Bnagumup Bypenkos. O peanusanun GopMaabHOro MeTosia Bepu(HKaHN MacITaOUPyeMBIX CHCTEM € KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

On the Implementation of a Formal Method
for Verification of Scalable Cache Coherent
Systems

Viladimir Burenkov <burenkov_v@mcst.ru>,
Bauman Moscow State Technical University,
105005, Moscow, Russian Federation, 2" Baumanskaya st., 5
MCST, 119334, Moscow, Russian Federation, Vavilov st, 24

Abstract. This article analyzes existing methods of verification of cache coherence protocols
of scalable systems. Analyzed methods include model checking, deductive verification,
methods that extend these two methods: compositional verification methods and abstraction-
based methods. Based on the research literature, the paper describes a method of formal
parameterized verification of safety properties of cache coherence protocols. The method is
based on syntactical transformations of Promela models. First, a mathematical model
(transition system) of cache coherence protocols is described. Second, the corresponding
abstract model is presented according with the concrete model transformations. These
transformations lead to abstract model that is independent of the number of processors in the
system under verification. The paper proposes a design of a verification system for cache
coherence protocols. The main part of the design is a Promela translator and abstract
transformations subsystem that obtains an internal representation of a Promela model and
modifies it according to the transformations. The article analyzes the method in terms of
development and examination of the corresponding Promela model of the German cache
coherence protocol. Examples of the syntactic transformations are shown. In order to
demonstrate the method’s ability to find bugs, verification results of two buggy versions of
the German protocol obtained from the literature are presented and analyzed. Drawbacks of
the method are presented. In particular, the usage of a limited Promela subset leads to
unnecessary complications and unnatural models. The paper discusses extension and
automation of the method needed to adapt it to verification challenges of the Elbrus
MiCroprocessors.

Keywords: formal verification; model checking; deductive verification; cache coherence
protocol; Elbrus
DOI: 10.15514/ISPRAS-2015-27(3)-13

For citation: Burenkov Vladimir. On the Implementation of a Formal Method for
Verification of Scalable Cache Coherent Systems. Trudy ISP RAN/Proc. ISP RAS, vol. 27,
issue 3, 2015, pp. 183-196. DOI: 10.15514/ISPRAS-2015-27(3)-13.

183

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

1. Introduction

Modern microprocessor systems are scalable — the number of cores per chip
increases and chips are combined into clusters. Each processor of the system has
access to the shared address space. However, memory is physically distributed
among the processors in order to increase the bandwidth and reduce the latency to
local memory. Thus, access to the local memory is faster than access to the remote
memory. To decrease the memory bandwidth demands of a processor, processors
are equipped with multilevel caches. Caching of shared data introduces the problem
of cache coherence.

To solve the problem, computer architects often use hardware mechanisms that
implement cache coherence protocols. Concurrent work of many hardware devices
(for example, cache and main memory controllers), which exchange information in
accordance with a cache coherence protocol, results in a colossal size of the
protocol’s state space. This, in turn, makes verification of cache coherence protocols
an extremely hard task.

To work out the problem, scientists have been conducting research in the direction
of formal methods for the past few decades and achieved a level of success.
However, scalable verification is still an issue.

Scalability leads to the need for formal verification methods that are capable of
adapting to it. As the size of systems increases, the fully automated method of
model checking reaches its limits and can no longer be used due to the state space
explosion problem.

As a rule, existing formal approaches to verification are either inapplicable to
industrial-strength microprocessor systems or require an enormous amount of
manual work.

2. Primary Verification Methods

Formal methods provide a mathematical proof of the correspondence between a
model of the object under verification and the object’s specification, that is, a set of
properties it is supposed to satisfy. A mathematical model of reactive systems — and
cache coherence protocols are examples of reactive systems — that allows to
systematically represent systems components, their coordination and interaction, is a
transition system [1].

The main approaches to formal verification are model checking and deductive
verification.

The method of model checking [2] systematically explores the finite state space of
the protocol under verification by means of specific algorithms. The advantages of
model checking are full automation and generation of counterexamples that help us
find the sources of bugs. The main disadvantage is the state space explosion
problem. Modern cache coherence protocols have too many states for an effective
state space inspection to be feasible.

