
И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

161

An Extended Finite State Machine-Based
Approach to Code Coverage-Directed Test

Generation for Hardware Designs

1 I. Melnichenko <igor.melnitxenko@gmail.com>,
2 A. Kamkin <kamkin@ispras.ru>,
2 S. Smolov <smolov@ispras.ru>,

1 INEUM, 24 Vavilova st., Moscow, 119334, Russian Federation
2 Institute for System Programming of the Russian Academy of Sciences,

25 Alexander Solzhenitsyn st., Moscow, 109004, Russian Federation

Abstract. Model-based test generation is widely spread in functional verification of hardware

designs. The extended finite state machine (EFSM) is known to be a powerful formalism for

modelling digital hardware. As opposed to conventional finite state machines, EFSM models

separate datapath and control, which makes it possible to represent systems in a more

compact way and, in a sense, reduces the risk of state explosion during verification. However,

EFSM state graph traversal problem seems to be nontrivial because of guard conditions that

enable model transitions. In this paper, a new EFSM-based test generation approach is

proposed and compared with the existing solutions. It combines random walk on a state graph

and directed search of feasible paths. The first phase allows covering “easy-to-fire”

transitions. The second one is aimed at “hard-to-fire” cases; the algorithm tries to build a path

that enables a given transition; it is carried out by analyzing control and data dependencies

and applying symbolic execution techniques. Experiments show that the suggested approach

provides better transition coverage with shorter test sequences comparing to the known

methods and achieves a high level of code coverage in terms of statements and branches. Out

future plans include some optimizations aimed at method’s applicability to industrial
hardware designs.

Keywords: hardware design; hardware description language; simulation-based verification;

test generation; modelling; extended finite state machine; graph traversal; random walk;

backjumping; symbolic execution; constraint solving

DOI: 10.15514/ISPRAS-2015-27(3)-12

For citation: Melnichenko I., Kamkin A., Smolov S. An Extended Finite State Machine-

Based Approach to Code Coverage-Directed Test Generation for Hardware Designs. Trudy

ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182. DOI: 10.15514/ISPRAS-2015-

27(3)-12.

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

162

1. Introduction

Functional verification is a labor-intensive and time-consuming stage of the

hardware design process. According to [1], it spends about 70% of the effort, while

the number of verification engineers is usually twice the number of designers.

Moreover, the “verification gap”, i.e. a difference between verification needs and

capabilities, seems to grow over time [2]. In such a situation, improvement of the

existing verification methods and development of new ones is of high value and

importance. Simulation-based verification, often referred to as testing, is a widely

accepted approach to hardware verification. It requires a testbench [1], a special

environment that generates inputs, so-called stimuli, vectors or patterns, and

optionally observes the outputs, so-called reactions.

Among the methods for stimulus generation, model-based approaches are of

interest. Being formal representations of designs under test, models serve as a

valuable source of “testing knowledge”. There are a lot of model types used for

specifying hardware: finite state machines (FSM) [3], extended FSM (EFSM) [4],

Petri nets [5], etc. The key distinction of the EFSM formalism is clear separation of

data and control flows. It is worth mentioning that EFSM models can be

automatically extracted from HDL descriptions making it possible to generate code

coverage-directed tests [6].

This article advances the FATE approach to EFSM-based functional test generation

(FTG) [7]. The main feature of FATE is backjumping: if an EFSM traverser fails to

cover a transition, it tries to detect a cause of the failure (that is, a transition which

must be traversed in order to enable the target one) and constructs a path directly

from the found transition. Another important part of the approach is a special

heuristic addressing counters and loops. However, FATE is hardly applicable to

hardware designs with complicated data and control dependencies.

The rest of the paper is organized as follows. Section II defines the EFSM model

and briefly describes an EFSM extraction method having been used. Section III

considers the original FATE approach, while Section IV introduces a number of

improvements to it. Section V proposes a new EFSM-based FTG method and shows

how it works by the example of two simple EFSMs. Section VI contains an

experimental comparison of the abovementioned approaches. Section VII concludes

the paper and outlines directions for future improvement of the suggested algorithm.

2. EFSM Model and HDL-to-EFSM Extraction

Let � be a set of variables. A valuation is a function that associates each variable

with a value from the corresponding domain. The set of all valuations over V is

denoted as DV. A guard is a Boolean function defined on valuations (DV →

{true, false}). An action is a transformation of valuations (DV → DV). A pair γ → δ,

where γ is a guard and δ is an action, is called a guarded action. When we speak

about a function, it is implied that there is a description of the function in some

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

163

formal language (thus, we can reason about the function’s syntax, not only the

semantics).

An EFSM is a tuple M = 〈SM, VM, TM〉, where SM is a set of states,

VM = (IM ∪ OM ∪ RM) is a set of variables, consisting of inputs (IM), outputs (OM)

and registers (RM), and TM is a set of transitions (all sets are supposed to be finite).

