the piecewise path {{¢}}. If
(1) x is propagated to r* along the path P, (2) t is data dependent on ¢, the last
transition of the last piece of P, via r", and (3) 5, contains an assignment to » which
involves 7", then x is said to be propagated to r along the path P - {{t}}.
The directed traversal is performed separately for each EFSM. Here is the pseudo-
code (M is the EFSM being tested; result is the generated test):
targets <« {t € (Tu \ coverage) | reach(M, s:) # <}
while targets # J do

t < choose(targets)

path <« shortestPath” (M, st)

path « path - {t}

if isFeasible (M, path) then

sequence <« solve (M, path)
result <« result U {sequence}

172

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

coverage < coverage U {t}
else
if "process (M, t) then
warning “The transition t cannot be reached”
end
end
targets <« (targets \ {t}) U {1t € Tu | st = s’}
end // while targets
Here, shortestPath"(M, s) returns a shortest (in terms of the number of transitions)
path from the initial state of the model M to the state s; isFeasible(M, P) constructs
the weakest precondition of the path P with respect to true and checks whether it is
satisfiable in the initial context of the model M; solve(M, P) satisfies the constraint
and converts the solution to the test sequence (uninitialized inputs are randomized).
The process(M, t) function looks as follows:
for counter € {r € Ru N Useyx | isCounter(r)} do
loops <«
{{{ti}}: | {ti}:i € dataDepLoops (M, counter)}
if processLoops (M, t, counter, loops) then
return true
end
end // for counter
for define € partialDefPaths (M, Ry M Usey) do
if processPieces (M, t, define) then
return true
end
end // for define
return false
In the pseudo-code above, dataDepLoops(M, c) denotes the set of data dependency
loops for the counter ¢ of the model M (each loop starts with the transition that
defines the counter). As you can see, loops is the set of piecewise paths relating to
the data dependency loops. partialDefPaths(M, R) returns the set of partial
definition paths for M’s registers of the set R. Here is the description of
processLoops(M, t, counter, loops):
groups < groupLoops (loops, counter)
for group € groups do
loopIterator <« init (M, group)
while hasNext (loopIterator) do
loop ¢« next (looplterator)
if processPieces (loop - {{t}}) then
return true
end
end //while hasNext

173

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

end // for group

return false
Here, groupLoops(L, counter) splits the set of loops (piecewise paths) L into disjoint
subsets according to the first transition (which defines the counter register). The
loop iteration scheme is similar to FATE’s one, though each result is a piecewise
path. The pseudo-code for processPieces(M, t, {P;}¥_,) is shown below:

if reach(M, s:) = J then
return false
end
path <« shortestPath* (M, start (Pi1))
for i € {1, ..., k-1} do

path <« path - P;
if "isFeasible (M, path) then
return false
end
path’ «
path - shortestPath (M, end(Pi), start (Pis1))
failed « true
if isFeasible (M, path’) then
path <« path’
failed <« false
else
for bridge € paths (M, end(Pi), start (Pi;1)) do
path’ « path - bridge
if isFeasible (M, path’) then
path <« path’
failed <« false
break;
end
end // for bridge
end // if isSAT
if failed then
return false
end
end // for i
path « path - Px
if "isFeasible (M, path) then
return false
end
sequence <« solve (M, path)
result <« result U {sequence}

174

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

coverage < coverage U {t}

return true
In the pseudo-code, start(P) and end(P) return respectively the initial and the final
state of the piecewise path P; paths(M, s, s") returns the list of cycle-free paths
between M’s states s and s’ sorted by length.

5.3 Examples

Let us consider how the RETGA algorithm works on the example of two models,
namely EFSM-1 and EFSM-2. Both models correspond to the cases that are difficult
for FATE.

