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Abstract. Model-based test generation is widely spread in functional verification of hardware 

designs. The extended finite state machine (EFSM) is known to be a powerful formalism for 

modelling digital hardware. As opposed to conventional finite state machines, EFSM models 

separate datapath and control, which makes it possible to represent systems in a more 

compact way and, in a sense, reduces the risk of state explosion during verification. However, 

EFSM state graph traversal problem seems to be nontrivial because of guard conditions that 

enable model transitions. In this paper, a new EFSM-based test generation approach is 

proposed and compared with the existing solutions. It combines random walk on a state graph 

and directed search of feasible paths. The first phase allows covering “easy-to-fire” 

transitions. The second one is aimed at “hard-to-fire” cases; the algorithm tries to build a path 

that enables a given transition; it is carried out by analyzing control and data dependencies 

and applying symbolic execution techniques. Experiments show that the suggested approach 

provides better transition coverage with shorter test sequences comparing to the known 

methods and achieves a high level of code coverage in terms of statements and branches. Out 

future plans include some optimizations aimed at method’s applicability to industrial 
hardware designs. 
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1. Introduction 

Functional verification is a labor-intensive and time-consuming stage of the 

hardware design process. According to [1], it spends about 70% of the effort, while 

the number of verification engineers is usually twice the number of designers. 

Moreover, the “verification gap”, i.e. a difference between verification needs and 

capabilities, seems to grow over time [2]. In such a situation, improvement of the 

existing verification methods and development of new ones is of high value and 

importance. Simulation-based verification, often referred to as testing, is a widely 

accepted approach to hardware verification. It requires a testbench [1], a special 

environment that generates inputs, so-called stimuli, vectors or patterns, and 

optionally observes the outputs, so-called reactions. 

Among the methods for stimulus generation, model-based approaches are of 

interest. Being formal representations of designs under test, models serve as a 

valuable source of “testing knowledge”. There are a lot of model types used for 

specifying hardware: finite state machines (FSM) [3], extended FSM (EFSM) [4], 

Petri nets [5], etc. The key distinction of the EFSM formalism is clear separation of 

data and control flows. It is worth mentioning that EFSM models can be 

automatically extracted from HDL descriptions making it possible to generate code 

coverage-directed tests [6]. 

This article advances the FATE approach to EFSM-based functional test generation 

(FTG) [7]. The main feature of FATE is backjumping: if an EFSM traverser fails to 

cover a transition, it tries to detect a cause of the failure (that is, a transition which 

must be traversed in order to enable the target one) and constructs a path directly 

from the found transition. Another important part of the approach is a special 

heuristic addressing counters and loops. However, FATE is hardly applicable to 

hardware designs with complicated data and control dependencies. 

The rest of the paper is organized as follows. Section II defines the EFSM model 

and briefly describes an EFSM extraction method having been used. Section III 

considers the original FATE approach, while Section IV introduces a number of 

improvements to it. Section V proposes a new EFSM-based FTG method and shows 

how it works by the example of two simple EFSMs. Section VI contains an 

experimental comparison of the abovementioned approaches. Section VII concludes 

the paper and outlines directions for future improvement of the suggested algorithm. 

2. EFSM Model and HDL-to-EFSM Extraction 

Let � be a set of variables. A valuation is a function that associates each variable 

with a value from the corresponding domain. The set of all valuations over V is 

denoted as DV. A guard is a Boolean function defined on valuations (DV → 

{true, false}). An action is a transformation of valuations (DV → DV). A pair γ → δ, 

where γ is a guard and δ is an action, is called a guarded action. When we speak 

about a function, it is implied that there is a description of the function in some 
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formal language (thus, we can reason about the function’s syntax, not only the 

semantics). 

An EFSM is a tuple M = 〈SM, VM, TM〉, where SM is a set of states, 

VM = (IM ∪ OM ∪ RM) is a set of variables, consisting of inputs (IM), outputs (OM) 

and registers (RM), and TM is a set of transitions (all sets are supposed to be finite). 

Each transition t ∈ TM is a tuple (st, γt→δt, s′t), where st and s′t are respectively the 

initial and the final state of t, whereas γt and δt are respectively the guard and the 

action of t. A valuation ν ∈ DVM is referred to as a context, while a pair 

(s, ν) ∈ SM × DVM is called a configuration. A transition t is said to be enabled for a 

configuration (s, ν) if st = s and γt(ν) = true. 

Given a clock C (a periodic event generator) and an initial configuration (s0, ν0), the 

EFSM operates as follows. In the beginning, it resets (initializes) the configuration: 

(s, ν) ← (s0, ν0). On every “tick” of C, it computes the set of enabled transitions 

E ← {t ∈ TM | st = s ∧ γt(ν) = true}. A single transition t ∈ E (chosen non-

deterministically) fires; the EFSM changes the configuration (updates the context 

and moves from the initial state to the final one) (s, ν) ← (s′t, δt(ν)). 