Each transition t ∈ TM is a tuple (st, γt→δt, s′t), where st and s′t are respectively the

initial and the final state of t, whereas γt and δt are respectively the guard and the

action of t. A valuation ν ∈ DVM is referred to as a context, while a pair

(s, ν) ∈ SM × DVM is called a configuration. A transition t is said to be enabled for a

configuration (s, ν) if st = s and γt(ν) = true.

Given a clock C (a periodic event generator) and an initial configuration (s0, ν0), the

EFSM operates as follows. In the beginning, it resets (initializes) the configuration:

(s, ν) ← (s0, ν0). On every “tick” of C, it computes the set of enabled transitions

E ← {t ∈ TM | st = s ∧ γt(ν) = true}. A single transition t ∈ E (chosen non-

deterministically) fires; the EFSM changes the configuration (updates the context

and moves from the initial state to the final one) (s, ν) ← (s′t, δt(ν)).

In this paper, we do not discuss in detail the way the EFSM models are extracted. At

the experimental phase, we use an implementation of the method introduced in [8].

The method deals with HDL descriptions written in synthesizable subsets of VHDL

and Verilog [9]. The major advantage of the approach is high automation – it

requires no information except HDL code. The method uses heuristics for

identifying states and clock signals and extracts the EFSM from the control flow

graph-based representation. For every process defined in the HDL description, a

single EFSM is usually built; all EFSM models of the description are defined over

the same set of variables. It should be emphasized that EFSM actions have the “flat”

syntax, which means that each action is a linear sequence of assignments.

We have enhanced the cited method by adding a new heuristic aimed at recognizing

the initial configuration. A guarded action γr → δr is said to be resetting if the

following properties hold: (1) γr depends on exactly one clock signal, which is

called a reset; (2) δr consists solely of assignments of the kind v = c, where

v ∈ (OM ∪ RM) and c is a constant expression. Provided that there is only one

resetting action, that action is supposed to lead to the initial EFSM configuration.

3. The Original FATE Algorithm

The aim of the FATE algorithm is to generate a test that covers all transitions of a

given multi-EFSM system. A test is a set of test sequences, i.e. sequences of test

vectors. A test vector is a valuation over the joint set of the EFSMs’ inputs. The

algorithm includes three phases: an EFSM analysis, a random traversal and a

directed traversal.

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

164

3.1 EFSM Analysis

In the beginning, for each EFSM of the system, data and control dependencies

between its transitions are derived. Let t and τ be transitions and v be a variable. v is

said to be defined in t (v ∈ Deft) if δt contains an assignment to v; v is said to be used

in τ (v ∈ Useτ) if v appears either in γτ (v ∈ Useγτ) or in the right hand side of δτ

(v ∈ Useδτ). It is said that τ is data dependent on t (via v) if there exists a variable v

such that v ∈ (Deft ∩ Useδτ) and there exists a path � = ������	

 from t to τ (s′t = st1

and s′tn = sτ) that does not define v. To keep the data dependency between τ and t, if

v ∈ Defτ, there should be δτ’s assignment with v in the right hand side that precedes

the assignments to v. It is said that τ is control dependent on t (via v) if there exists a

variable v such that v ∈ (Deft ∩ Useγτ) and there exists a path from t to τ that does

not define v.

The derived data and control dependencies are represented by the directed graphs

whose vertices are the transitions and arcs are the dependencies. Thus, each EFSM

is associated with two such graphs (one is for the control dependencies; another is

for the data dependencies).

The second step of the analysis is counter detection. A register � is said to be a

counter if there is a loop in the EFSM such that: (1) there is a transition t that

defines r; (2) r is defined recurrently (the current value depends on the previous

one); (3) there is a transition t′ that is control dependent on t via r. For each counter,

all data dependency loops are saved.

Let us consider an EFSM M with RM = {x, y} such that there is a loop which

consists of the following transitions:

1. γ ≡ true; δ ≡ {x = y};

2. γ ≡ true; δ ≡ {y = x + 1};

3. γ ≡ true; δ ≡ {x = 1};

4. γ ≡ (y = 3); δ ≡ {}.

In this example, y is considered as a counter with a data dependency loop consisting

of transitions 1 and 2.

3.2 Random Traversal

After the analysis, the random traversal phase is launched. The phase is

parameterized with two values, L and N, where L is the length of a test sequence and

� is the number of test sequences in the test. The random traversal is described by

the following pseudo-code (�
� = 〈�� , �, ��〉���	
� are the EFSMs being tested; result

is the generated test):

result ← ∅

coverage ← ∅

while |result| < N ∧ coverage ≠ ∪i Ti do

 reset({Mi})

