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Abstract. The language of message sequence charts (MSC) is a scenario-based specification 

language widely used at the design stage to describe the interaction of components in 

distributed systems. However, the existing methods and tools for validation of MSC diagrams 

are underdeveloped. They have such limitations as a small set of supported diagram elements, 

restrictions on the behavior of elements and on the set of analyzed properties. This paper 

describes a method for translation of MSC diagrams into coloured Petri nets (CPN), which is 

applied to the property analysis and verification of these diagrams. The translation method 

consists of three main stages: generation of the MSC internal representation called a partial 

order graph, processing of the partial order graph and translation of the graph into CPN. The 

result of the translation is a hierarchical coloured Petri net in a format compatible with the 

known CPN Tools system. Besides the basic elements of the MSC standard, the considered 

set of diagram elements includes diagram elements with data (messages, local actions and 

conditions with data), the elements of UML sequence diagrams (synchronous messages, 

combined fragments) and compositional MSC diagrams (partial-defined messages). The 

translator from MSC diagrams into CPN is implemented on the basis of the translation 

method. The properties of the resulting CPN are analyzed and verified using the system CPN 

Tools and the CPN verifier based on the SPIN tool. If an analyzed property is violated during 

the verification process and a counterexample is generated, then an error can be localized 

inside the verified MSC. To localize the error, an MSC trace leading to a broken state is 

constructed, which is a sequence of diagram events and variable states of each process. The 

application of the translation method and tools for analysis and verification is illustrated with 

an example of Alternating Bit Protocol (ABP). 
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1. Introduction 

One of the major issues that arise in the process of software development is a 

validation problem. Over the last few years, a large number of methods and tools 

have been developed for the analysis and validation of systems at the stages of their 

design and development. However, these methods are not so powerful as compared 

to the formal methods of software analysis and verification. Therefore, an important 

goal of software validation is to improve the existing validation methods used in 

practice by means of integration of well-studied analysis and verification formalisms. 

The scenario-based languages are a popular way to describe program specifications 

at the design stage of software development. They have an expressive graphical 

representation and are easy to use. One of the most popular scenario-based 

languages is the language of Message Sequence Charts (MSC) standardized by the 

ITU-T [1]. MSC diagrams are widely used for specification of communication 

protocols. The sequence diagrams of the UML standard (UML SD) [2], inspired by 

the MSC, made the interaction diagrams popular in the wide fields of software 

development. The application area of MSCs includes documentation, requirements 

specification, simulation, test case generation, etc. 

Triggered by the increasing popularity of MSC diagrams several new dialects and 

extensions of the MSC language emerged. One of the important extensions increasing 

the expressive power of the MSC is Compositional MSC diagrams (CMSC) [3, 4]. The 

use of CMSC diagrams allows us to cope with the restrictions of the MSC language in 

order to describe a certain type of interactions, such as sliding window protocols. 

It is known that at the early stages of software development the cost of errors is the 

highest. Therefore, the program models specified by MSCs should be valid and 

error-free. In practice there are tools for analysis and validation of MSC 

specifications. Among them are the following. 

The UBET system [5, 6] can check the race conditions and timing violations for a 

created MSC diagram. The system also provides an automatic test case generation 

feature and a conversion of MSCs into the Promela language code. UBET only 

supports the elements of the basic MSC diagrams. 

The software tools Cinderella MSC [7] and IBM Rational / Telelogic Tau [8] are visual 

modeling tools for analysis, specification and testing of systems described by the 

interaction diagrams. The system [7] supports the generation of MSC diagrams from a 

user application, the generation of test cases from MSCs, and the conversion of diagrams 

into other analysis systems. The toolkit [8] allows one to create program models based 

on the UML sequence diagrams, to perform the automated error checking of the UML 

SD syntax and semantics, and to convert UML SD diagrams into the SDL modeling 

language for further analysis. These tools are limited by a small set of available verified 

properties and do not support many of the diagram elements. 
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The PragmaDev analyzer [9] allows one to analyze the specific properties of MSC 

diagrams (analysis and comparison of MSC specifications and analysis of time 

properties) and also some temporal logic properties defined in Property Sequence 

Charts. The project is under development and currently only a part of MSC 

elements is supported. 

The problem of analysis and verification of interaction diagrams is investigated by 

several authors. 

Papers [10, 11, 12] describe the modeling of UML SD diagrams using high-level 

Petri nets. The paper [10] deals with the translation of UML SD diagrams into CPN. 

This paper describes the translation rules for a limited set of diagram elements and 

element compositions. Also, structural restrictions are imposed on the message 

elements (i.e. only the synchronous messages and strict sequential composition 

between structural fragments are considered) and on the interpretation of conditions. 

The paper [11] provides an extension of SD diagrams for the purpose of simulation 

and analysis of embedded systems. The authors describe formal translation rules for 

most standard elements. But some composition constructs are not considered. The 

paper [12] provides the semantics of SD diagrams in terms of extended Petri nets. 