In this paper, we do not discuss in detail the way the EFSM models are extracted. At 

the experimental phase, we use an implementation of the method introduced in [8]. 

The method deals with HDL descriptions written in synthesizable subsets of VHDL 

and Verilog [9]. The major advantage of the approach is high automation – it 

requires no information except HDL code. The method uses heuristics for 

identifying states and clock signals and extracts the EFSM from the control flow 

graph-based representation. For every process defined in the HDL description, a 

single EFSM is usually built; all EFSM models of the description are defined over 

the same set of variables. It should be emphasized that EFSM actions have the “flat” 

syntax, which means that each action is a linear sequence of assignments. 

We have enhanced the cited method by adding a new heuristic aimed at recognizing 

the initial configuration. A guarded action γr → δr is said to be resetting if the 

following properties hold: (1) γr depends on exactly one clock signal, which is 

called a reset; (2) δr consists solely of assignments of the kind v = c, where 

v ∈ (OM ∪ RM) and c is a constant expression. Provided that there is only one 

resetting action, that action is supposed to lead to the initial EFSM configuration. 

3. The Original FATE Algorithm 

The aim of the FATE algorithm is to generate a test that covers all transitions of a 

given multi-EFSM system. A test is a set of test sequences, i.e. sequences of test 

vectors. A test vector is a valuation over the joint set of the EFSMs’ inputs. The 

algorithm includes three phases: an EFSM analysis, a random traversal and a 

directed traversal. 
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3.1 EFSM Analysis 

In the beginning, for each EFSM of the system, data and control dependencies 

between its transitions are derived. Let t and τ be transitions and v be a variable. v is 

said to be defined in t (v ∈ Deft) if δt contains an assignment to v; v is said to be used 

in τ (v ∈ Useτ) if v appears either in γτ (v ∈ Useγτ) or in the right hand side of δτ 

(v ∈ Useδτ). It is said that τ is data dependent on t (via v) if there exists a variable v 

such that v ∈ (Deft ∩ Useδτ) and there exists a path � = ������	

  from t to τ (s′t = st1 

and s′tn = sτ) that does not define v. To keep the data dependency between τ and t, if 

v ∈ Defτ, there should be δτ’s assignment with v in the right hand side that precedes 

the assignments to v. It is said that τ is control dependent on t (via v) if there exists a 

variable v such that v ∈ (Deft ∩ Useγτ) and there exists a path from t to τ that does 

not define v. 

The derived data and control dependencies are represented by the directed graphs 

whose vertices are the transitions and arcs are the dependencies. Thus, each EFSM 

is associated with two such graphs (one is for the control dependencies; another is 

for the data dependencies). 

The second step of the analysis is counter detection. A register � is said to be a 

counter if there is a loop in the EFSM such that: (1) there is a transition t that 

defines r; (2) r is defined recurrently (the current value depends on the previous 

one); (3) there is a transition t′ that is control dependent on t via r. For each counter, 

all data dependency loops are saved. 

Let us consider an EFSM M with RM = {x, y} such that there is a loop which 

consists of the following transitions: 

1. γ ≡ true; δ ≡ {x = y}; 

2. γ ≡ true; δ ≡ {y = x + 1}; 

3. γ ≡ true; δ ≡ {x = 1}; 

4. γ ≡ (y = 3); δ ≡ {}. 

In this example, y is considered as a counter with a data dependency loop consisting 

of transitions 1 and 2. 

3.2 Random Traversal 

After the analysis, the random traversal phase is launched. The phase is 

parameterized with two values, L and N, where L is the length of a test sequence and 

� is the number of test sequences in the test. The random traversal is described by 

the following pseudo-code (�
� = 〈�� , �, ��〉���	
�  are the EFSMs being tested; result 

is the generated test): 

result ← ∅ 

coverage ← ∅ 

while |result| < N ∧ coverage ≠ ∪i Ti do 

  reset({Mi}) 
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  sequence ← ∅ 
  while |sequence| < L do 

    vector ← ∅ 

    for i ∈ {1, ..., m} do 

      out ← {t ∈ Ti | st = si} 

      while out ≠ ∅ do 

        t ← choose(out) 

        out ← out \ {t} 

        constraint ← refine(γt, vector ∪ ν) 
        if isSAT(constraint) then 

          vector ← vector ∪ solve(constraint) 

          coverage ← coverage ∪ {t} 
          break 

        end 

      end // while out 

    end // for i 

    apply(vector, {Mi}) 