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

165

 sequence ← ∅
 while |sequence| < L do

 vector ← ∅

 for i ∈ {1, ..., m} do

 out ← {t ∈ Ti | st = si}

 while out ≠ ∅ do

 t ← choose(out)

 out ← out \ {t}

 constraint ← refine(γt, vector ∪ ν)
 if isSAT(constraint) then

 vector ← vector ∪ solve(constraint)

 coverage ← coverage ∪ {t}
 break

 end

 end // while out

 end // for i

 apply(vector, {Mi})

 sequence ← sequence ⋅ {vector}
 end // while sequence

 result ← result ∪ {sequence}
end // while result

The pseudo-code above is based on the following functions: reset({Mi}) initializes

the configurations of the models {Mi}; choose(T) returns a random item of the non-

empty set T; refine(γ, ν) replaces variables of the formula γ with their values

according to the partial valuation ν; isSAT(γ) checks whether the constraint γ is

satisfiable; solve(γ) returns a valuation ν such that γ(ν) = 1; apply(ν, {Mi}) assigns

the inputs of the models {Mi} according to the partial valuation ν and executes the

enabled transitions (uninitialized inputs are randomized). The symbols si and ν

denotes respectively the current state of the model Mi and the context (shared among

all models).

Being defined over the same set of variables, the EFSM models may affect each

other while being co-executed. To minimize the influence, the following technique

is applied. Each EFSM Mi is supplied with two parameters, Fi and Ai, where Fi is a

constant inversely proportional to the number of inputs used in the Mi’s guards (the

more such inputs Mi has, the more models are expected to be affected by Mi) and Ai

is a so-called aging factor (initially set to zero). The sum (Fi + Ai) is supposed to be

the priority for choosing the model Mi. The priorities specify the order in which the

models are handled (for i ∈ {1, ..., m} do ... end). The main idea with the aging

factor is as follows. If test vector generation for Mi fails (isSAT(constraint) returns

false for an outgoing transition), Ai is increased by a constant ∆A. Note that [7] has

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

166

no particular definition of ∆A; we use the value ∆A = mini=1,m Fi. After the model

selection loop, the aging factor of the most priority model is set to zero.

3.3 Directed Traversal

If there are uncovered transitions after the random traversal, FATE proceeds with

the directed generation. Before describing the phase, let us make a remark. The

procedure below, applies Dijkstra’s algorithm for finding a shortest path in a

graph [10]; it is assumed that an arc weight is the number of registers used in the

transition’s guard. The directed traversal is performed separately for each EFSM.

Here is the pseudo-code (M is the EFSM being tested; result is the generated test):

targets ← TM \ coverage

while targets ≠ ∅ do

 t ← choose(targets)

 covered = false

 for prefix ∈ reach(M, st) do
 reset(M)

 sequence ← ∅

 for vector ∈ prefix do
 apply(vector, M)

 sequence ← sequence ⋅ {vector}
 end // for vector

 constraint ← refine(γt, ν)
 if isSAT(constraint) then

 vector ← solve(constraint)

 apply(vector, M)

 sequence ← sequence ⋅ {vector}

 result ← result ∪ {sequence}

 coverage ← coverage ∪ {t}

 covered ← true

 break

 end

 end // for prefix

 if ¬covered then

 if ¬process(M, t) then

 warning “The transition t cannot be reached”

 end

 end

 targets ← targets \ {t}

end // while targets

Besides the auxiliary functions defined above, this pseudo-code uses reach(M, s),

which returns the set of known test sequences reaching the state s of the model M,

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

167

and process(M, t), which tries to cover the transition t of the model M by taking into

account the control dependencies (it will be described later on). Note that if targets

includes transitions outgoing from the covered states, choose(targets) returns one of

them; transitions whose initial states has not been reached are selected only if there

are no others. Here is the description of process(M, t):

registers ← RM ∩ Useγt

for reg ∈ registers do

 defines ← {t ∈ TM | reg ∈ Deft}

 for def ∈ defines do

 for prefix ∈ reach(M, sdef) do

 reset(M)

 sequence ← ∅

 for vector ∈ prefix do

 apply(vector, M)

 sequence ← sequence ⋅ {vector}
 end

 path ← shortestPath(M, s′def, st)

 path ← path ⋅ {t}
 if isCounter(reg) then

 constraint ← refine(γdef, ν)

 vector ← solve(constraint)

 apply(vector, M)

 sequence ← sequence ⋅ {vector}

 loop ← processCounter(M, s′def, t, reg)
 if loop = null then

 return false

 end

 path ← loop ⋅ path
 else

 path ← {def} ⋅ path
 end

 covered ← true

 for p ∈ path do

 if reg ∉ Defp ∨ p = t then

 γ ← γp
 else

 γ ← γp ∧ γt|reg[δp]
 end

 constraint ← refine(γ, ν)
 if isSAT(constraint) then

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

168

 vector ← solve(constraint)

 apply(vector, M)

 sequence ← sequence ⋅ {vector}
 else

 covered ← false

 break

 end

 end // for p

 if covered then

 result ← result ∪ {sequence}

 coverage ← coverage ∪ {t}
 return true

 end

 end // for prefix

 end // for def

end // for reg

return false

The following notations are used: shortestPath(M, s, s′) finds the shortest path

between the states s and s′ of the M’s state graph using Dijkstra’s algorithm;

isCounter(reg) checks whether the register reg is a counter; γ|v denotes the minimal

sub-constraint of the constraint γ that depends on the variable v such that γ → γ|v

holds; γ[δ] stands for the constraint produced from γ by applying the substitution

corresponding to the action δ.