Fig. 1. EFSM-I

In EFSM-1 (see Fig. 1), the random traversal is unlikely to cover the transition 3—4
as it requires, first, walking through the path 0—1—2—3 and, second, assigning
i0 < 4 (while traversing 0—1) and i2 <~ 2 (while traversing 2—3). The random
traversal is most likely produce two input sequences that cover 0—1—2—3 and
0—1—3. As for the directed traversal of 3—4, the following partial definition paths
are found for the registers x and y used in the transition’s guard:

1. 0—1—3 (i0 is propagated to x via z);

2. 0—1—-2 (i0 is propagated to x via z);

3. 23 (i2 is directly assigned to y).
The first path does not initialize y and has no continuations that could do that. For
the second one, the pieces {0—1—2, 3—4} are composed and supplemented by the
only “bridge” 2—3. For the third path, the “prefix” 0—1—2 explored at the random
traversal phase is put before the partial definition path. In both cases, the path
0—1—2—3—4 is constructed. To check whether the path is feasible, the weakest
precondition is computed: i0[1] =4 A i1[2] = 1 A i2[3] =2 (the indices in the square

175

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

brackets refer to the positions of the test vectors in the test sequence). It is
satisfiable; the solution is as follows:

1. i0=4;il and i2 are randomly valued,
2. il =1;i0 and i2 are randomly valued;
3. i2=2;i0 and i1 are randomly valued;
4. 0, il and i2 are randomly valued.

y: true y:it==0
5. x0=i0 D X3 =x2

Fig.2 EFSM-2

In EFSM-2 (see Fig. 2), a transition of the interest is 1—2. The shortest path that
reaches the transition is 0—1—1—1—2 with the assignment i0 <— 4 on the first
step. There is only one partial definition path for x3, namely 0—1—1—1. The path
can be supplemented only with the target transition, which gives 0—1—1—1-2.
The weakest precondition is i0[1] =4 A il[2] =0 A il1[3] =0 A il[4] =0 A iI[5]# 0
and it is satisfiable.

6. Experimental Results

The RETGA algorithm has been implemented as a part of the Retrascope [12]
project. It uses the Fortress [14] library together with the Z3 [15] solver for
representing expressions and solving constraints. To compare the algorithm with
FATE and FATE+, the ITC'99 benchmark [13] was utilized.

Table I shows the characteristics of the EFSMs extracted from some ITC'99’s
designs. As it has been already said, we used the extended variant of the method
described in [8] to build the models, though all of the presented approaches do not
depend on the way EFSMs are produced.

Table I. Characteristics of the Extracted EFSMs

Design | Number of States | Number of Transitions
b01 8 24
b02 7 17
b04 3 29
b06 7 33

176

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

Design | Number of States | Number of Transitions
b07 8 21
b08 4 12
b10 11 38

Table II and Table III show the test generation results. All generators achieve 100%
coverage for b01, b02, b04 and b06 and 95% coverage for b07 (there is an infeasible
transition). The difference in coverage reached by RETGA and FATE / FATE+ for
b08 is due to the fact that FATE and FATE+ handle data dependencies in a simpler
way; in particular, they do not try different “bridges”. The difference in coverage
reached by FATE and FATE+ for b08 and b10 demonstrates the advantage of the
symbolic execution over the simplified approach used in FATE. The difference in
size of the tests generated by FATE and FATE+ relates to the test reduction
technique applied in FATE+. The RETGA’s tests are usually shorter since it rejects
redundant random vectors.

It is significant to note that the L and N parameters (which are related to the random
traversal phase of FATE and FATE+) were set to 2,72, |S;| and Y12, |T;| / 21241 |Si]
respectively. The loop iteration limit (which is relevant for all of the generators) was
set to 8 (this value is enough for b07 and b08, whereas other designs have no
counters).