    sequence ← sequence ⋅ {vector} 
  end // while sequence 

  result ← result ∪ {sequence} 
end // while result 

The pseudo-code above is based on the following functions: reset({Mi}) initializes 

the configurations of the models {Mi}; choose(T) returns a random item of the non-

empty set T; refine(γ, ν) replaces variables of the formula γ with their values 

according to the partial valuation ν; isSAT(γ) checks whether the constraint γ is 

satisfiable; solve(γ) returns a valuation ν such that γ(ν) = 1; apply(ν, {Mi}) assigns 

the inputs of the models {Mi} according to the partial valuation ν and executes the 

enabled transitions (uninitialized inputs are randomized). The symbols si and ν 

denotes respectively the current state of the model Mi and the context (shared among 

all models). 

Being defined over the same set of variables, the EFSM models may affect each 

other while being co-executed. To minimize the influence, the following technique 

is applied. Each EFSM Mi is supplied with two parameters, Fi and Ai, where Fi is a 

constant inversely proportional to the number of inputs used in the Mi’s guards (the 

more such inputs Mi has, the more models are expected to be affected by Mi) and Ai 

is a so-called aging factor (initially set to zero). The sum (Fi + Ai) is supposed to be 

the priority for choosing the model Mi. The priorities specify the order in which the 

models are handled (for i ∈ {1, ..., m} do ... end). The main idea with the aging 

factor is as follows. If test vector generation for Mi fails (isSAT(constraint) returns 

false for an outgoing transition), Ai is increased by a constant ∆A. Note that [7] has 
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no particular definition of ∆A; we use the value ∆A = mini=1,m Fi. After the model 

selection loop, the aging factor of the most priority model is set to zero. 

3.3 Directed Traversal 

If there are uncovered transitions after the random traversal, FATE proceeds with 

the directed generation. Before describing the phase, let us make a remark. The 

procedure below, applies Dijkstra’s algorithm for finding a shortest path in a 

graph [10]; it is assumed that an arc weight is the number of registers used in the 

transition’s guard. The directed traversal is performed separately for each EFSM. 

Here is the pseudo-code (M is the EFSM being tested; result is the generated test): 

targets ← TM \ coverage 

while targets ≠ ∅ do 

  t ← choose(targets) 

  covered = false 

  for prefix ∈ reach(M, st) do 
    reset(M) 

    sequence ← ∅ 

    for vector ∈ prefix do 
      apply(vector, M) 

      sequence ← sequence ⋅ {vector} 
    end // for vector 

    constraint ← refine(γt, ν) 
    if isSAT(constraint) then 

      vector ← solve(constraint) 

      apply(vector, M) 

      sequence ← sequence ⋅ {vector} 

      result ← result ∪ {sequence} 

      coverage ← coverage ∪ {t} 

      covered ← true 

      break 

    end 

  end // for prefix 

  if ¬covered then 

    if ¬process(M, t) then 

      warning “The transition t cannot be reached” 

    end 

  end 

  targets ← targets \ {t} 

end // while targets 

Besides the auxiliary functions defined above, this pseudo-code uses reach(M, s), 

which returns the set of known test sequences reaching the state s of the model M, 
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and process(M, t), which tries to cover the transition t of the model M by taking into 

account the control dependencies (it will be described later on). Note that if targets 

includes transitions outgoing from the covered states, choose(targets) returns one of 

them; transitions whose initial states has not been reached are selected only if there 

are no others. Here is the description of process(M, t): 

registers ← RM ∩ Useγt 

for reg ∈ registers do 

  defines ← {t ∈ TM | reg ∈ Deft} 

  for def ∈ defines do 

    for prefix ∈ reach(M, sdef) do 

      reset(M) 

      sequence ← ∅ 

      for vector ∈ prefix do 

        apply(vector, M) 

        sequence ← sequence ⋅ {vector} 
      end 

      path ← shortestPath(M, s′def, st) 

      path ← path ⋅ {t} 
      if isCounter(reg) then 

        constraint ← refine(γdef, ν) 

        vector ← solve(constraint) 

        apply(vector, M) 

        sequence ← sequence ⋅ {vector} 

        loop ← processCounter(M, s′def, t, reg) 
        if loop = null then 

          return false 

        end 

        path ← loop ⋅ path 
      else 

        path ← {def} ⋅ path 
      end 

      covered ← true 

      for p ∈ path do 

        if reg ∉ Defp ∨ p = t then 

          γ ← γp 
        else 

          γ ← γp ∧ γt|reg[δp] 
        end 

        constraint ← refine(γ, ν) 
        if isSAT(constraint) then 
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          vector ← solve(constraint) 

          apply(vector, M) 

