Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

The Application of Coloured Petri Nets to
Verification of Distributed Systems
Specified by Message Sequence Charts’

S.A. Chernenok <chernenoksergey@gmail.com>,
V.A. Nepomniaschy <vnep@iis.nsk.su>,
A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the RAS,
6 Lavrentjev pr., Novosibirsk, 630090, Russian Federation

Abstract. The language of message sequence charts (MSC) is a scenario-based specification
language widely used at the design stage to describe the interaction of components in
distributed systems. However, the existing methods and tools for validation of MSC diagrams
are underdeveloped. They have such limitations as a small set of supported diagram elements,
restrictions on the behavior of elements and on the set of analyzed properties. This paper
describes a method for translation of MSC diagrams into coloured Petri nets (CPN), which is
applied to the property analysis and verification of these diagrams. The translation method
consists of three main stages: generation of the MSC internal representation called a partial
order graph, processing of the partial order graph and translation of the graph into CPN. The
result of the translation is a hierarchical coloured Petri net in a format compatible with the
known CPN Tools system. Besides the basic elements of the MSC standard, the considered
set of diagram elements includes diagram elements with data (messages, local actions and
conditions with data), the elements of UML sequence diagrams (synchronous messages,
combined fragments) and compositional MSC diagrams (partial-defined messages). The
translator from MSC diagrams into CPN is implemented on the basis of the translation
method. The properties of the resulting CPN are analyzed and verified using the system CPN
Tools and the CPN verifier based on the SPIN tool. If an analyzed property is violated during
the verification process and a counterexample is generated, then an error can be localized
inside the verified MSC. To localize the error, an MSC trace leading to a broken state is
constructed, which is a sequence of diagram events and variable states of each process. The
application of the translation method and tools for analysis and verification is illustrated with
an example of Alternating Bit Protocol (ABP).

Keywords: specification; translation; verification; distributed systems; communication
protocols; message sequence charts; UML sequence diagrams; coloured Petri nets

DOI: 10.15514/ISPRAS-2015-27(3)-14

For citation: Chernenok S.A., Nepomniaschy V.A.. The Application of Coloured Petri Nets
to Verification of Distributed Systems Specified by Message Sequence Charts. Trudy

! This work is partially supported by RFBR grant 14-07-00401
197

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

ISPRAN/Proc. ISP RAN, 2015, vol. 27, issue 3, pp. 197-218. DOI: 10.15514/ISPRAS-2015-
27(3)-14.

1. Introduction

One of the major issues that arise in the process of software development is a
validation problem. Over the last few years, a large number of methods and tools
have been developed for the analysis and validation of systems at the stages of their
design and development. However, these methods are not so powerful as compared
to the formal methods of software analysis and verification. Therefore, an important
goal of software validation is to improve the existing validation methods used in
practice by means of integration of well-studied analysis and verification formalisms.
The scenario-based languages are a popular way to describe program specifications
at the design stage of software development. They have an expressive graphical
representation and are easy to use. One of the most popular scenario-based
languages is the language of Message Sequence Charts (MSC) standardized by the
ITU-T [1]. MSC diagrams are widely used for specification of communication
protocols. The sequence diagrams of the UML standard (UML SD) [2], inspired by
the MSC, made the interaction diagrams popular in the wide fields of software
development. The application area of MSCs includes documentation, requirements
specification, simulation, test case generation, etc.

Triggered by the increasing popularity of MSC diagrams several new dialects and
extensions of the MSC language emerged. One of the important extensions increasing
the expressive power of the MSC is Compositional MSC diagrams (CMSC) [3, 4]. The
use of CMSC diagrams allows us to cope with the restrictions of the MSC language in
order to describe a certain type of interactions, such as sliding window protocols.

It is known that at the early stages of software development the cost of errors is the
highest. Therefore, the program models specified by MSCs should be valid and
error-free. In practice there are tools for analysis and validation of MSC
specifications. Among them are the following.