Let us consider verification of safety properties, which are described by linear
temporal logic (LTL) formula Gp, where p is an assertion — a formula constructed
184

Bnagumup Bypenkos. O peanusanun GopMaabHOro MeTosia Bepu(HKaHN MacITaOUPyeMBIX CHCTEM € KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

by applying logical connectives to variables of the model. If the assertion is true in
each state of the model, then p is an invariant of the model. According to the
method of deductive verification, in order to prove Gp, it is necessary to develop an
auxiliary assertion ¢, which is an over-approximation of the state space, and then

show that ¢ implies p (i.e., that ¢ is stronger than p). The method is based on the
following inference rule [1]:

I1. @is true in the initial states of the model
12. All transitions preserve @
B.og—>p

Gp

An assertion ¢ is called inductive if it satisfies the premises I1 and I12. An inductive

assertion is always an over-approximation of the set of reachable states. If p is an
invariant of the system under verification, then there always exists an inductive
assertion @ stronger than p [1]. The initial assertion p is rarely inductive. As a rule,

the verification engineer must develop an auxiliary assertion and check the validity
of the premises 11-13.

Deductive verification allows us to work with systems with infinite number of
states. Theorem provers assist in using formal logic for reasoning about
mathematical objects. Popular tools are ACL2, PVS, Isabelle. The underlying logics
of theorem provers vary substantially. However, all theorem provers support rich
and expressive logics. In general, expressiveness of a logic leads to its
undecidability. That means that there is no automatic procedure that, given a
formula, can always determine if there exists a derivation of the formula in the
logic. The use of theorem proving presumes interaction with an expert user and is a
complicated creative process. When the theorem prover cannot find the derivation
of a formula given a proof outline, it is very hard to find the actual bug in the system
under verification.

Reference [3] describes the experience of using the PVS theorem prover for
parameterized verification of the FLASH cache coherence protocol. During the
proof construction, authors manually looked for candidates for inductive assertions
many times. When they failed to prove their inductiveness, they analyzed the
reasons for that and devised additional conditions that transformed the assertion into
an inductive one. This process is extremely laborious, which is why methods that
are solely based on theorem proving can only find a limited usage in verification of
cache coherence protocols.

3. Verification Methods for Scalable Systems

Development of verification methods for scalable systems may be carried on in
several directions: 1) improvement of methods based on model checking; 2)

185

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

improvement of methods based on deductive verification; 3) combination of the
methods from the first and the second groups.

Methods of verification of cache coherence protocols deployed in industrial-strength
microprocessor systems must satisfy a number of requirements: 1) possibility of
conducting verification in a reasonable amount of time; 2) high level of automation;
3) ability to provide information about sources of bugs.

Model checking or deductive verification on their own do not meet these needs.
Consequently, building a general infrastructure that would combine and further
develop methods of model checking and deductive verification seems to be the most
promising approach to verification of scalable systems.

4. Abstraction and Compositional Model Checking

The main approaches allowing the application of model checking to verification of
scalable systems are abstract model checking and compositional verification [2].
Abstraction methods diminish the number of states of the model under verification
and preserve the properties of interest at the same time.

Equivalence relations, which guarantee that the models will have the same
behaviors, usually do not decrease the number of states sufficiently. Instead,
simulation relations, which relate models to their abstractions, are used. The
simulation guarantees that every behavior of a model is a behavior of its abstraction.
However, the abstraction might have behaviors that are not possible in the original
system.

Abstract state spaces may be obtained by means of under-approximation methods,
which remove behaviors, or over-approximation methods, which add new
behaviors. Thus, in case of under-approximation, a bug in the abstract model
implies a bug in the concrete model, and in case of over-approximation, correctness
of the abstract model implies correctness of the concrete model. Further in this
article we only consider over-approximations, also known as conservative
abstractions.

Developing abstract models involves finding a compromise between two conflicting
goals: 1) generation of small abstract models that can be model checked; 2)
generation of precise abstract models.

Usually, the smaller the model, the more behaviors it allows. This may lead to
spurious counterexamples that are not present in the concrete model. There are at
least two ways out: 1) construction of precise abstract models; 2) analysis of
counterexamples and modification of the abstract model according to the acquired
information (counterexample-guided abstraction refinement).

Methods that create precise abstract models (for example, based on counter
abstraction or environment abstraction [4]) lead to models of big size in case of
complicated protocols.