This work deals with most of the UML SD standard elements except the elements 

for scenario composition. Note that the translation of the elements strict, break 

and critical is not considered in the papers [10, 11, 12]. 

Papers [13, 14] present the translation of UML SD diagrams into the input 

languages of the verifiers SPIN [15] and NuSMV. The authors consider most of the 

diagram elements, including the combined fragments of UML SD. References and 

high-level MSC diagrams are not considered. 

Note that most of the related work imposes restrictions on the diagram elements that 

do not allow one to specify and analyze the distributed systems with independent 

components. In addition, these papers do not consider messages and local actions 

with dynamic data. The translation of CMSC diagram elements into Petri nets in the 

papers is not considered. 

Thus, analysis and verification of MSC and UML SD diagrams is an urgent 

problem. Our paper is aimed at investigation of this problem. 

This paper describes a method for analysis and verification of MSC diagrams of 

distributed systems based on the translation of diagrams into coloured Petri nets 

(CPN) [16]. The resulting CPN are analyzed and verified using the well-known 

formal methods. The choice of coloured Petri nets as a formal semantic model of 

interaction diagrams based on the fact that the behavioral model of CPN naturally 

fits the behavioral model of MSC, allowing us to simulate different types of the 

event composition and expressions in the MSC data language. Also, CPN are well 

studied and there are methods and tools for analysis and verification of net models. 

The paper is organized as follows. Section 2 contains a brief description of 

interaction diagrams. The translation method from MSCs into CPN is given in 

Section 3. Section 4 describes the translation of UML SD elements. The translation 

of MSC elements with data is given in Section 5. In Section 6, a translation 
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algorithm of CMSC elements is described. Section 7 contains the size estimation of 

the resulting CPN generated by the translation method. The case study is described 

in Section 8. Section 9 contains our conclusion. 

2. Overview of the MSC language 

In 1992, the MSC standard [1] was developed by the ITU-T in order to obtain a 

simple and expressive scenario-based specification language to describe interactions 

in distributed systems. The significant update of the standard MSC-2000 brought 

new diagram elements, and the concepts of data and time. As a result, the current 

MSC standard can be used for description of system models at a higher level of 

formalization. 

UML 2.0 Sequence Diagrams developed by the OMG [2, 17] are strongly inspired 

by the MSC. Therefore, the basic ideas, visual representation, and the set of 

elements in the UML SD language are very similar to MSC. The main difference is 

that the SD diagrams are an integral part of the UML standard. This means that all 

objects used in SD diagrams (processes, variables, messages, etc.) are described in 

various UML diagrams to detail the specific aspects of the objects behavior. On the 

other hand, the stand-alone MSC standard has its own syntax and can be used 

independently of other modeling languages in the ITU-T family. Another difference 

of SD diagrams is that they usually represent the control flow of an object-oriented 

program, whereas MSCs traditionally describe the behavior of distributed systems. 

Interaction diagrams depict communication between system components (instances, 

processes, objects, etc.) by means of messages. Each diagram represents a particular 

scenario of the system, or a set of scenarios. 

All instance events are ordered along the vertical instance axis independently of 

other instances. The interaction between instances is performed via messages which 

determine the relationships between events of these instances. In the MSC standard 

all messages are asynchronous. This means that a message output and a message 

input are two different asynchronous events. The UML SD standard also has a 

synchronous type of messages. MSCs impose a partial ordering on the set of events. 

Besides the message input and output events, there are other basic MSC elements 

including local actions, conditions, instance creation and termination events, 

message gates and others [18, 19]. Also, the MSC standard provides structural 

elements that allow us to determine different kinds of event composition for several 

instances. So, MSC inline expressions (combined fragments in UML SD) provide 

the parallel, alternative or loop composition of events. Reference expressions and 

High-level MSC diagrams (Interaction Overview Diagrams in UML SD) allow us to 

perform the synthesis and composition of several diagrams. Note that the MSC 

standard defines that the connections of all structural elements within diagrams are 

made by means of a weak sequential composition.  

Consider the example of a UML SD diagram in Fig. 1. This diagram describes the 

scenario of interaction between the User and Server instances. All messages 
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except sendData (depicted with a message arrow of different type) are 

asynchronous. The operations of the user login and interaction with the server are 

placed in separate operands of the strict sequential composition operator strict, 

which are separated by a dotted line. This means that further interactions with the 

server are impossible until all events corresponding to the user login operation are 

executed. After logging in, the user sends the synchronous message sendData and 

executes some local action localWork. After receiving message from the user, the 

server checks a session state. This is made in the break operator. If the user 

session has expired, the logout message is sent to the user and then further 

execution of all events within strict operator is terminated. Otherwise, the data 

transmitted to the server are stored and 

the user is notified about it. 

 

Fig. 1. An example of a UML Sequence diagram which contains the synchronous 

message sendData and two combined fragments strict and break. 

3. A method for translation of MSC diagrams into Coloured Petri 
Nets 

Let us introduce the following definitions which are used in the translation 

algorithms of this paper. 