Table II. Number of Test Vectors in the Tests

FATE | FATE+ | RETGA
b01 115 70 49
b02 62 48 33
b04 | 104 104 36
b06 | 198 100 76
b07 | 246 208 166
b08 31 31 52
b10 | 173 170 135

Table III. Transition Coverage Achieved by the Tests

FATE | FATE+ | RETGA
b0l | 100% | 100% 100%
b02 | 100% | 100% 100%
b04 | 100% | 100% 100%
b06 | 100% | 100% 100%

177

FATE | FATE+ | RETGA
b07 | 95% 95% 95%
b08 | 75% 83% 100%
b10 | 89% 100% 100%

The tests generated by RETGA were applied to the designs by using the Questa
simulator [16]. The source code coverage having been achieved is presented in
Table IV (each column corresponds to some metric of the Questa coverage report).
It can be seen that the code coverage is rather high.

Table IV. Source Code Coverage Reached by RETGA

Statements | Branches | FSM States | FSM Transitions
b01 100% 100% 100% 100%
b02 100% 100% 100% 100%
b04 100% 100% 100% 100%
b06 100% 100% 100% 100%
b07 93.93% 94.73% 100% 100%
b08 100% 100% 100% 100%
b10 100% 100% 100% 100%

7. Conclusion

In this paper, an EFSM-based test generation algorithm has been proposed. The
approach allows reaching better transition coverage with less number of test vectors
than the known methods. However, the research is still in progress; there are many
issues to be solved. Let us mention some of them. First, the approach is hardly
applicable to complex hardware designs involving a great number of tightly
connected EFSMs. It uses a simple coverage-based heuristic to decide which EFSM
to handle next, whereas advanced techniques are expected to rely on the semantics
of a system under test. Second, the method for searching “bridges” needs to be
optimized. Being irrelevant for simple EFSMs (as ones presented in Section VI),
this issue is of high value and importance for real-life hardware. Third, in the
current implementation, each guard (each constraint, in general) is viewed as an
indivisible entity and solved as a whole. It is not an issue as long as the goal is to
cover EFSM transitions, but it may lead to poor expression coverage as there are
many ways to satisfy a constraint. Finally, the quality of testing strongly depends on
the models being used. It seems to be useful to formalize a notion of a “good”
model.

178

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

References

[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer
Academic Publishers, 2003.

[2]. Blyler J. Are Best Practices Resulting in a Verification Gap?
(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-
verification-gap).

[3]. Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for
VHDL. Proceedings of International Conference on Information and Software
Technologies (ICIST), 2012. pp. 138-148.

[4]. Duale A.Y., Uyar M.U. A Method Enabling Feasible Conformance Functional Test
Sequence Generation for EFSM Models. [EEE Transactions on Computers, 53(5), 2004.
pp. 614-627.

[5]. Lazarev V.G., PijI' EI. Sintez upravljajushhih avtomatov. Energoatomizdat, Moscow,
1989. 328 p. (in Russian)

[6]. Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the
Extended Finite State Machine Model. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 1996. pp. 57-79.

[7]. Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of
Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of
Electronic Functional testing: Theory and Application, 27(2),2011. pp. 137-162.

[8]. Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to
Functional Verification. Proceedings of the Conference on Problems of Perspective
Micro- and Nanoelectronic Systems Development, Part 11, 2014. pp. 113-118.

[9]. Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.).
The VLSI Handbook. CRC Press, 2007. 2320 p.

[10]. Dijkstra EEW. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1, 1959, pp. 269-271.

[11]. Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p.
[12]. Retrascope toolkit. http://forge.ispras.ru/projects/retrascope

[13]. ITC’99 benchmark. http://www.cad.polito.it/tools/itc99.html

[14]. Fortress library. http://forge.ispras.ru/projects/solver-api

[15]. Z3 solver. http://z3.codeplex.com

[16]. Questa simulator. http://www.mentor.com/products/fv/questa/

179

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

Noaxon K reHepauumn TeCcToB, HauesIeHHbIX
Ha NokKpbiTne koga HDL-onucaHun
annapaTtypbl, HA OCHOBE pacCLUMPEHHbIX
KOHe4YHbIX aBTOMaToOB