          sequence ← sequence ⋅ {vector} 
        else 

          covered ← false 

          break 

        end 

      end // for p 

      if covered then 

        result ← result ∪ {sequence} 

        coverage ← coverage ∪ {t} 
        return true 

      end 

    end // for prefix 

  end // for def 

end // for reg 

return false 

The following notations are used: shortestPath(M, s, s′) finds the shortest path 

between the states s and s′ of the M’s state graph using Dijkstra’s algorithm; 

isCounter(reg) checks whether the register reg is a counter; γ|v denotes the minimal 

sub-constraint of the constraint γ that depends on the variable v such that γ → γ|v 

holds; γ[δ] stands for the constraint produced from γ by applying the substitution 

corresponding to the action δ. 

Let γ ≡ (x = const1 ∧ y = const2) and δ ≡ {x = z}, where x, y, and z are variables, 

while const1 and const2 are constants. In this case, γ|x ≡ (x = const1) and 

γ[δ] ≡(z = const1 ∧ y = const2). 

Here is the pseudo-code for processCounter(M, s, t, reg). 

if γt|reg(ν) then 
  return {} 

end 

loop ← null 

loopIterator ← createLoops(M, s, reg) 

while ¬γt|reg(ν) do 
  while hasNext(loopIterator) do 

    tempContext ← ν 

    tempSequence ← sequence 

    loop ← next(loopIterator) 

    for l ∈ loop do 

      constraint ← refine(γl, ν) 
      if isSAT(constraint) then 
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        vector ← solve(constraint) 

        apply(vector, M) 

        sequence ← sequence ⋅ {vector} 
      else 

        ν ← tempContext 

        sequence ← tempSequence 

        loop ← null 

        break 

      end 

      if loop ≠ null ∧ γt|reg(ν) then 
        return loop 

      end 

    end // for loop 

  end // while hasNext 

end // while ¬γ 
return null 

The pseudo-code utilizes three special functions: createLoops(M, s, r) constructs all 

possible elementary loops in the M’s state graph that start from the state s and 

include transitions dependent via the register r and returns the iterator that combines 

a bounded number of elementary loops into complex ones (the elementary loops are 

constructed by using Dijkstra’s algorithm to connect dependent transitions); 

hasNext(i) checks whether the iterator i can produce more loops; next(i) returns the 

next loop and updates the iterator i. Note that the limit on the loop length is chosen 

individually for each design. 

4. The FATE+ Algorithm 

We have implemented a slightly modified version of the original FATE algorithm, 

so-called FATE+. Let us consider the changes having been made. 

4.1 Transition Selection 

In FATE+’s random traversal, choose(T), where T is a non-empty set of transitions, 

works a bit differently. If there exist uncovered transitions, the function randomly 

chooses one of them; otherwise, it returns an arbitrary item of T. Our experiments 

show that this minor change significantly increases the effectiveness of the random 

generation phase. 

4.2 Symbolic Execution 

FATE implements an approximate method for checking whether a given path is 

feasible (for p ∈ path do ... end). Let P be a path, t be the last transition of P, r be a 

register used in γt, and ν be a context. Given a transition p of P, the algorithm 

checks whether p defines r. If it does, the following constraint is constructed and 

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed 

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182 

170 

tried to be satisfied: γ ← γp ∧ γt|r[δp]. It is worth reminding that γt|r is the minimal 

conjunctive member of γt that includes all occurrences of r, while γt|r[δp] is the 

formula produced from γt|r by applying the forward substitution corresponding to 

the action δp. The method looks inadequate in the sense that if γ is unsatisfiable for 

some p, it does not really mean that P is infeasible. 

We suggest replacing the approximate approach with full-scale symbolic execution 

that takes into consideration all the variables defined and used along the path. To be 

more precise, we suggest using the well-known method for computing the weakest 

precondition of a loop-free program, i.e. a sequence of guarded actions, with respect 

to a postcondition [11]. The main idea is as follows. Let γ ≡ true. Starting from the 

end of P, for each transition p, including t, the following transformation of γ is 

performed: γ ← γp ∧ γ[δp]. Note that the input variables are renamed in such a way 

that each transition refers to a unique copy of the inputs. As soon as P is processed, 

all occurrences of the registers are replaced by the values taken from ν: 

γ ← refine(γ, ν). P is feasible if and only if γ is satisfiable. A test sequence can be 

constructed by solving the constraint. 

Let us consider an EFSM M with IM = {i0, i1, i2} and RM = {x, y, z} such that there 

is a path which consists of the following transitions: 

1. γ ≡ true; δ ≡ {z = i0}; 

2. γ ≡ (i1 = 1); δ ≡ {x = z}; 

3. γ ≡ true; δ ≡ {y = i2}; 

4. γ ≡ (x = 4 ∧ y = 2); δ ≡ {}. 