A structural fragment of MSC is a subset of MSC events, which is defined by the 

following rules: 

• a regular MSC diagram and a reference MSC diagram is a structural 

fragment; 

• each inline expression of MSC (a combined fragment of UML SD) is a 

structural fragment. 

Thus, an MSC diagram can be represented as a set of structural fragments connected 

by means of a weak sequential composition. 

We define the start events of a structural fragment as MSC events which can be 

executed first among all events of this structural fragment. By analogy with start 
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events, we also define the final events of a structural fragment. These are the events 

that can be executed last among all events within this structural fragment. 

Then, a set of MSC traces is a set of event execution sequences in the diagram, 

where each event execution sequence begins with a start event. The end of each 

event execution sequence can be either a final event, or an event after execution of 

which the MSC will not contain dynamically legal execution traces of events. 

Below we present a general method to transform the MSC diagrams into CPN. The 

input of the translation method is an MSC, HMSC, or MSC document given in the 

text notation according to the MSC standard. For UML SD and CMSC elements the 

additional syntax is incorporated to the existing grammar of the MSC language. The 

output of the algorithm is a coloured Petri net in a format compatible with the CPN 

Tools system. In this paper we use the CPN definition given in [16]. Note that the 

algorithm output is a hierarchical CPN if the original specification was defined by 

HMSC, or if the input MSC contains MSC reference expressions. 

It can be considered that the translation method has three main stages. 

At the first stage an input MSC is processed to build its internal representation 

called a partial order graph. The graph is generated as follows. For each event in 

the MSC, a node in the partial order graph is created. This node stores some 

information about the event. Nodes in the generated graph are connected with each 

other via directed arcs. The connection between nodes is equal to the connection 

between the corresponding events in the input diagram. 

At the second stage, processing of the partial order graph (creating auxiliary graph 

nodes, unfolding MSC references, etc.) is performed. 

At the third stage, the partial order graph is translated into CPN. The resulting net 

can be described as follows. Each node of the partial order graph corresponds to a 

transition of CPN. Each arc connecting two nodes of the partial order graph 

corresponds to a place and two oriented arcs connecting two transitions of CPN. 

The orientation of the generated arcs in the resulting Petri net coincides with the 

arcs orientation in the partial order graph. The places used to transfer control 

between MSC events are marked by a UNIT colour type. The execution of an MSC 

event corresponds to firing of a transition in the resulting CPN. The start events of 

MSC correspond to the transitions with start input places which have an initial 

marking 1`(). The final events of MSC correspond to transitions with the end 

output places and without outgoing arcs. 

The translation method described above builds a CPN which simulates all possible 

event traces of the input MSC. In other words, the set of all possible MSC traces 

will coincide with the set of all possible event sequences (firing of transitions) of the 

resulting CPN. An initial transition of each firing sequence in the resulting CPN is a 

transition that corresponds to a start event of the input diagram. 

Note that in this paper we do not consider the time concept of the MSC and UML 

SD standards. We also do not consider the following UML SD elements: neg, 

assert, ignore and consider. These elements do not change the set of 
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diagram traces and hence do not affect the CPN generated by the translation 

method. 

4. Translation of UML SD elements 

 Since the standard of UML sequence diagrams is based on the MSC standard, most 

elements were adopted from MSC. In [20], the comparison of UML SD and MSC 

elements is made. 

Several UML SD elements have different names in regard to the MSC standard 

terminology. For example, the instances in MSC diagrams correspond to lifelines in 

UML SD diagrams; local actions correspond to execution occurrences; MSC 

references correspond to interaction occurrences. In the translation algorithms 

described below, we will use the terminology of the MSC standard. 

Note that some UML SD elements which are not in the MSC standard can be 

modeled by the MSC elements already discussed in [18, 19]. These elements are 

continuation (can be modeled by setting and guarding conditions of the MSC), 

interaction constraint (can be modeled by predicate conditions of the MSC), state 

invariant (can be modeled by the condition MSC element described in [18]), 

conditional message (can be modeled by a regular message within an optional 

operator opt), operation calls / replies (can be modeled by synchronous and 

asynchronous messages). 

Below we consider the translation algorithms for the UML SD elements which are 

not modeled by the MSC elements earlier discussed. 

4.1 Synchronous messages 

These are the messages for which the output and input events are synchronized. 

This means that the sender of a synchronous message has to wait for the response 

from the receiver. This response will indicate what the input message processing is 

finished by the receiver, and the sender can continue the event execution. 

The translation algorithm for the synchronous message msg can be described as 

follows. First, two transitions Out_msg and In_msg are created in the output 

CPN. These transitions correspond to the output and input events of msg. The 

transition Out_msg is connected to the transition In_msg via a place and directed 

arcs similarly to the translation rules for a regular message. Next, the transition 

Reply_msg is created which means that suspension by the process that sends the 

message msg is finished. The transitions Out_msg and In_msg are connected 

with the transition Reply_msg through the place and two directed arcs as usual. 

Figure 2 shows the CPN which is the result of translation of the UML sequence 

diagram (see  Fig. 1) with the synchronous message sendData. 