Let γ ≡ (x = const1 ∧ y = const2) and δ ≡ {x = z}, where x, y, and z are variables,

while const1 and const2 are constants. In this case, γ|x ≡ (x = const1) and

γ[δ] ≡(z = const1 ∧ y = const2).

Here is the pseudo-code for processCounter(M, s, t, reg).

if γt|reg(ν) then
 return {}

end

loop ← null

loopIterator ← createLoops(M, s, reg)

while ¬γt|reg(ν) do
 while hasNext(loopIterator) do

 tempContext ← ν

 tempSequence ← sequence

 loop ← next(loopIterator)

 for l ∈ loop do

 constraint ← refine(γl, ν)
 if isSAT(constraint) then

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

169

 vector ← solve(constraint)

 apply(vector, M)

 sequence ← sequence ⋅ {vector}
 else

 ν ← tempContext

 sequence ← tempSequence

 loop ← null

 break

 end

 if loop ≠ null ∧ γt|reg(ν) then
 return loop

 end

 end // for loop

 end // while hasNext

end // while ¬γ
return null

The pseudo-code utilizes three special functions: createLoops(M, s, r) constructs all

possible elementary loops in the M’s state graph that start from the state s and

include transitions dependent via the register r and returns the iterator that combines

a bounded number of elementary loops into complex ones (the elementary loops are

constructed by using Dijkstra’s algorithm to connect dependent transitions);

hasNext(i) checks whether the iterator i can produce more loops; next(i) returns the

next loop and updates the iterator i. Note that the limit on the loop length is chosen

individually for each design.

4. The FATE+ Algorithm

We have implemented a slightly modified version of the original FATE algorithm,

so-called FATE+. Let us consider the changes having been made.

4.1 Transition Selection

In FATE+’s random traversal, choose(T), where T is a non-empty set of transitions,

works a bit differently. If there exist uncovered transitions, the function randomly

chooses one of them; otherwise, it returns an arbitrary item of T. Our experiments

show that this minor change significantly increases the effectiveness of the random

generation phase.

4.2 Symbolic Execution

FATE implements an approximate method for checking whether a given path is

feasible (for p ∈ path do ... end). Let P be a path, t be the last transition of P, r be a

register used in γt, and ν be a context. Given a transition p of P, the algorithm

checks whether p defines r. If it does, the following constraint is constructed and

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

170

tried to be satisfied: γ ← γp ∧ γt|r[δp]. It is worth reminding that γt|r is the minimal

conjunctive member of γt that includes all occurrences of r, while γt|r[δp] is the

formula produced from γt|r by applying the forward substitution corresponding to

the action δp. The method looks inadequate in the sense that if γ is unsatisfiable for

some p, it does not really mean that P is infeasible.

We suggest replacing the approximate approach with full-scale symbolic execution

that takes into consideration all the variables defined and used along the path. To be

more precise, we suggest using the well-known method for computing the weakest

precondition of a loop-free program, i.e. a sequence of guarded actions, with respect

to a postcondition [11]. The main idea is as follows. Let γ ≡ true. Starting from the

end of P, for each transition p, including t, the following transformation of γ is

performed: γ ← γp ∧ γ[δp]. Note that the input variables are renamed in such a way

that each transition refers to a unique copy of the inputs. As soon as P is processed,

all occurrences of the registers are replaced by the values taken from ν:

γ ← refine(γ, ν). P is feasible if and only if γ is satisfiable. A test sequence can be

constructed by solving the constraint.

Let us consider an EFSM M with IM = {i0, i1, i2} and RM = {x, y, z} such that there

is a path which consists of the following transitions:

1. γ ≡ true; δ ≡ {z = i0};

2. γ ≡ (i1 = 1); δ ≡ {x = z};

3. γ ≡ true; δ ≡ {y = i2};

4. γ ≡ (x = 4 ∧ y = 2); δ ≡ {}.

For this path, γ ≡ (i0[0] = 4 ∧ i1[1] = 1 ∧ i2[2] = 2) is produced.

4.3 Test Reduction

In FATE, there is a frequent situation where multiple test vectors cover the same

transition. To overcome the issue, we have introduced a simple test reduction

technique. While generating tests, each test sequence is associated with the

transitions having been covered. At the end of the process, the set of test sequences

W and the set of covered transitions Tcov are available. The technique is as follows.

First, the transitions reached by unique test sequences are identified. Each test

sequence that covers at least one such transition is moved from W to the reduced test

R; all transitions covered by the sequence are excluded from Tcov. Then, while Tcov is

not empty, the following actions are performed. The test sequences that cover

largest subsets of Tcov are determined; among them, a shortest one is chosen. The

selected sequence is moved from W to R, while the covered transitions are removed

from Tcov.