The idea of compositional verification [5] is to exploit the natural decomposition of
a distributed system into processes. Processes are verified individually (with a

186

Bnagumup Bypenkos. O peanusanun GopMaabHOro MeTosia Bepu(HKaHN MacITaOUPyeMBIX CHCTEM € KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

generalized environment), then the results are combined, and a verdict about
correctness of the initial model is made. A compositional approach must provably
lead to simplified models satisfying the properties of the initial model.

5. A Method of Compositional Model Checking

5.1 General Idea

The method described in this paper adapts the method [6] to work with a subset of
Promela. The method is based on a combination of model checking and theorem
proving. The choice of Spin is motivated by the fact that Spin is a modern and
constantly evolving tool that supports many optimizations and verification modes.
The Promela language is convenient for description of distributed systems,
including cache coherence protocols. Moreover, Spin may be used as the basis for
generators of test programs the purpose of which is verification of implementations
of cache coherence protocols [7].

The method shows how to build an abstract model that simulates a given concrete
model of a cache coherence protocol. The construction is performed by means of
syntactic transformations of the concrete Promela model.

5.2 A Mathematical Model of Cache Coherence Protocols

Cache coherence protocols may be seen as asynchronous systems of communicating
processes in which a process is a finite automaton. Then a mathematical model of a
cache coherence protocol is a system of communicating finite automata.

A Promela model specifies the behavior of a set of asynchronously executing
processes in a distributed system. Each Promela process defines an extended finite
automaton. Thus, Promela is suitable for describing models of cache coherence
protocols.

By simulating the execution of a Promela model we can build a digraph of all
reachable states of the model. Each node in the graph represents a state of the
model, and each edge represents a single possible execution step by one of the
processes. This graph is always finite [8].

Safety properties can be interpreted as statements about the presence or absence of
specific types of nodes in the reachability graph.

Let us consider the transition system corresponding to the reachability graph. The
following discussion considers a subset of Promela.

A transition system is a triple 7S = (S, Sy, E) , where S is a finite non-empty set of
states, S, < S is a non-empty set of initial states, £ < S xS is a transition relation

on S such that
(Vsel) (3s'eS): (s,s"eE

187

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

In order to be able to formally define syntactic transformations of a Promela model,
we will represent models by means of a triple P=(V, ®, R), where

e J isaset of variables of the model, each variable is of its own type;
e O isthe initialization predicate;
e R is the set of transition rules represented as guarded commands

consisting of a condition and a set of assignments:
cond =>{v, =t;..;V, =1},

where cond is the condition (predicate), v, €/ are model variables, each ¢ is a
term of the same type as v;; := denotes assignment.

An interpretation of a set of typed variables V' is a mapping that assigns to each
variable v; eV a value in the domain of ;.

A triple P=(V,0,R) determines a transition system 78” =(S, 8y, E) in the
following way. Each state s €S is an interpretation of the set V' . For every term ¢
we write s(¢) for the value of ¢ in the state s . For a predicate ¢, we denote s|=¢@

if and only if s(¢)=true. A predicate ¢ is an invariant of a model P, denoted by
Pl=g,if VseS:sl=@. S, is the set of states s €S such that s|=0.

There exists a transition s — s', which means (s,s') € E, if there exists a transition
rule

cond > {v=t; ... ;v =1},
such that s|=cond and s' is a state in which

Viell,....k}) (s'(v;)=s(¢,))

and

(Vv €V N\, weh) (8'(v) = s(v))).

5.3 The Abstract Model

Let N={p,,..., p,} be a parameter set, where p,,..., p, are constants of the type

used to represent processes in the model and » is a natural number defined by the
number of cache agents in the system.

188

Bnagumup Bypenkos. O peanuzanun GopMaabHOro MeTosa Bepu(HKaLHN MaclITaOUPyeMbIX CHCTEM ¢ KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

Let P=(V,0, R) be a symmetric model [9] and M ={p,,..., p,,} be a subset of
the set N={p,..., p,}, m<n.Let abs be the element that is an abstraction of
elements p,.;,....,p, and M, =M U{abs}. We define the abstract model
P =, 0, Ry) with the parameter set M,

as follows.

Let S be the set of states of the model P and S, be the set of states of the model
P

abs *

The predicate © ,,, is obtained by the syntactic transformations Transp .