For this path, γ ≡ (i0[0] = 4 ∧ i1[1] = 1 ∧ i2[2] = 2) is produced. 

4.3 Test Reduction 

In FATE, there is a frequent situation where multiple test vectors cover the same 

transition. To overcome the issue, we have introduced a simple test reduction 

technique. While generating tests, each test sequence is associated with the 

transitions having been covered. At the end of the process, the set of test sequences 

W and the set of covered transitions Tcov are available. The technique is as follows. 

First, the transitions reached by unique test sequences are identified. Each test 

sequence that covers at least one such transition is moved from W to the reduced test 

R; all transitions covered by the sequence are excluded from Tcov. Then, while Tcov is 

not empty, the following actions are performed. The test sequences that cover 

largest subsets of Tcov are determined; among them, a shortest one is chosen. The 

selected sequence is moved from W to R, while the covered transitions are removed 

from Tcov. 

5. The RETGA Algorithm 

The algorithm proposed in this paper is called RETGA (Retrascope EFSM-based 

Test Generation Algorithm). It has the same phases as FATE; moreover, the EFSM 
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analysis phase is identical to FATE’s one. As FATE+, it uses the modified 

choose(T) function and applies the test reduction. Let us consider the main phases in 

more detail. 

5.1 Random Traversal 

As in FATE, the EFSM models are processed one-by-one; though a different 

arbitration principle is used. The priority of a model depends on the coverage 

having been achieved: the better the coverage is, the less the priority is. Such a 

strategy is to avoid a situation when a covered EFSM of the highest priority 

prevents generating inputs for poorly covered models. 

The pseudo-code for the random traversal is as follows (as before, �
� =
〈�� , �, ��〉���	

�  are the EFSMs being tested; result is the generated test): 

result ← ∅ 

coverage ← ∅ 

ignored ← 0 

L ← (Σi |Ti|) / (Σi |Si|) 

while ignored ≤ L ∧ coverage ≠ ∪i Ti do 

  reset({Mi}) 

  sequence ← ∅ 

  usefulSequence ← false 

  transitions ← ∅ 

  buffer ← ∅ 

  while |buffer| ≤ L do 

    vector ← ∅ 

    usefulVector ← false 

    for i ∈ {1, ..., m} do 

      out ← {t ∈ Ti | st = si} 

      while out ≠ ∅ do 

        t ← choose(out) 

        out ← out \ {t} 

        constraint ← refine(γt, vector ∪ ν) 
        if isSAT(constraint) then 

          vector ← vector ∪ solve(constraint) 

          if t ∉ coverage then 

            usefulSequence ← true 

            coverage ← coverage ∪ {t} 
          end 

          if t ∉ transitions then 

            usefulVector ← true 

            transitions ← transitions ∪ {t} 
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          end 

          break 

        end 

      end // while out 

    end // for i 

    apply(vector, {Mi}) 

    buffer ← buffer ⋅ {vector} 
    if usefulVector then 

      sequence ← sequence ⋅ buffer 

      buffer ← ∅ 
    end 

  end // while sequence 

  if usefulSequence then 

    result ← result ∪ {sequence} 
  else 

    ignored ← ignored + 1 

  end 

end // while result 

5.2 Directed Traversal 

Before describing the directed traversal phase, let us give some definitions. A 

piecewise path is a sequence of paths, so-called pieces, for which there is a path 

including all of the pieces (with no overlaps) in the given order. Given a register r, a 

partial definition path is a piecewise path that propagates at least one input to r and 

has no transitions not taking part in the propagation. 

The propagation of an input to a register is inductively defined as follows. If there 

exist a transition t and a variable r* such that δt contains an assignment to r* that 

involves x, then x is said to be propagated to r* along the piecewise path {{t}}. If 

(1) x is propagated to r* along the path P, (2) τ is data dependent on t, the last 

transition of the last piece of P, via r*, and (3) δτ contains an assignment to r which 

involves r*, then x is said to be propagated to r along the path P ⋅ {{τ}}. 