4.2 The strict operator 

This operator represents a strict sequencing between several sets of diagram events. 
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We define a synchronizing event Es of an MSC diagram for the instances P1, P2, 

…, Pn (n > 1) as an event which can be executed only when all events from P1, P2, 

…, Pn located before Es have been already executed. 

The translation of the strict operator is performed as follows. 

1. All events within the strict operator are translated to a CPN using the 

common algorithm for MSCs from Section 3. 

2. For every strict operator with n (n > 1) operands, (n-1) auxiliary 

transitions are created in the CPN. Each created transition simulates a 

synchronizing event between instances involved in the strict operator. 

3. The synchronizing transitions Ti (0 < i < n) created in the previous step are 

placed at the joint of strict operands according to the following rules. 

All transitions corresponding to final events of the operand i are connected 

via places to the synchronizing transition Ti. The synchronizing transition 

Ti is in turn connected to all transitions corresponding to start events of the 

operand (i+1). Thus, in the resulting CPN, firing of transitions 

corresponding to events from the operand (i+1) of the strict operator is 

possible only after firing of all transitions corresponding to events from the 

operand i. 

 

Fig. 2. CPN which is the result of translation of UML SD shown in Fig. 1. 

A more detailed description of the translation of synchronizing events is given in 

[18]. Figure 2 shows the CPN which is the result of translation of the UML SD 

diagram (see  Fig. 1) containing the strict operator. 
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4.3 The break operator 

Semantics of this operator is similar to that of the break statement in many 

programming languages. If the break operator is performed in a sequence 

diagram, then execution of all events remaining in the enclosing (parent) structural 

fragment is skipped. In the UML SD standard structural fragments are called 

interaction fragments. It should be noted that the break operator is slightly 

different from the exceptional case operator exc of the MSC language [18]. In the 

MSC standard, the exc operator finishes execution of a current diagram. 

The break operator belongs to combined fragments of UML SD. This fragment 

has one operand and should cover all instances of the parent interaction fragment. If 

the operand has a guard condition and the condition is true, then all events of this 

operand can be executed, and all remaining events of the parent fragment are 

ignored. If the guarding condition is false, the break operand is ignored and the 

rest of the enclosing interaction fragment is chosen. 

The break operator can be represented as the alternative choice expression alt of 

the MSC language, where the first operand is equivalent to a single break operand, 

and the second operand is a part of the diagram that follows the parent fragment of 

the break operator. 

Note that in the MSC and UML SD languages the use of the alt operator and its 

special cases (opt, exc, break) attached to several instances can lead to the 

problem of non-local choice in diagrams [1, 17, 21]. The problem is that the 

standards do not define which instance checks the guards, and who decides which 

branch should be chosen if multiple guards are true. 

In our work this problem is resolved by creating the synchronizing events for each 

execution branch of an alt operator containing non-local choice. A more detailed 

description of the translation of an alternative expression with a non-local choice is 

given in [18]. The same approach is used when translating the break operator. 

The translation algorithm of the break operator consists of the following steps. 

1. Input and output auxiliary nodes are created for all structural fragments of a 

current diagram during the generation of a partial order graph. 

2. Identifiers of current and parent fragments are assigned to all nodes in the 

partial order graph. 

3. Each break fragment is translated to the output CPN according to the 

translation rules for alt operators as follows. The alt operator has two 

fixed operands. For each operand the synchronizing nodes are created to 

simulate a local choice. Final events of the first operand are connected to 

output auxiliary nodes of the parent fragment in the partial order graph (this 

simulates an exit from the parent fragment). Start nodes of the second 

operand of the alt operator will be output auxiliary nodes of the break 

fragment (this simulates the skipping of the break operator). 
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Figure 2 shows the CPN which is the result of translation of the UML SD (see  Fig. 

1) containing the break operator. 

4.4 Critical Region 

The critical operator is an atomic block of events. The block atomicity is defined 

by two conditions. Firstly, all events within the critical region cannot be interrupted by 

other events of the SD diagram which are located on the same instances as this critical 

region. Secondly, the atomicity of events inside the critical region cannot be broken 

even if it is contained within the parallel execution operator par. 

An example of the UML SD diagram containing the critical operator is shown in 

Fig. 3. In this diagram, when the processes User1 and Server enter the critical 

region by the first branch of a parallel execution, the interaction with these 

processes in other parallel branches will not be allowed until the execution of the 

critical region for these processes has been finished. 

 

Fig. 3. An example of the UML Sequence Diagram which contains a critical region inside a 

par combined fragment. 

To satisfy the first condition, it is necessary to create the synchronizing input and 

output events for each critical operator which are attached to instances 

involved in the critical region. The second condition is satisfied by introduction of 

additional places of the output CPN with flags for all events within a parent 

fragment par. Thus, an event of an instance can be executed if the flag for this 

instance is true. The flags for all instances involved in the critical region will be set 

to false when an entrance to the critical region occurs. The flags will be set to true 

when an exit from the critical region occurs. Note that the critical operator 

increases the size of the generated CPN in the case when this operator is placed to a 

par-expression with a large number of events. 
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Fig. 4. The fragment of CPN which is the result of translation of critical region from the 

UML SD shown in Fig. 3. 