The transition rules R, are obtained by syntactic transformations 7Transj that

S
include transformations of conditions Trans, and transformations Trans, of the
assignments that appear in the rules:

Transg(cond = {vy =t;...;v, =t }) =

Transp(cond) — {Trans ;(v, =1,); ...; Trans ,(v;, =1,)}
The transformations of terms Trans; are defined in the following way.

Transy(v)=vforeachvel,

p; fori<m,

Trans)=
r(p:) {abs fori>m

Trans;(c) = c for all other constants c .

This definition is extended inductively to work with composite term expressions.

Suppose ¢@(t,,...,t;) is a predicate, i.e., a logical combination of #,...,#, . Then
Transy(@(t,, ..., t;)) is the same logical combination of Trans;(¢,), ..., Transy(t;)
. Define Transp(¢) to be the same logical combination of ¢';, ..., ¢, , where

t;,if Trans;(t;) =t;,
t',=<true,if Trans;(t;) # t; and t; occurs positively in ¢,
false,if Transy(t;) #t; and ¢, occurs negatively in ¢.

Now let us define the transformations of assignments 7rans ,. Denote by & the
absence of assignment and let

e {t, if Transy(¢) =t,

any value in the domain of ¢, otherwise

189

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

Table 1 lists the allowed types of assignments and their corresponding
transformations. Define Array to be a Promela array and f, : N - M, to be a

mapping that maps p,, ..., p,, to themselves and maps p,,,,,..., p, to abs.

The abstract set of transitions is defined as follows:
R ={Transp(r)|r e R} .

Table 1. Syntactic Transformations of Assignments

Type of assignment Assignment
transformation

vi=t v=t

Array[p;]:=t D,ifi>m

Array[p;1=¢t,ifi<m

Array[t]:= p; Array(t] = f5(p;)

5.4 Justification of the Abstraction Rules

It can be shown [9] that the abstraction map o : S —> S
is

«bs DIESErves transitions, that

VseS:(s—>s")= (als) > als))

Then, safety properties are preserved: If a state is reachable in the concrete model, it
is reachable in the abstract model. In other words, the abstraction map is a
simulation relation.

5.5 The Method

The verification method is based on two observations. The first one is the fact that
the abstraction map is a simulation relation. The second one is the guard
strengthening principle [9] that makes the following strategy correct.

Given a model P and a predicate ¢, in order to prove that P|=¢ : 1) add ¢ to the
conditions of transition rules of P by means of conjunction; 2) prove that ¢ is an
invariant of the newly acquired model.

The method consists of the following steps. Input objects are a symmetric model P
with parameter set N ={p,,..., p,} and a safety property ¢.

1. Construct P, , using the syntactic transformations from section 5.3. Let
Q = Pabs :

2. If Q|= ¢, the verification is finished: we conclude that P|=¢.

190

Bnagumup Bypenkos. O peanuzanun GopMaabHOro MeTosa Bepu(HKaLHN MaclITaOUPyeMbIX CHCTEM ¢ KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

Otherwise, examine a counterexample provided by Spin, devise an invariant ¥ and
modify Q as described in [9]. Set ¢ =@ Ay . Go to step 2.

6. Design of a Cache Coherence Protocols Verification System

The syntactic transformations described in section 5.3 can be fully automated.
Performing them by hand is tedious and impractical, especially in an industrial
setting. Therefore, in order to alleviate this problem, a tool may be developed,
which would build an internal representation of the concrete Promela model, modify
it according to the transformations, and produce the abstract model. An abstract
syntax tree may be the internal representation.

The transformations of Promela models are shown in Fig. 1.

The question of automating the refinement transformations is significantly harder.
Further research is needed in this direction.

Promela translator and abstract
transformations subsystem

Concrete Internal) Modified inte_rnal Abstract
Promela model representation representation Promela model

Figure 1. The transformations of Promela models

7. Verification of the German Cache Coherence Protocol

I developed a Promela model of the German protocol. The model is written in the
style of [10]. The model implements the algorithm of memory access requests

processing shown in Fig. 2.
Cache with a
shared copy

3. Coherent answer —
invalidate_ack

2. Coherent request -
invalidate

1. Initial request

Processor core Home processor

2. Coherent request -
invalidate

Cache with a
shared copy

3. Coherent answer —
invalidate_ack

4. Access grant -
grant

Figure 2. Processing of the read/write requests of the German cache coherence protocols

191

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

A processor core and the corresponding cache controller are represented by the
Promela process core and the home-processor is represented by the process home.
Thus, the model consists of one process home and N processes core where N is a
natural number. Interaction between the processes is accomplished by means of the
three Promela arrays channell, channel2, and channel3 (see Fig. 3).