5. The RETGA Algorithm

The algorithm proposed in this paper is called RETGA (Retrascope EFSM-based

Test Generation Algorithm). It has the same phases as FATE; moreover, the EFSM

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

171

analysis phase is identical to FATE’s one. As FATE+, it uses the modified

choose(T) function and applies the test reduction. Let us consider the main phases in

more detail.

5.1 Random Traversal

As in FATE, the EFSM models are processed one-by-one; though a different

arbitration principle is used. The priority of a model depends on the coverage

having been achieved: the better the coverage is, the less the priority is. Such a

strategy is to avoid a situation when a covered EFSM of the highest priority

prevents generating inputs for poorly covered models.

The pseudo-code for the random traversal is as follows (as before, �
� =
〈�� , �, ��〉���	

� are the EFSMs being tested; result is the generated test):

result ← ∅

coverage ← ∅

ignored ← 0

L ← (Σi |Ti|) / (Σi |Si|)

while ignored ≤ L ∧ coverage ≠ ∪i Ti do

 reset({Mi})

 sequence ← ∅

 usefulSequence ← false

 transitions ← ∅

 buffer ← ∅

 while |buffer| ≤ L do

 vector ← ∅

 usefulVector ← false

 for i ∈ {1, ..., m} do

 out ← {t ∈ Ti | st = si}

 while out ≠ ∅ do

 t ← choose(out)

 out ← out \ {t}

 constraint ← refine(γt, vector ∪ ν)
 if isSAT(constraint) then

 vector ← vector ∪ solve(constraint)

 if t ∉ coverage then

 usefulSequence ← true

 coverage ← coverage ∪ {t}
 end

 if t ∉ transitions then

 usefulVector ← true

 transitions ← transitions ∪ {t}

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

172

 end

 break

 end

 end // while out

 end // for i

 apply(vector, {Mi})

 buffer ← buffer ⋅ {vector}
 if usefulVector then

 sequence ← sequence ⋅ buffer

 buffer ← ∅
 end

 end // while sequence

 if usefulSequence then

 result ← result ∪ {sequence}
 else

 ignored ← ignored + 1

 end

end // while result

5.2 Directed Traversal

Before describing the directed traversal phase, let us give some definitions. A

piecewise path is a sequence of paths, so-called pieces, for which there is a path

including all of the pieces (with no overlaps) in the given order. Given a register r, a

partial definition path is a piecewise path that propagates at least one input to r and

has no transitions not taking part in the propagation.

The propagation of an input to a register is inductively defined as follows. If there

exist a transition t and a variable r* such that δt contains an assignment to r* that

involves x, then x is said to be propagated to r* along the piecewise path {{t}}. If

(1) x is propagated to r* along the path P, (2) τ is data dependent on t, the last

transition of the last piece of P, via r*, and (3) δτ contains an assignment to r which

involves r*, then x is said to be propagated to r along the path P ⋅ {{τ}}.

The directed traversal is performed separately for each EFSM. Here is the pseudo-

code (M is the EFSM being tested; result is the generated test):

targets ← {t ∈ (TM \ coverage) | reach(M, st) ≠ ∅}

while targets ≠ ∅ do

 t ← choose(targets)

 path ← shortestPath*(M, st)

 path ← path ⋅ {t}
 if isFeasible(M, path) then

 sequence ← solve(M, path)

 result ← result ∪ {sequence}

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

173

 coverage ← coverage ∪ {t}
 else

 if ¬process(M, t) then

 warning “The transition t cannot be reached”

 end

 end

 targets ← (targets \ {t}) ∪ {τ ∈ TM | sτ = s′t}
end // while targets

Here, shortestPath*(M, s) returns a shortest (in terms of the number of transitions)

path from the initial state of the model M to the state s; isFeasible(M, P) constructs

the weakest precondition of the path P with respect to true and checks whether it is

satisfiable in the initial context of the model M; solve(M, P) satisfies the constraint

and converts the solution to the test sequence (uninitialized inputs are randomized).

The process(M, t) function looks as follows:

for counter ∈ {r ∈ RM ∩ Useγt | isCounter(r)} do

 loops ←

 {{{ti}}i | {ti}i ∈ dataDepLoops(M, counter)}
 if processLoops(M, t, counter, loops) then

 return true

 end

end // for counter

for define ∈ partialDefPaths(M, RM ∩ Useγt) do
 if processPieces(M, t, define) then

 return true

 end

end // for define

return false

In the pseudo-code above, dataDepLoops(M, c) denotes the set of data dependency

loops for the counter c of the model M (each loop starts with the transition that

defines the counter). As you can see, loops is the set of piecewise paths relating to

the data dependency loops. partialDefPaths(M, R) returns the set of partial

definition paths for M’s registers of the set R. Here is the description of

processLoops(M, t, counter, loops):

groups ← groupLoops(loops, counter)

for group ∈ groups do

 loopIterator ← init(M, group)

 while hasNext(loopIterator) do

 loop ← next(loopIterator)

 if processPieces(loop ⋅ {{t}}) then
 return true

 end

 end //while hasNext

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

174

end // for group

return false

Here, groupLoops(L, counter) splits the set of loops (piecewise paths) L into disjoint