The detailed translation algorithm of the critical region can be described as follows. 

1. Synchronizing transitions are created at the beginning and end of each 

critical region. 

2. If the critical region is not contained within a par operator, then the 

algorithm is finished. 

3. If the critical region is contained within a par operator (if there are several 

nested par operators then we consider the highest level of nesting), then 

the next step is performed. 

4. The fusion place Critical with a special colour type CRITICALSTATE is 

created. The place is defined as a CPN ML record «record P1: BOOL * … 

* Pn: BOOL», where P1, ..., Pn are the names of diagram instances. This 

place will store the information about flags for each instance, signalizing 

about entering/finishing the critical region. The place Critical has an initial 

marking «1` {P1=true, ..., Pn=true}». If a flag is true for a particular 

instance, this means that the instance is in a normal mode of execution. 

Otherwise, it is assumed that the instance has entered a critical region. 

5. For each transition corresponding to an event within a higher-level par 

operator with a critical region and belonging only to instances that are 

involved in this critical region, the next actions are made. A bidirectional 

arc marked by criticalState (the variable criticalState has the colour type 

CRITICALSTATE) is created. This arc connects the place Critical with the 

current transition. The transition is marked by the CPN ML guard function 

«[(#P1 criticalState) andalso ... andalso (#Pk criticalState)]», where P1, 

..., Pk are the instance names to which the current event is attached. If the 
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transition already has a guard function, then the above guard expression 

with the prefix «andalso» is added at the end of this function. 

6. The synchronizing transition which simulates entering the critical section 

for the instances P1, ..., Pk, (k <= n) is connected to the Critical place as 

follows. An incoming arc is marked by criticalState. An outgoing arc is 

marked by the expression {P1=false, ..., Pk=false, ..., Pn=(#Pn 

criticalState)}. This expression means that the flags of the instances 

involved in the critical region are reset to false, thereby preventing other 

events of these instances to run outside the region. This synchronizing 

transition is also marked by the guard function from step 5. 

7. The synchronizing transition which simulates the finishing of the critical 

section for the instances P1, ..., Pk, (k <= n) is connected to the Critical 

place as follows. An incoming arc is marked by criticalState. An outgoing 

arc is marked by the expression {P1=true, …, Pk=true, …,  Pn=(#Pn 

criticalState)}. This expression means that the flags of the instances 

involved in the critical region are reset to true. 

Figure 4 shows the CPN fragment which is the result of translation of the 

critical operator from the UML SD diagram shown in Fig. 3. 

5. Translation of diagram elements with data 

An important feature of MSC and UML SD diagrams to consider them as precise 

and formal specifications of software systems is the data concept. 

Both standards do not impose restrictions on the data notation, so any data language 

can be incorporated into MSCs and UML sequence diagrams. In the MSC standard 

data declarations are placed in the MSC document. In the UML standard data 

declarations are placed in the Class Diagrams and Communication Diagrams. 

In this paper we only consider the case of data declarations in the MSC document 

[19]. We also assume that the MSC data language allows simple types – Boolean, 

Integer and String – and the composite type Enumeration. An expression 

in the data language consists of variables, literals, parentheses, arithmetic and 

assignment operators, and comparisons. 

The MSC document in addition to data type and variable declarations also describes 

the signatures of all messages with data used in the diagrams. The message 

signature N(T1, T2, ..., Tn) is a set of a message name N and the ordered set of 

parameter types Ti which defines the data tuples transmitted by this message. For 

example, the message signature frame(Integer, Boolean) means that a diagram 

contains a message with the name frame. This message transmits a data tuple with a 

content of Integer and Boolean types. 

The data in diagrams are used in messages, local actions and conditions. Data 

expressions in messages and local actions can contain only variable assignment 

operations. A data expression in conditions cannot contain an assignment operator 
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and can be a statement with a Boolean return value. An example of an MSC 

diagram containing messages with data is shown in Fig. 5. 

The translation algorithm of events with data consists of two stages. 

At the first stage, the colour type and variable declarations in the CPN ML language 

are generated from the input MSC document. These declarations will be used in the 

CPN obtained by translation of MSC with data events. 

Generation of the colour types and variables for MSC elements with data is as 

follows: 

1. Data types declared in the data block of the MSC document are converted 

into the corresponding colour types of CPN ML. 

2. Local variables declared for each instance in the inst block of the MSC 

document are converted to variables of CPN ML with the same name and 

with the colour type resulting from the transformation at step 1. 

3. Message signatures declared in the msg block of the MSC document are 

used to simulate message buffers in the resulting CPN. The signature N(T1, 

T2, ..., Tn) is translated to a product colour type of the CPN ML 

language: colset pT1T2...Tn = product T1 * T2 * ... * Tn. To simulate the 

buffer which contains messages with the same signature N(T1, T2, ..., Tk), 

the list colour type is used: pT1T2...TkList = list pT1T2...Tk. 