YU, Menvnuuenxo <igor.melnitxenko@gmail.com>,
2 A. Kamxun <kamkin@jispras.ru>,
2C. Cmonos <smolov@ispras.ru>,
YOAO «Hucmumym snexmponnvix ynpasasiowux mawiun um. 4.C. Bpyxay,
119334, Mockea, yn. Basunosa, 24
2 Uncmumym cucmemnozo npozpammuposanus PAH,
109004, Mockea, yn. Anexcanopa Condxcenuywvina, 25

AHHoTanms. ['eHepaliis TECTOB MO MOJEISIM LIMPOKO HCHONB3YyeTCs Uisl (PyHKIMOHAIBHOM
Bepu(uKanuy ammaparypsl. Pacmmpennsle koHeunsle aBroMmathl (extended finite state
machines, EFSM) — ynoOuslif ¢popmannsm it MoiennpoBaHus HU(POBBIX ycTpoiicTs. B
OTJINYUE OT OOBIYHBIX KOHEUHBIX aBTOMaToB, B EFSM-Monemsax ymnpapisroniue CHrHAIBI U
JaHHBIE pa3eNeHbl, YTO IO3BOJSIET OIMCHIBATH CHUCTEMBI B 0Oojiee KOMIIAaKTHOH (opme,
YMEHbIIIasi B HCKOTOPOM CMBICJIE PUCK KOMOMHATOPHOTO B3pbIBa IpH Bepubukanuu. OnHaKo
00xon rpaga cocrosHuii EFSM-Moznenu siBisieTcs HETpUBHAIBHOW 3a1aueil M3-3a HAJIMYHS
YCTIOBMI Ha BBINOJHUMOCTh MEPEX0A0B. B 1aHHOI cTaThe mpencTaBieH METOJ I'eHepaluu
tectoB mo EFSM-mozensM M mnpoBeAeHO €ro CpaBHEHHE C IPYTMMU MOJIXOJaMU.
[Ipemnaraembiit MeTon coueraeT ciydailHelii 00xox rpada COCTOSHHMH aBToMara u
HalpaBJICHHBIN TMOUCK peanu3yeMblx mmyrtedl. IlepBas w3 ykasaHHBIX (a3 HampaBiIeHa Ha
TIOKPBITUE «IIPOCTBIX» IIEPEXOJ0B, BTOpAs — «CIOXKHBIX». [10J7 CIIOKHOCTBIO IIEPEXOI0B
3/lech TIOHMMAETCsl HAJIMYUe 3aBHCHMOCTEH OXPAaHHBIX YCIOBHH HEPEXOJO0B OT BHYTPEHHHX
TepeMeHHBIX. [Ipyu HaNpaBICHHOM ITOMCKE HCIIONIB3YeTCsl HHPOPMALHS O 3aBUCHMOCTSIX IO
JaHHBIM M YIPABICHUIO MEXIy IEepexofaMu aBTOMaTa M 3aAeiCTBYETCS CHMBOJIHMUYECKOE
UCIIONHEHUE. DBbIJIO BBIMONHEHO CpaBHEHHME MPEIaraéMoro METoJa € CYIIECTBYIOIUMU
aHAJIOTAaMH ITyTEM COIOCTAaBIECHHUs NapaMeTPOB TECTOB, CTCHEPUPOBAHHBIX AN 3aTaHHOTO
Habopa onucaHuii Moayiell nudpoBoii anmapaTtypbl. Bo Beex ciydasx B KaueCTBE BXOJIHBIX
JaHHBIX ucroib3oBammch EFSM-Moneny, aBTOMaTWYecKM H3BJIEYEHHBIE U3 KOJA.
IonyueHHble naHHBIE IIOKA3BIBAIOT, YTO B CPAaBHEHHH C JAPYTUMH IIOAXOJAMH METOX
obecrieunBaeT JIyqIIre MMOKa3aTeNy MOKPBITHS HCXOIHOTO Koja 6oiiee KOPOTKHMH TECTaMH.
B Oynymem miaHupyeTcst peaan3oBaTh psJl ONTUMH3AINI, HANIPaBICHHBIX Ha NIPUMEHECHHE
MeToza K npoMsiniieHHsIM HDL-onucanusam.