subsets according to the first transition (which defines the counter register). The

loop iteration scheme is similar to FATE’s one, though each result is a piecewise

path. The pseudo-code for processPieces(M, t, ������	
�) is shown below:

if reach(M, st) = ∅ then
 return false

end

path ← shortestPath*(M, start(P1))

for i ∈ {1, ..., k-1} do

 path ← path ⋅ Pi

 if ¬isFeasible(M, path) then

 return false

 end

 path′ ←

 path ⋅ shortestPath(M, end(Pi), start(Pi+1))

 failed ← true

 if isFeasible(M, path′) then

 path ← path′

 failed ← false

 else

 for bridge ∈ paths(M, end(Pi), start(Pi+1)) do

 path′ ← path ⋅ bridge

 if isFeasible(M, path′) then

 path ← path′

 failed ← false

 break;

 end

 end // for bridge

 end // if isSAT

 if failed then

 return false

 end

end // for i

path ← path ⋅ Pk

if ¬isFeasible(M, path) then

 return false

end

sequence ← solve(M, path)

result ← result ∪ {sequence}

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

175

coverage ← coverage ∪ {t}
return true

In the pseudo-code, start(P) and end(P) return respectively the initial and the final

state of the piecewise path P; paths(M, s, s′) returns the list of cycle-free paths

between M’s states s and s′ sorted by length.

5.3 Examples

Let us consider how the RETGA algorithm works on the example of two models,

namely EFSM-1 and EFSM-2. Both models correspond to the cases that are difficult

for FATE.

Fig. 1. EFSM-1

In EFSM-1 (see Fig. 1), the random traversal is unlikely to cover the transition 3→4

as it requires, first, walking through the path 0→1→2→3 and, second, assigning

i0 ← 4 (while traversing 0→1) and i2 ← 2 (while traversing 2→3). The random

traversal is most likely produce two input sequences that cover 0→1→2→3 and

0→1→3. As for the directed traversal of 3→4, the following partial definition paths

are found for the registers x and y used in the transition’s guard:

1. 0→1→3 (i0 is propagated to x via z);

2. 0→1→2 (i0 is propagated to x via z);

3. 2→3 (i2 is directly assigned to y).

The first path does not initialize y and has no continuations that could do that. For

the second one, the pieces {0→1→2, 3→4} are composed and supplemented by the

only “bridge” 2→3. For the third path, the “prefix” 0→1→2 explored at the random

traversal phase is put before the partial definition path. In both cases, the path

0→1→2→3→4 is constructed. To check whether the path is feasible, the weakest

precondition is computed: i0[1] = 4 ∧ i1[2] = 1 ∧ i2[3] = 2 (the indices in the square

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

176

brackets refer to the positions of the test vectors in the test sequence). It is

satisfiable; the solution is as follows:

1. i0 = 4; i1 and i2 are randomly valued;

2. i1 = 1; i0 and i2 are randomly valued;

3. i2 = 2; i0 and i1 are randomly valued;

4. i0, i1 and i2 are randomly valued.

Fig. 2 EFSM-2

In EFSM-2 (see Fig. 2), a transition of the interest is 1→2. The shortest path that

reaches the transition is 0→1→1→1→2 with the assignment i0 ← 4 on the first

step. There is only one partial definition path for x3, namely 0→1→1→1. The path

can be supplemented only with the target transition, which gives 0→1→1→1→2.

The weakest precondition is i0[1] = 4 ∧ i1[2] = 0 ∧ i1[3] = 0 ∧ i1[4] = 0 ∧ i1[5] ≠ 0

and it is satisfiable.

6. Experimental Results

The RETGA algorithm has been implemented as a part of the Retrascope [12]

project. It uses the Fortress [14] library together with the Z3 [15] solver for

representing expressions and solving constraints. To compare the algorithm with

FATE and FATE+, the ITC'99 benchmark [13] was utilized.

Table I shows the characteristics of the EFSMs extracted from some ITC'99’s

designs. As it has been already said, we used the extended variant of the method

described in [8] to build the models, though all of the presented approaches do not

depend on the way EFSMs are produced.

Table I. Characteristics of the Extracted EFSMs

Design Number of States Number of Transitions

b01 8 24

b02 7 17

b04 3 29

b06 7 33

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

177

Design Number of States Number of Transitions

b07 8 21

b08 4 12

b10 11 38

Table II and Table III show the test generation results. All generators achieve 100%

coverage for b01, b02, b04 and b06 and 95% coverage for b07 (there is an infeasible

transition). The difference in coverage reached by RETGA and FATE / FATE+ for

b08 is due to the fact that FATE and FATE+ handle data dependencies in a simpler

way; in particular, they do not try different “bridges”. The difference in coverage

reached by FATE and FATE+ for b08 and b10 demonstrates the advantage of the

symbolic execution over the simplified approach used in FATE. The difference in

size of the tests generated by FATE and FATE+ relates to the test reduction

technique applied in FATE+. The RETGA’s tests are usually shorter since it rejects

redundant random vectors.