4. For colour types generated at step 3, auxiliary variables pT1T2...Tn_var 

and pT1T2...TnList_var of types pT1T2...Tn and pT1T2...TnList are created. 

At the second stage, the translation of an MSC diagram which uses data declared in 

the MSC document is performed. 

The translation of local actions and conditions with data is described in [19]. Below 

we describe the translation of messages with data. The MSC and UML SD 

standards imply that communicating instances send messages through the buffer 

which is local regarding to messages. This means that there is one FIFO buffer for 

every message in a diagram. Buffers which contain MSC messages with data are 

modeled by places of the list colour type in the resulting CPN. The list is a queue 

of records (CPN product types), where each record contains the set of transmitted 

data values. Thus, the translation algorithm for messages with data is as follows: 

1. For each message msg_i(T1, T2, ..., Tn) in the diagram, a place in the 

resulting CPN is created to simulate the message buffer as follows. The 

name msg_i and the colour type pT1T2...TnList are assigned to the place. 

The initial marking for this place is set up to the value 1`[], which indicates 

that the buffer is empty. 

2. The input and output events of the message msg_i are translated into the 

corresponding transitions of the CPN. 

3. Each transition corresponding to the input/output events of the message 

msg_i is connected to fusion places modeling the variable states. The 

details of variable state simulation in the resulting CPN are given in [19]. 
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4. For a transition corresponding to an output event of the message msg_i, an 

input arc from the place msg_i is created with the inscription 

pT1T2...TnList_var. Also the output arc is created with the inscription 

pT1T2...TnList_var ^^ [(VarT1, VarT2, ..., VarTn)], where VarTi are the 

variable names with data transmitted from the sender instance. This 

expression describes the addition of a tuple with a message content into the 

buffer. 

5. For a transition corresponding to an input event of the message msg_i, an 

input arc from the place msg_i is created with the inscription 

«pT1T2...Tn_var :: pT1T2...TnList_var». This expression means that a 

head element and a tail part of the buffer are got and saved to the specified 

variables. Also, the output arc is created for this transition with the 

inscription pT1T2...TnList_var, which is used to simulate the removal of 

the upper buffer element. 

6. The process of obtaining and saving the transmitted data by the receiver 

instance is modeled in the resulting CPN as follows. The fusion places are 

created for each variable listed in the actual parameters of the message 

signature msg_i. These places are used to store the transmitted data of the 

message msg_i into the local variables of the receiver process (see the 

translation of local actions with the data for full details [19]). The transition 

corresponding to the input event of the message msg_i is connected to the 

created fusion places. The outgoing arcs from each fusion place are marked 

by the corresponding variable names. The arcs coming into the fusion 

places are marked by the inscription «Tj_var = #j pT1T2...Tn_var», where 

Tj_var is the j-th variable name of the receiver in the signature msg_i, and 

the expression «#j pT1T2 ... Tn_var» means that the j-th element from the 

tuple variable pT1T2 ... Tn_var is got. 

Figure 6 shows the CPN which is the result of translation of the MSC from Fig. 5 

containing non-regular messages with data introduced in the next section. 

6. Translation of compositional MSC elements 

The non-standard extension of MSC diagrams called Compositional Message 

Sequence Charts (CMSCs) [3, 4] has been developed to increase the expressive 

power of the MSC language and to describe scenarios with complex parallel 

communication of processes. 

In [3, 4], the authors show that the expressiveness of MSC diagrams is not sufficient 

for the specification of a certain type of interactions, such as sliding window 

protocols. In the CMSC language it is possible to describe this kind of protocols 

using partial-defined messages. The use of this type of messages, on the one hand, 

allows messages to be decomposed into several diagrams. On the other hand, such 

messages use a different buffer type which is similar to the buffer model in the 

communicating finite-state machines or SDL language. 
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Fig. 5. The HMSC diagram with two MSCs which contain the unmatched message msg. 

The CMSC language is defined as the MSC language, except for the definition of 

messages. In Compositional MSC diagrams, the input and output message events 

are partially defined. This means that for the partial-defined message there are 

multiple input events for a single output event and vice versa. Such messages in a 

CMSC are called unmatched messages. 

Unmatched send message events and unmatched receive message events use a new 

buffer model. This buffer is local relative to the two instances involved in the 

message exchange (this is a so-called pair buffer). 

An example of the CMSC diagram is shown in Fig. 5. Unmatched messages are 

shown as arrows with a dotted part. The CMSC shows the decomposition of the 

unmatched message msg which is contained in two different reference MSC 

diagrams. 

Below we describe the translation algorithm for unmatched messages. 

1. Each input and output event of the unmatched message umsg_i(T1, T2, ..., 

Tn) is converted to the corresponding transition of the CPN. 

2. If the message does not contain any data then the following steps are made. 

2.1 The fusion place simulating a buffer is created with the UNIT 

colour type and the name «CMSC P1-to-P2», where P1 is the 

name of the instance that sends the message umsg_i and P2 is the 

name of the instance that receives this message. Note that the 

name of the created place is unique for the couple of instances P1 

and P2 which communicate in the direction from the first to the 

second instance. 