The array channell is for the initial requests req * sent by a processor to the
home processor. The array channel?2 is for the snoop requests invalidate sent
by the home processor to cache controllers and for grants grant *. The array
channel3 is used for coherence answers sent by cache controllers to the home
processor (invalidate ack).

The German protocol uses three main states of a cache line: Invalid, Exclusive, and
Shared.

According to the transformations described in section 5.3, I developed the initial
version of the abstract model. The abstract model contains one process home, two
processes core, and one abstract process home abs. One of the most complicated
parts of creating the abstract model — the transformation of assignments — is
depicted in Table 2. Table 2 shows examples of the corresponding transformations
of the German cache coherence protocol Promela model.

channell

channel2
Process core Process home

channel3

Figure 3. Communication channels between processes in the Promela model of the German
cache coherence protocol

Table 2. Examples of the syntactic transformations of the Promela model of the German

protocol
Assignment Assignment
transformation
curr_ command curr_ command
= req shared = req shared
sharer list[i] B.ifi>m

= true c e o
sharer list[i]= true, if i <m

curr client = i curr client = i
in a concrete process

curr_client = abs
in the abstract process

The verified property stated that it is impossible for a cache line to be in state
Exclusive in one cache and in state Shared in some other cache. For example:

192

Bnagumup Bypenkos. O peanuzanun GopMaabHOro MeTosa Bepu(HKaLHN MaclITaOUPyeMbIX CHCTEM ¢ KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

never { do :: assert((! (cache[0] == exclusive && cachel[l]

== shared))) od }

This property did not hold on the initial abstract model. According to section 5.5, I
performed the refinement process. Two additional invariants were developed and
the verification process was finished due to the absence of counterexamples. The
refinement process was similar to that described in [6].

For the experimental check of the method’s ability to find bugs, I verified two
buggy versions of German described in [4]. In the first buggy version, after the
home processor grants exclusive access to a cache, it fails to set the
exclusive granted variable to true. Thus, when another cache requests shared
access, it gets the access even though the first cache holds it in exclusive state. In
this case Spin issues a counterexample because the assertion

assert((! (cache[0] == exclusive && cache[l] == shared)))

is violated.

In the second buggy version, the home processor grants a shared request even if
exclusive granted variable is true. In this case Spin issued a counterexample
because of the violation of one of the invariants found during the abstraction
process.

8. Conclusion and Directions for Future Work

Formal methods for verification of cache coherence protocols fall into two groups:
methods based on model checking and methods based on deductive verification.
Model checking is fully automated but suffers from the state space explosion
problem. Deductive verification is scalable but requires a lot of expert’s hand work.
Combination of the two approaches seems promising because of its potential ability
to lead to a scalable method that requires an acceptable amount of hand work.

On the basis of existing literature, a method that is such a combination is described.
Although the method can be used for parameterized verification, it has some
drawbacks. It supports a very limited subset of Promela constructs and poses
unnecessary limitations on the way verification engineers should write their
Promela models. The style of the Promela model used in this paper is less intuitive
than the style of the model described in [7]. The model from [7] was obtained by a
natural decomposition of the Elbrus system-on-chip under verification and
organizing process communication through Promela channels. The model was
successfully used in verification of several Elbrus systems.

Future work directions include provable extension of the Promela subset that can be
dealt with by the verification method, the examination of the impacts of different
styles of descriptions of cache coherence protocols, and development of tools that
would automate parts of the verification process. The verification process will be
applied to Elbrus microprocessors.

193

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

References

[1]. Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent systems:
specification,” Springer-Verlag, 427 pp., 1992.

[2]. E.M. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314 pp., 1999.

[3]. S. Park, D. Dill, “Verification of FLASH cache coherence protocol by aggregation of
distributed transactions,” Proceedings of the 8th annual ACM symposium on parallel
algorithms and architectures, pp. 288-296, 1996.