The directed traversal is performed separately for each EFSM. Here is the pseudo-

code (M is the EFSM being tested; result is the generated test): 

targets ← {t ∈ (TM \ coverage) | reach(M, st) ≠ ∅} 

while targets ≠ ∅ do 

  t ← choose(targets) 

  path ← shortestPath*(M, st) 

  path ← path ⋅ {t} 
  if isFeasible(M, path) then 

    sequence ← solve(M, path) 

    result ← result ∪ {sequence} 



И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182 

173 

    coverage ← coverage ∪ {t} 
  else 

    if ¬process(M, t) then 

      warning “The transition t cannot be reached” 

    end 

  end 

  targets ← (targets \ {t}) ∪ {τ ∈ TM | sτ = s′t} 
end // while targets 

Here, shortestPath*(M, s) returns a shortest (in terms of the number of transitions) 

path from the initial state of the model M to the state s; isFeasible(M, P) constructs 

the weakest precondition of the path P with respect to true and checks whether it is 

satisfiable in the initial context of the model M; solve(M, P) satisfies the constraint 

and converts the solution to the test sequence (uninitialized inputs are randomized). 

The process(M, t) function looks as follows: 

for counter ∈ {r ∈ RM ∩ Useγt | isCounter(r)} do 

  loops ← 

    {{{ti}}i | {ti}i ∈ dataDepLoops(M, counter)} 
  if processLoops(M, t, counter, loops) then 

    return true 

  end 

end // for counter 

for define ∈ partialDefPaths(M, RM ∩ Useγt) do 
  if processPieces(M, t, define) then 

    return true 

  end 

end // for define 

return false 

In the pseudo-code above, dataDepLoops(M, c) denotes the set of data dependency 

loops for the counter c of the model M (each loop starts with the transition that 

defines the counter). As you can see, loops is the set of piecewise paths relating to 

the data dependency loops. partialDefPaths(M, R) returns the set of partial 

definition paths for M’s registers of the set R. Here is the description of 

processLoops(M, t, counter, loops): 

groups ← groupLoops(loops, counter) 

for group ∈ groups do 

  loopIterator ← init(M, group) 

  while hasNext(loopIterator) do 

    loop ← next(loopIterator) 

    if processPieces(loop ⋅ {{t}}) then 
      return true 

    end 

  end //while hasNext 
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end // for group 

return false 

Here, groupLoops(L, counter) splits the set of loops (piecewise paths) L into disjoint 

subsets according to the first transition (which defines the counter register). The 

loop iteration scheme is similar to FATE’s one, though each result is a piecewise 

path. The pseudo-code for processPieces(M, t, ������	
� ) is shown below: 

if reach(M, st) = ∅ then 
  return false 

end 

path ← shortestPath*(M, start(P1)) 

for i ∈ {1, ..., k-1} do 

  path ← path ⋅ Pi 

  if ¬isFeasible(M, path) then 

    return false 

  end 

  path′ ← 

    path ⋅ shortestPath(M, end(Pi), start(Pi+1)) 

  failed ← true 

  if isFeasible(M, path′) then 

    path ← path′ 

    failed ← false 

  else 

    for bridge ∈ paths(M, end(Pi), start(Pi+1)) do 

      path′ ← path ⋅ bridge 

      if isFeasible(M, path′) then 

        path ← path′ 

        failed ← false 

        break; 

      end 

    end // for bridge 

  end // if isSAT 

  if failed then 

    return false 

  end 

end // for i 

path ← path ⋅ Pk 

if ¬isFeasible(M, path) then 

  return false 

end 

sequence ← solve(M, path) 

result ← result ∪ {sequence} 
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coverage ← coverage ∪ {t} 
return true 

In the pseudo-code, start(P) and end(P) return respectively the initial and the final 

state of the piecewise path P; paths(M, s, s′) returns the list of cycle-free paths 

between M’s states s and s′ sorted by length. 

5.3 Examples 

Let us consider how the RETGA algorithm works on the example of two models, 

namely EFSM-1 and EFSM-2. Both models correspond to the cases that are difficult 

for FATE. 

 

Fig. 1. EFSM-1 

In EFSM-1 (see Fig. 1), the random traversal is unlikely to cover the transition 3→4 

as it requires, first, walking through the path 0→1→2→3 and, second, assigning 

i0 ← 4 (while traversing 0→1) and i2 ← 2 (while traversing 2→3). The random 

traversal is most likely produce two input sequences that cover 0→1→2→3 and 

0→1→3. As for the directed traversal of 3→4, the following partial definition paths 

are found for the registers x and y used in the transition’s guard: 

1. 0→1→3 (i0 is propagated to x via z); 

2. 0→1→2 (i0 is propagated to x via z); 

3. 2→3 (i2 is directly assigned to y). 

The first path does not initialize y and has no continuations that could do that. For 

the second one, the pieces {0→1→2, 3→4} are composed and supplemented by the 

only “bridge” 2→3. For the third path, the “prefix” 0→1→2 explored at the random 

traversal phase is put before the partial definition path. In both cases, the path 

0→1→2→3→4 is constructed. To check whether the path is feasible, the weakest 

precondition is computed: i0[1] = 4 ∧ i1[2] = 1 ∧ i2[3] = 2 (the indices in the square 
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brackets refer to the positions of the test vectors in the test sequence). It is 

satisfiable; the solution is as follows: 

1. i0 = 4; i1 and i2 are randomly valued; 

2. i1 = 1; i0 and i2 are randomly valued; 

3. i2 = 2; i0 and i1 are randomly valued; 

4. i0, i1 and i2 are randomly valued. 