2.2 For each transition corresponding to the output unmatched 

message event from P1 to P2, an output arc is created. This arc is 

connected to the place «CMSC P1-to-P2». 
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2.3 For each transition corresponding to the input unmatched message 

event from P1 to P2, an input arc is created. This arc connects the 

place «CMSC P1-to-P2» with the current transition. 

3. If the message contains data then the following steps are made. 

3.1 The fusion place simulating a buffer is created as follows. The 

place type is set to pT1T2...TnList. The place name is set to 

«CMSC P1-to-P2-umsg_i», where P1 is the name of the instance 

that sent the message with data, P2 is the name of the instance that 

receives this message, and umsg_i is the message name. The place 

is marked by 1`[]. Note that the name of the created place is 

unique for the couple of instances P1 and P2 with a given type of 

the message signature. Thus, the unmatched messages with the 

same signature will be sent by P1 through a common buffer. The 

same is true for the receiving of unmatched messages. 

3.2 The processing of transitions corresponding to the output events of 

unmatched messages with data is carried out by the translation 

rules of step 4 of the previous section. 

3.3 The processing of transitions corresponding to the input events of 

unmatched messages with data is carried out by the translation 

rules of steps 5 and 6 of the previous section. 

Figure 6 shows the CPN which is the result of translation of the CMSC (see Fig. 5) 

with the unmatched message msg. 

 

Fig. 6. The CPN which is the result of translation of the HMSC shown in Fig. 5. 
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7. Size estimate of the resulting CPN 

Below we consider the estimate of the number of transitions, places, and arcs in the 

CPN, given as the result of translation algorithms described in our paper. 

Let us consider the MSC diagram with N events, M messages and the number P of 

instances containing events. 

Introduce the following notation: S is the number of start and final MSC events; AC 

is the number of local actions and conditions; IP is the number of parallel operators 

par; IL is the number of loop operators; NIP is the maximum number of events 

among par operators of the diagram; BR is the number of break operators; ST is 

the number of strict operators; OPST is the maximum number of operands among 

strict operators of the diagram; CR is the number of critical operators 

within par operators; VAR is the number of variables defined in the MSC. 

Then the upper bound T of the number of transitions in the resulting CPN will be: 

T ≤ N + 2P·(IP + IL) + ST·(OPST - 1) + P·BR + 2CR. 

The upper bound P of the number of places in the resulting CPN has the following form: 

P ≤ N + M + S + VAR + 2P·(IP + IL) + ST·(OPST - 1)·P + P·BR + 2CR. 

The upper bound A of the number of arc in the resulting CPN has the following form: 

A ≤ 2N + 4M + 2·VAR·(AC + 2M) + 4P·(IP + IL) + 2ST·(OPST 
- 1)·P + 2P·BR + 2CR·NIP. 

As we can see, a significant contribution to the size estimate of the resulting CPN is 

made by the operators par, loop, break and critical. 

8. Case study: Alternating Bit Protocol 

Let us consider an example of the property verification for the MSC specification of 

a protocol known as the Alternating Bit Protocol (ABP) [22]. 

This protocol is bidirectional. This means that the data between the two 

communicating machines are transmitted in both directions. The protocol operates 

as follows. The sender sends a sequence of data frames to the receiver. Each data 

frame consists of two parts: a one-bit frame number and a portion of data. When a 

data frame arrives to the receiver, it sends to the sender an acknowledgment frame 

that contains the number of the received frame. Both processes use a timer to wait 

for the next frame. Thus, the sender is sending a current data frame continuously 

until it receives an acknowledgment from the receiver with the current frame 

number. On the other hand, after getting a data frame, the receiver is sending an 

acknowledgment frame to the sender continuously until it receives a new data frame 

from the sender. 

The MSC specification of the ABP protocol is presented in [23]. In the 

specification, the par operator and CMSC elements are used to describe the 

distributed interaction between two machines. The timer execution events of 

communicating processes are modeled in the resulting CPN by firing of transitions 
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corresponding to these timer events. The transmitted data in the protocol are a 

sequence of integers from 1 to 4. 

To reduce the state space of the resulting CPN and apply the CPN verifier based on 

SPIN [24], the initial MSC specification should be rewritten into a quasi-regular 

form in which diagrams do not contain unlimited loops [19]. To do this, we 

introduced additional restrictions on the protocol model without loss of generality: 

the frame number that can be lost during transmission is limited by a constant. 

For analysis and verification of the ABP model, the following properties of a proper 

behavior are formulated: 

1. The sequence of the received data is equal to the sequence of the sent data. 

2. The receiver does not accept the same message twice. 

3. The sender does not send a new message before a previous one was 

acknowledged. 

4. The sequence of the received frames is a prefix of the sequence of the sent 

frames. 