It is significant to note that the L and N parameters (which are related to the random

traversal phase of FATE and FATE+) were set to ∑ |��|
�
��	 and ∑ |��|

�
��	 /∑ |��|

�
��	

respectively. The loop iteration limit (which is relevant for all of the generators) was

set to 8 (this value is enough for b07 and b08, whereas other designs have no

counters).

Table II. Number of Test Vectors in the Tests

 FATE FATE+ RETGA

b01 115 70 49

b02 62 48 33

b04 104 104 36

b06 198 100 76

b07 246 208 166

b08 31 31 52

b10 173 170 135

Table III. Transition Coverage Achieved by the Tests

 FATE FATE+ RETGA

b01 100% 100% 100%

b02 100% 100% 100%

b04 100% 100% 100%

b06 100% 100% 100%

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

178

 FATE FATE+ RETGA

b07 95% 95% 95%

b08 75% 83% 100%

b10 89% 100% 100%

The tests generated by RETGA were applied to the designs by using the Questa

simulator [16]. The source code coverage having been achieved is presented in

Table IV (each column corresponds to some metric of the Questa coverage report).

It can be seen that the code coverage is rather high.

Table IV. Source Code Coverage Reached by RETGA

 Statements Branches FSM States FSM Transitions

b01 100% 100% 100% 100%

b02 100% 100% 100% 100%

b04 100% 100% 100% 100%

b06 100% 100% 100% 100%

b07 93.93% 94.73% 100% 100%

b08 100% 100% 100% 100%

b10 100% 100% 100% 100%

7. Conclusion

In this paper, an EFSM-based test generation algorithm has been proposed. The

approach allows reaching better transition coverage with less number of test vectors

than the known methods. However, the research is still in progress; there are many

issues to be solved. Let us mention some of them. First, the approach is hardly

applicable to complex hardware designs involving a great number of tightly

connected EFSMs. It uses a simple coverage-based heuristic to decide which EFSM

to handle next, whereas advanced techniques are expected to rely on the semantics

of a system under test. Second, the method for searching “bridges” needs to be

optimized. Being irrelevant for simple EFSMs (as ones presented in Section VI),

this issue is of high value and importance for real-life hardware. Third, in the

current implementation, each guard (each constraint, in general) is viewed as an

indivisible entity and solved as a whole. It is not an issue as long as the goal is to

cover EFSM transitions, but it may lead to poor expression coverage as there are

many ways to satisfy a constraint. Finally, the quality of testing strongly depends on

the models being used. It seems to be useful to formalize a notion of a “good”

model.

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

179

References
[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer

Academic Publishers, 2003.

[2]. Blyler J. Are Best Practices Resulting in a Verification Gap?

(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-

verification-gap).

[3]. Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for

VHDL. Proceedings of International Conference on Information and Software

Technologies (ICIST), 2012. pp. 138-148.

[4]. Duale A.Y., Uyar M.U. A Method Enabling Feasible Conformance Functional Test

Sequence Generation for EFSM Models. IEEE Transactions on Computers, 53(5), 2004.

pp. 614-627.

[5]. Lazarev V.G., Pijl' E.I. Sintez upravljajushhih avtomatov. Energoatomizdat, Moscow,

1989. 328 p. (in Russian)

[6]. Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the

Extended Finite State Machine Model. ACM Transactions on Design Automation of

Electronic Systems (TODAES), 1996. pp. 57–79.

[7]. Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of

Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of

Electronic Functional testing: Theory and Application, 27(2), 2011. pp. 137–162.

[8]. Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to

Functional Verification. Proceedings of the Conference on Problems of Perspective

Micro- and Nanoelectronic Systems Development, Part II, 2014. pp. 113-118.

[9]. Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.).

The VLSI Handbook. CRC Press, 2007. 2320 p.

[10]. Dijkstra E.W. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik, 1, 1959, pp. 269–271.

[11]. Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p.

[12]. Retrascope toolkit. http://forge.ispras.ru/projects/retrascope

[13]. ITC’99 benchmark. http://www.cad.polito.it/tools/itc99.html

[14]. Fortress library. http://forge.ispras.ru/projects/solver-api

[15]. Z3 solver. http://z3.codeplex.com

[16]. Questa simulator. http://www.mentor.com/products/fv/questa/

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

180

Подход к генерации тестов, нацеленных
на покрытие кода HDL-описаний

аппаратуры, на основе расширенных
конечных автоматов

1 И. Мельниченко <igor.melnitxenko@gmail.com>,
2 А. Камкин <kamkin@ispras.ru>,
2 С. Смолов <smolov@ispras.ru>,

1 ОАО «Институт электронных управляющих машин им. И.С. Брука»,

119334, Москва, ул. Вавилова, 24
2 Институт системного программирования РАН,

109004, Москва, ул. Александра Солженицына, 25

Аннотация. Генерация тестов по моделям широко используется для функциональной

верификации аппаратуры. Расширенные конечные автоматы (extended finite state

machines, EFSM) — удобный формализм для моделирования цифровых устройств. В

отличие от обычных конечных автоматов, в EFSM-моделях управляющие сигналы и

данные разделены, что позволяет описывать системы в более компактной форме,

уменьшая в некотором смысле риск комбинаторного взрыва при верификации. Однако

обход графа состояний EFSM-модели является нетривиальной задачей из-за наличия

условий на выполнимость переходов. В данной статье представлен метод генерации

тестов по EFSM-моделям и проведено его сравнение с другими подходами.