[4]. M. Talupur, “Abstraction Techniques for Parameterized Verification,” PhD Thesis,
2006.

[5]. E. Clarke, D. Long, K. McMillan, “Compositional model checking,” Proceedings of the
fourth IEEE symposium on logic in computer science, 1989.

[6]. C. Chou, P. Mannava, S. Park, “A simple method for parameterized verification of cache
coherence protocols,” Formal methods in computer-aided design, vol. 3312, pp. 382—
398, 2004.

[7]. V. Burenkov, “Generator testov dlya verifikatsii protocola cogerentnosti kesh pamyati
[A test generator for cache coherence protocol verification],” Voprosi radioelektroniki,
seria EVT, 3, pp. 56-63, 2014.

[8]. G. Holzmann, “The Spin model checker: primer and reference manual,” Addison-
Wesley Professional, 608 pp., 2003.

[9]. S. Krstic, “Parameterized system verification with guard strengthening and parameter
abstraction,” Automated verification of infinite state systems, 2005.

[10]. A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with invisible
invariants,” Tools and algorithms for the construction and analysis of systems, vol.
2031, pp. 82-97, 2001.

O peanusauuun bopmanbHOro metoaa
Bepucukaumm macwtabmpyembix CUCTEM C
KOrepeHTHOMN NaMATbHo

Braoumup Bypenxos <burenkov_v@mcst.ru>,
Mockosckuii 2ocyoapcmeennuiii yHugepcumem umenu H.O. Baymana, 105005,
Mockea, Poccuiickas ¢pedepayus, 2-1 baymanckas ynuya, 5
MIICT, 119334, Mocksa, Poccuiickas ®@edepayus, yi. Basunosa, 24

AHHoTauusi. B pabore mnpuBeneH aHaiu3 CYLIECTBYIOLIIMX METOAOB BepH(HUKALUU
IIPOTOKOJIOB KOT€PEHTHOCTH KAII-IIAMITH MacIITaOMPYEMBIX CHCTEM. PaccMOTpEHBI METOMBI
HPOBEPKU MOJENCH U EyKTUBHON BepU(UKALIMYI, METObI KOMIO3ULIMOHHONH BepubHUKaLuu
U METOJIbl, OCHOBaHHBIE Ha abcTpakuusax. Ha ocHoBaHuM nuTepaTypsl H3M0KeH HOpMaNbHBIN
METOJ TMapaMeTPH30BaHHOM MPOBEPKU CBOICTB O€30MaCHOCTH MPOTOKONOB KOTE€PEHTHOCTH.
[TpemioxeHHbId METOI OCHOBAaH Ha CHHTAKCHYECKHX HpeoOpa3zoBaHusix Promela-mopeneii.
PaccmoTpena maremaruueckas MOJEIb IPOTOKOJIOB KOI€PEHTHOCTU KALI-NAMATU B BHJIE

194

Bnagumup Bypenkos. O peanuzanun GopMaabHOro MeTosa Bepu(HKaLHN MaclITaOUPyeMbIX CHCTEM ¢ KOTePEHTHO#
namsteio. Tpyast UCIT PAH, tom 27, Beim. 3, 2015 1., c. 183-196