The property 1 is a postcondition. For the protocol model, it means that if the event 

execution of the MSC specification ends at its endpoint, then this property is 

satisfied. For the CPN model of the protocol, it means that the resulting net should 

not have dead markings except the markings corresponding to the endpoint of the 

MSC specification. Properties 2, 3 and 4 are specified by linear temporal logic 

(LTL) formulas [23]. 

The analysis of the model properties was made in the CPN Tools (property 1) and in 

the automated verification system developed in IIS SB RAS on the basis of SPIN 

(properties 2, 3 and 4). Verification of the properties described above showed that 

they are satisfied for the ABP protocol model. 

The property validation was also made for the ABP protocol model containing 

errors. In the first case, we considered a protocol model in which one of the 

processes can send a new message non-deterministically, without waiting for 

reception of the previous one. In the second case, we considered a protocol model in 

which the sender can send non-deterministically a frame with incorrect data. During 

verification of these ABP models, the following property violations were detected. 

In the first case, property 3 was violated (and property 4, consequently). In the 

second case, property 4 was violated. 

For the violated properties, the counterexamples were generated which contain 

traces in the MSC specification leading to a broken state. The file with a 

counterexample is a sequence of CPN transitions and net markings. 

Using the counterexamples, the errors were localized in the original MSC 

specification. Since each transition corresponds to a concrete event in an MSC, and 

the MSC variables state is calculated by the values of places with the same name as 

original variables, the localization of errors in a diagram by a counterexample is 

straightforward. 
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9. Conclusion 

The scenario-based specification languages are a convenient and expressive way to 

describe a system behavior during the design and development stages. The most 

popular in practice among them are the MSC and UML SD languages. Despite a 

wide application of these notations, the methods of analysis and verification are still 

underdeveloped. 

In this paper we describe the method for translation of MSC diagrams into coloured 

Petri nets. To the best of our knowledge, our method is the first to cover a large set 

of the MSC and UML SD diagram elements with minimal restrictions on the 

considered elements. Unlike the related papers, the translation method fully 

supports the diagram elements with dynamic data and elements of compositional 

MSC diagrams. The consideration of all elements listed above, on the one hand, 

allows us to apply the translation method for most interaction diagrams used in 

practice. On the other hand, this allows us to use the method for verification of 

distributed systems with complex object interactions. 

A CPN given as a result of the translation method can be analyzed and verified by 

the known verification methods and program tools. In particular, one can analyze 

some properties of MSC diagrams using the CPNTools, and verify properties 

specified by LTL formulas using the method [24]. 

The software tool was implemented on the basis of the translation algorithms. The 

translator has been tested on various examples of communication protocols. In 

particular, the alternating bit protocol specified by MSCs has been considered. For 

the protocol, the CPN model was generated. Some properties of the resulting CPN 

was analyzed by the CPN Tools and verified by the CPN verifier [24]. 

In our further work we plan to develop the approach for formal justification of 

correctness of the translation algorithms. We will study other MSC extensions 

intended for specification of distributed systems. Also, we plan to use the translator 

for verification of other examples of distributed systems and communication 

protocols. 
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Аннотация. Язык диаграмм последовательностей сообщений (MSC-диаграмм) 

является сценарно-ориентированным языком спецификаций, который широко 

используется на этапе проектирования для описания взаимодействия компонент в 

распределенных системах. Однако, существующие методы и средства проверки 

корректности MSC-диаграмм недостаточно развиты. К их основным недостаткам 

относятся небольшой набор поддерживаемых конструкций MSC-диаграмм, 

ограничения на поведение элементов диаграмм и на набор анализируемых свойств. 

Данная статья описывает метод трансляции MSC-диаграмм в раскрашенные сети 

Петри (CPN), который используется для анализа и верификации свойств MSC-

диаграмм. Метод трансляции состоит из трех основных этапов: построение 

внутреннего представления MSC-диаграммы в виде графа частичного порядка, 

обработка узлов графа и преобразование графа в CPN. Результатом трансляции 

является иерархическая раскрашенная сеть Петри в формате, совместимом с известной 

системой моделирования и анализа CPN Tools. Кроме элементов из основного 

стандарта MSC рассматриваются следующие конструкции MSC-диаграмм: элементы 

языка данных MSC (сообщения, локальные действия и условия с данными), элементы 

диаграмм взаимодействий стандарта UML (синхронные сообщения, комбинированные 

фрагменты) и конструкции композиционных MSC-диаграмм (частично-определенные 

сообщения). На основе этого метода трансляции реализован транслятор из MSC-

диаграмм в CPN. Свойства результирующих CPN анализируются и верифицируются 

при помощи системы CPN Tools и верификатора CPN на основе системы SPIN. Если в 

результате верификации проверяемое свойство оказывается ложным и найден 

контрпример, то место ошибки может быть локализовано в исходной MSC-

спецификации. Для этого на основе контрпримера генерируется трасса в MSC до места 

ошибки, представляющая собой последовательность событий диаграммы и состояний 

переменных каждого процесса. Применение метода трансляции и средств анализа и 

верификации продемонстрировано на примере сетевого протокола ABP (Alternating Bit 

Protocol). 
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