Предлагаемый метод сочетает случайный обход графа состояний автомата и

направленный поиск реализуемых путей. Первая из указанных фаз направлена на

покрытие «простых» переходов, вторая — «сложных». Под сложностью переходов

здесь понимается наличие зависимостей охранных условий переходов от внутренних

переменных. При направленном поиске используется информация о зависимостях по

данным и управлению между переходами автомата и задействуется символическое

исполнение. Было выполнено сравнение предлагаемого метода с существующими

аналогами путем сопоставления параметров тестов, сгенерированных для заданного

набора описаний модулей цифровой аппаратуры. Во всех случаях в качестве входных

данных использовались EFSM-модели, автоматически извлеченные из кода.

Полученные данные показывают, что в сравнении с другими подходами метод

обеспечивает лучшие показатели покрытия исходного кода более короткими тестами.

В будущем планируется реализовать ряд оптимизаций, направленных на применение

метода к промышленным HDL-описаниям.

Ключевые слова: проектирование аппаратуры; язык описания аппаратуры;

имитационная верификация; генерация тестов; моделирование; расширенный

конечный автомат; обход графа; случайный обход; поиск с возвратами; символическое
исполнение; разрешение ограничений.

DOI: 10.15514/ISPRAS-2015-27(3)-12

И.В. Мельниченко, А.С. Камкин, С.А. Смолов. Подход к генерации тестов, нацеленных на покрытие кода HDL-

описаний аппаратуры, на основе расширенных конечных... Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 161-182

181

Для цитирования: Мельниченко И.В., Камкин А.С., Смолов С.А. Подход к генерации

тестов, нацеленных на покрытие кода HDL-описаний аппаратуры, на основе

расширенных конечных автоматов. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 161-

182 (на английском языке). DOI: 10.15514/ISPRAS-2015-27(3)-12.

Список литературы
[1]. Bergeron J. Writing Testbenches: Functional Verification of HDL Models, Kluwer

Academic Publishers, 2003.

[2]. Blyler J. Are Best Practices Resulting in a Verification Gap?

(http://chipdesignmag.com/sld/blog/2014/03/04/are-best-practices-resulting-in-a-

verification-gap).

[3]. Jusas V., Neverdauskas T. FSM Based Functional Test Generation Framework for

VHDL. Proceedings of International Conference on Information and Software

Technologies (ICIST), 2012. pp. 138-148.

[4]. Duale A.Y., Uyar M.U. A Method Enabling Feasible Conformance Functional Test

Sequence Generation for EFSM Models. IEEE Transactions on Computers, 53(5), 2004.

pp. 614-627.

[5]. Лазарев В.Г., Пийль Е.И. Синтез управляющих автоматов. Энергоатомиздат,

1989. 328 с.

[6]. Cheng K.T., Krishnakumar A.S. Automatic Generation of Functional Vectors Using the

Extended Finite State Machine Model. ACM Transactions on Design Automation of

Electronic Systems (TODAES), 1996. pp. 57–79.

[7]. Di Guglielmo G., Di Guglielmo L., Fummi F., Pravadelli G. Efficient Generation of

Stimuli for Functional Verification by Backjumping Across Extended FSMs. Journal of

Electronic Functional testing: Theory and Application, 27(2), 2011. pp. 137–162.

[8]. Kamkin A. Smolov S. The Method of EFSM Extraction from HDL: Application to

Functional Verification. Proceedings of the Conference on Problems of Perspective

Micro- and Nanoelectronic Systems Development, Part II, 2014. pp. 113-118.

[9]. Navabi Z. Languages for Design and Implementation of Hardware. W.-K. Chen (Ed.).

The VLSI Handbook. CRC Press, 2007. 2320 p.

[10]. Dijkstra E.W. A Note on Two Problems in Connexion with Graphs. Numerische

Mathematik, 1, 1959, pp. 269–271.

[11]. Dijkstra E.W. A Discipline of Programming. Prentice Hall, 1976, 217 p.

[12]. Инструмент Retrascope. http://forge.ispras.ru/projects/retrascope

[13]. Тестовый набор ITC’99. http://www.cad.polito.it/tools/itc99.html

[14]. Библиотека Fortress. http://forge.ispras.ru/projects/solver-api

[15]. Решатель ограничений Z3. http://z3.codeplex.com

[16]. Симулятор Questa. http://www.mentor.com/products/fv/questa/

I. Melnichenko, A. Kamkin, S. Smolov. An Extended Finite State Machine-Based Approach to Code Coverage-Directed

Test Generation for Hardware Designs. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 161-182

182