KitoyeBble c¢JI0Ba: [POCKTHPOBAHHME aNNaparypbl; SI3bIK ONHCAHHUS alapaTypebl;
HMUTALMOHHAS BepHU(DUKAlWs;, TEHepalHs TECTOB; MOJCIUPOBAHKE, pACIIMPCHHBIH
KOHEYHBIIf aBTOMaT; 00x0x rpada; ciydaidHblil 00X0/I; TOMCK C BO3BPAaTaMH; CHMBOJIMTYECKOE
UCIOJIHEHUE; pa3pelIeHUe OrPaHUYCHHUI.

DOI: 10.15514/ISPRAS-2015-27(3)-12

180

N.B. Menbunuenko, A.C. Kamkun, C.A. Cmonos. [Toaxo/ k reHepaluy TeCTOB, HAallGJICHHBIX Ha NMOKpbITHE Koaa HDL-
ONHUCAHHUI anmapaTypbl, Ha OCHOBE PACIINPEHHBIX KOHEUHbIX... Tpyast UCITI PAH, tom 27, Bem. 3, 2015 1., . 161-182

Jost uurupoBanusi: Mensunuenko M.B., Kamkun A.C., CmoinoB C.A. Tlogxoxa x renepauuu
TECTOB, HalLlEJICHHbIX Ha TMOKpeiTHe kojga HDL-ommcanuii anmapaTypbl, Ha OCHOBE
paciupeHHbIX KoHeuHbIX aBromatoB. Tpyast UCIT PAH, Tom 27, Bein. 3, 2015 1., ctp. 161-
182 (ma anrmmiickoMm si3eike). DOI: 10.15514/ISPRAS-2015-27(3)-12.

Cnucok nutepatypbl

[1].
[2].

(31

(4]

[5].
[6].

[71.

[8].

[9].

[10].

[11

—

Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer
Academic Publishers, 2003.

Blyler J. Are Best Practices Resulting in a Verification Gap?
(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-
verification-gap).

Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for
VHDL. Proceedings of International Conference on Information and Software
Technologies (ICIST), 2012. pp. 138-148.

Duale AY., Uyar M.U. A Method Enabling Feasible Conformance Functional Test
Sequence Generation for EFSM Models. IEEE Transactions on Computers, 53(5), 2004.
pp. 614-627.

Jlazapes B.I'., Iluiine E.M. CuHTe3 ymnpaBisioIIMX aBTOMATOB. JHepzoamomuzoam,
1989. 328 c.

Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the
Extended Finite State Machine Model. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 1996. pp. 57-79.

Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of
Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of
Electronic Functional testing: Theory and Application, 27(2),2011. pp. 137-162.
Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to
Functional Verification. Proceedings of the Conference on Problems of Perspective
Micro- and Nanoelectronic Systems Development, Part 11, 2014. pp. 113-118.

Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.).
The VLSI Handbook. CRC Press, 2007. 2320 p.

Dijkstra EEW. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1, 1959, pp. 269-271.

. Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p.
[12].
[13].
[14].
[15].
[16].

Hucrpyment Retrascope. http://forge.ispras.ru/projects/retrascope
Tecrossrit Habop ITC’99. http://www.cad.polito.it/tools/itc99.html
Bubmmorexa Fortress. http://forge.ispras.ru/projects/solver-api
Pemarens orpanndenwmii Z3. http://z3.codeplex.com

Cumymstop Questa. http://www.mentor.com/products/fv/questa/

181

1. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed
Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

182