cucteMbl mepexonoB. [IpexcraBmena aOcTpakTHas MOJENb MPOTOKOJIOB HApsay C
TpaHchOpManusIMU HCXOAHOH MOJENH, KOTOpBIE IIO3BOJSIIOT €€ IOJIydYuTh. Pa3mep
aOCTpaKkTHOM MOJENM HE 3aBHCHT OT KOJHMYECTBA IPOLIECCOPHBIX Y3JIOB BEepUPHUIMPYyeMOn
cucteMsl. IIpeioxkeHa apXUTEKTypa CHCTEMBI BEpU(PHKAINN MPOTOKOJIOB KOTEPEHTHOCTH.
JlaHHas cucTeMa HMMeEeT LeNbl0 OOBEIMHHTH pa3IHYHBIE 3Tallbl Mpoliecca BepUHUKAIU
BOEJIMHO U aBTOMATH3HMPOBAThH BBHIMOJIHEHHE TPYAOEMKHX 3a[ad, PEIICHHE KOTOPBIX JIETKO
MOJTyYUTh AITOPUTMHYECKH, @ OMBITKU CAENATh 3TO BPYUYHYIO UPEBaThl BHECEHHEM B MOJEIb
omn6ok. OCHOBHOH YacTBIO ApXUTEKTYphl SBISIETCA TPAaHCIATOP sA3blka Promela Bo
BHYTpCHHEE IIPEJCTaBICHHE M MOJACHCTEMAa aHalM3a W MOAU(HKAINN BHYTPEHHETO
npexacrasienns. OnmcaHo NpUMEHEHHE MeToja K BepuuKanmuu nportokona German,
NIOCTPOCHHE W aHaIW3 COOTBeTCTBylomed Promela-momemu. IlpuBeneHs! mpuMepsl
aOCTpakTHEIX TpeoOpasoBaHui. IIpoaHaNM3HpOBaHBI pPE3yNbTaThl IPOBEPKH JBYX
omMOOYHBIX Bepcuii mporokosa (German, NPeACTaBIEHHBIX B JIHTEpaType. YKa3aHbI
HEJOCTaTKM PAcCMOTPEHHOro Meroxa. Hampumep, ucHons30BaHHE OTPaHUYEHHOTO
HOJMHOXECTBa sA3blka Promela cosgaer pa3paboTyMkaM MopeNell JONOJHHUTEIbHbIC
TPYOHOCTH WM NPUBOIMT K HEECTECTBEHHBIM MozensiM. CopMymupoBaHbl HaNpaBIeHUS IO
YIY4dIIEHUIO, B YACTHOCTH, PACIIMPEHHIO Habopa MOANEPKHMBAEMBIX KOHCTPYKIMH S3bIKa
Promela, u aBTromMarm3amum MeToja, HEOOXOAWMBIE JUIi MPOBEACHUS BepH(UKALUH
MHOTOSIAEPHBIX

Keywords: formal verification; model checking; deductive verification; cache coherence
protocol; Elbrus

DOI: 10.15514/ISPRAS-2015-27(3)-13

Jas uurnpoBammsi: bypenkoB Bmammmmp. O peammsammu GopManbHOrO MeTona
BepU(HKAIMU MacITaOUPYEeMBIX CHCTEM ¢ KorepeHTHoil mamsrsio. Tpyasr UCIT PAH, Tom
27, Bom. 3, 2015 r., ctp. 183-196 (ua anrmumiickom si3sike). DOIL: 10.15514/ISPRAS-2015-
27(3)-13.

Cnucok nutepatypbl

[1]. Z. Manna, A. Pnueli, “The temporal logic of reactive and concurrent systems:
specification,” Springer-Verlag, 427 pp., 1992.

[2]. E.M. Clarke, O. Grumberg, D. Peled, “Model checking,” MIT Press, 314 pp., 1999.

[3]. S. Park, D. Dill, “Verification of FLASH cache coherence protocol by aggregation of
distributed transactions,” Proceedings of the 8th annual ACM symposium on parallel
algorithms and architectures, pp. 288-296, 1996.

[4]. M. Talupur, “Abstraction Techniques for Parameterized Verification,” PhD Thesis,
2006.

[5]. E. Clarke, D. Long, K. McMillan, “Compositional model checking,” Proceedings of the
fourth IEEE symposium on logic in computer science, 1989.

[6]. C. Chou, P. Mannava, S. Park, “A simple method for parameterized verification of cache
coherence protocols,” Formal methods in computer-aided design, vol. 3312, pp. 382—
398, 2004.

[7]. B.C. Bypenkos. I'eneparop TecToB mist BepH(DUKALUK IPOTOKOIA KOTEPEHTHOCTH KAII-
namsitu // Borpocst panuoasiexrponnky, cepus IBT, 2014, Boimyck 3, ¢. 56-63.

195

Vladimir Burenkov. On the Implementation of a Formal Method for Verification of Scalable Cache Coherent Systems.
Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 183-196

[8]. G. Holzmann, “The Spin model checker: primer and reference manual,” Addison-
Wesley Professional, 608 pp., 2003.
[9]. S. Krstic, “Parameterized system verification with guard strengthening and parameter
abstraction,” Automated verification of infinite state systems, 2005.
[10]. A. Pnueli, S. Ruah, L. Zuck, “Automatic deductive verification with invisible
invariants,” Tools and algorithms for the construction and analysis of systems, vol.
2031, pp. 82-97, 2001.

196