 

Fig. 2 EFSM-2 

In EFSM-2 (see Fig. 2), a transition of the interest is 1→2. The shortest path that 

reaches the transition is 0→1→1→1→2 with the assignment i0 ← 4 on the first 

step. There is only one partial definition path for x3, namely 0→1→1→1. The path 

can be supplemented only with the target transition, which gives 0→1→1→1→2. 

The weakest precondition is i0[1] = 4 ∧ i1[2] = 0 ∧ i1[3] = 0 ∧ i1[4] = 0 ∧ i1[5] ≠ 0 

and it is satisfiable. 

6. Experimental Results 

The RETGA algorithm has been implemented as a part of the Retrascope [12] 

project. It uses the Fortress [14] library together with the Z3 [15] solver for 

representing expressions and solving constraints. To compare the algorithm with 

FATE and FATE+, the ITC'99 benchmark [13] was utilized. 

Table I shows the characteristics of the EFSMs extracted from some ITC'99’s 

designs. As it has been already said, we used the extended variant of the method 

described in [8] to build the models, though all of the presented approaches do not 

depend on the way EFSMs are produced. 

Table I. Characteristics of the Extracted EFSMs 

Design Number of States Number of Transitions 

b01 8 24 

b02 7 17 

b04 3 29 

b06 7 33 
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Design Number of States Number of Transitions 

b07 8 21 

b08 4 12 

b10 11 38 

Table II and Table III show the test generation results. All generators achieve 100% 

coverage for b01, b02, b04 and b06 and 95% coverage for b07 (there is an infeasible 

transition). The difference in coverage reached by RETGA and FATE / FATE+ for 

b08 is due to the fact that FATE and FATE+ handle data dependencies in a simpler 

way; in particular, they do not try different “bridges”. The difference in coverage 

reached by FATE and FATE+ for b08 and b10 demonstrates the advantage of the 

symbolic execution over the simplified approach used in FATE. The difference in 

size of the tests generated by FATE and FATE+ relates to the test reduction 

technique applied in FATE+. The RETGA’s tests are usually shorter since it rejects 

redundant random vectors. 

It is significant to note that the L and N parameters (which are related to the random 

traversal phase of FATE and FATE+) were set to ∑ |��|
�
��	  and ∑ |��|

�
��	 /∑ |��|

�
��	  

respectively. The loop iteration limit (which is relevant for all of the generators) was 

set to 8 (this value is enough for b07 and b08, whereas other designs have no 

counters). 

Table II. Number of Test Vectors in the Tests 

 FATE FATE+ RETGA 

b01 115 70 49 

b02 62 48 33 

b04 104 104 36 

b06 198 100 76 

b07 246 208 166 

b08 31 31 52 

b10 173 170 135 

Table III. Transition Coverage Achieved by the Tests 

 FATE FATE+ RETGA 

b01 100% 100% 100% 

b02 100% 100% 100% 

b04 100% 100% 100% 

b06 100% 100% 100% 
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 FATE FATE+ RETGA 

b07 95% 95% 95% 

b08 75% 83% 100% 

b10 89% 100% 100% 

The tests generated by RETGA were applied to the designs by using the Questa 

simulator [16]. The source code coverage having been achieved is presented in 

Table IV (each column corresponds to some metric of the Questa coverage report). 

It can be seen that the code coverage is rather high. 

Table IV. Source Code Coverage Reached by RETGA 

 Statements Branches FSM States FSM Transitions 

b01 100% 100% 100% 100% 

b02 100% 100% 100% 100% 

b04 100% 100% 100% 100% 

b06 100% 100% 100% 100% 

b07 93.93% 94.73% 100% 100% 

b08 100% 100% 100% 100% 

b10 100% 100% 100% 100% 

7. Conclusion 

In this paper, an EFSM-based test generation algorithm has been proposed. The 

approach allows reaching better transition coverage with less number of test vectors 

than the known methods. However, the research is still in progress; there are many 

issues to be solved. Let us mention some of them. First, the approach is hardly 

applicable to complex hardware designs involving a great number of tightly 

connected EFSMs. It uses a simple coverage-based heuristic to decide which EFSM 

to handle next, whereas advanced techniques are expected to rely on the semantics 

of a system under test. Second, the method for searching “bridges” needs to be 

optimized. Being irrelevant for simple EFSMs (as ones presented in Section VI), 

this issue is of high value and importance for real-life hardware. Third, in the 

current implementation, each guard (each constraint, in general) is viewed as an 

indivisible entity and solved as a whole. It is not an issue as long as the goal is to 

cover EFSM transitions, but it may lead to poor expression coverage as there are 

many ways to satisfy a constraint. Finally, the quality of testing strongly depends on 

the models being used. It seems to be useful to formalize a notion of a “good” 

model. 
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Аннотация. Генерация тестов по моделям широко используется для функциональной 

верификации аппаратуры. Расширенные конечные автоматы (extended finite state 

machines, EFSM) — удобный формализм для моделирования цифровых устройств. В 

отличие от обычных конечных автоматов, в EFSM-моделях управляющие сигналы и 

данные разделены, что позволяет описывать системы в более компактной форме, 

уменьшая в некотором смысле риск комбинаторного взрыва при верификации. Однако 

обход графа состояний EFSM-модели является нетривиальной задачей из-за наличия 

условий на выполнимость переходов. В данной статье представлен метод генерации 

тестов по EFSM-моделям и проведено его сравнение с другими подходами. 

Предлагаемый метод сочетает случайный обход графа состояний автомата и 

направленный поиск реализуемых путей. Первая из указанных фаз направлена на 

покрытие «простых» переходов, вторая — «сложных». Под сложностью переходов 

здесь понимается наличие зависимостей охранных условий переходов от внутренних 

переменных. При направленном поиске используется информация о зависимостях по 

данным и управлению между переходами автомата и задействуется символическое 

исполнение. Было выполнено сравнение предлагаемого метода с существующими 

аналогами путем сопоставления параметров тестов, сгенерированных для заданного 

набора описаний модулей цифровой аппаратуры. Во всех случаях в качестве входных 

данных использовались EFSM-модели, автоматически извлеченные из кода. 

Полученные данные показывают, что в сравнении с другими подходами метод 

обеспечивает лучшие показатели покрытия исходного кода более короткими тестами. 

В будущем планируется реализовать ряд оптимизаций, направленных на применение 

метода к промышленным HDL-описаниям. 

Ключевые слова: проектирование аппаратуры; язык описания аппаратуры; 

имитационная верификация; генерация тестов; моделирование; расширенный 

конечный автомат; обход графа; случайный обход; поиск с возвратами; символическое 
исполнение; разрешение ограничений. 

DOI: 10.15514/ISPRAS-2015-27(3)-12 



И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182 

181 

Для цитирования: Мельниченко И.В., Камкин А.С., Смолов С.А. Подход к генерации 

тестов, нацеленных на покрытие кода HDL-описаний аппаратуры, на основе 

расширенных конечных автоматов. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 161-

182 (на английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-12. 

Список литературы 
[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer 

Academic Publishers, 2003. 

[2]. Blyler J. Are Best Practices Resulting in a Verification Gap? 

(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-

verification-gap). 

[3]. Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for 

VHDL. Proceedings of International Conference on Information and Software 

Technologies (ICIST), 2012. pp. 138-148. 

[4]. Duale A.Y., Uyar M.U. A Method Enabling Feasible Conformance Functional Test 

Sequence Generation for EFSM Models. IEEE Transactions on Computers, 53(5), 2004. 

pp. 614-627. 

[5]. Лазарев В.Г., Пийль Е.И. Синтез управляющих автоматов. Энергоатомиздат, 

1989. 328 с. 

[6]. Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the 

Extended Finite State Machine Model. ACM Transactions on Design Automation of 

Electronic Systems (TODAES), 1996. pp. 57–79. 

[7]. Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of 

Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of 

Electronic Functional testing: Theory and Application, 27(2), 2011. pp. 137–162. 

[8]. Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to 

Functional Verification. Proceedings of the Conference on Problems of Perspective 

Micro- and Nanoelectronic Systems Development, Part II, 2014. pp. 113-118. 

[9]. Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.). 

The VLSI Handbook. CRC Press, 2007. 2320 p. 

[10]. Dijkstra E.W. A Note on Two Problems in Connexion with Graphs. Numerische 

Mathematik, 1, 1959, pp. 269–271. 

[11]. Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p. 

[12]. Инструмент Retrascope. http://forge.ispras.ru/projects/retrascope 

[13]. Тестовый набор ITC’99. http://www.cad.polito.it/tools/itc99.html 

[14]. Библиотека Fortress. http://forge.ispras.ru/projects/solver-api 

[15]. Решатель ограничений Z3. http://z3.codeplex.com 

[16]. Симулятор Questa. http://www.mentor.com/products/fv/questa/ 

  

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed 

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182 

182 

 