The UBET system [5, 6] can check the race conditions and timing violations for a
created MSC diagram. The system also provides an automatic test case generation
feature and a conversion of MSCs into the Promela language code. UBET only
supports the elements of the basic MSC diagrams.

The software tools Cinderella MSC [7] and IBM Rational / Telelogic Tau [8] are visual
modeling tools for analysis, specification and testing of systems described by the
interaction diagrams. The system [7] supports the generation of MSC diagrams from a
user application, the generation of test cases from MSCs, and the conversion of diagrams
into other analysis systems. The toolkit [8] allows one to create program models based
on the UML sequence diagrams, to perform the automated error checking of the UML
SD syntax and semantics, and to convert UML SD diagrams into the SDL modeling
language for further analysis. These tools are limited by a small set of available verified
properties and do not support many of the diagram elements.

198

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

The PragmaDev analyzer [9] allows one to analyze the specific properties of MSC
diagrams (analysis and comparison of MSC specifications and analysis of time
properties) and also some temporal logic properties defined in Property Sequence
Charts. The project is under development and currently only a part of MSC
elements is supported.
The problem of analysis and verification of interaction diagrams is investigated by
several authors.
Papers [10, 11, 12] describe the modeling of UML SD diagrams using high-level
Petri nets. The paper [10] deals with the translation of UML SD diagrams into CPN.
This paper describes the translation rules for a limited set of diagram elements and
element compositions. Also, structural restrictions are imposed on the message
elements (i.e. only the synchronous messages and strict sequential composition
between structural fragments are considered) and on the interpretation of conditions.
The paper [11] provides an extension of SD diagrams for the purpose of simulation
and analysis of embedded systems. The authors describe formal translation rules for
most standard elements. But some composition constructs are not considered. The
paper [12] provides the semantics of SD diagrams in terms of extended Petri nets.
This work deals with most of the UML SD standard elements except the elements
for scenario composition. Note that the translation of the elements strict, break
and critical is not considered in the papers [10, 11, 12].
Papers [13, 14] present the translation of UML SD diagrams into the input
languages of the verifiers SPIN [15] and NuSMV. The authors consider most of the
diagram elements, including the combined fragments of UML SD. References and
high-level MSC diagrams are not considered.
Note that most of the related work imposes restrictions on the diagram elements that
do not allow one to specify and analyze the distributed systems with independent
components. In addition, these papers do not consider messages and local actions
with dynamic data. The translation of CMSC diagram elements into Petri nets in the
papers is not considered.
Thus, analysis and verification of MSC and UML SD diagrams is an urgent
problem. Our paper is aimed at investigation of this problem.
This paper describes a method for analysis and verification of MSC diagrams of
distributed systems based on the translation of diagrams into coloured Petri nets
(CPN) [16]. The resulting CPN are analyzed and verified using the well-known
formal methods. The choice of coloured Petri nets as a formal semantic model of
interaction diagrams based on the fact that the behavioral model of CPN naturally
fits the behavioral model of MSC, allowing us to simulate different types of the
event composition and expressions in the MSC data language. Also, CPN are well
studied and there are methods and tools for analysis and verification of net models.
The paper is organized as follows. Section 2 contains a brief description of
interaction diagrams. The translation method from MSCs into CPN is given in
Section 3. Section 4 describes the translation of UML SD elements. The translation
of MSC elements with data is given in Section 5. In Section 6, a translation
199

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

algorithm of CMSC elements is described. Section 7 contains the size estimation of
the resulting CPN generated by the translation method. The case study is described
in Section 8. Section 9 contains our conclusion.

2. Overview of the MSC language

In 1992, the MSC standard [1] was developed by the ITU-T in order to obtain a
simple and expressive scenario-based specification language to describe interactions
in distributed systems. The significant update of the standard MSC-2000 brought
new diagram elements, and the concepts of data and time. As a result, the current
MSC standard can be used for description of system models at a higher level of
formalization.

UML 2.0 Sequence Diagrams developed by the OMG [2, 17] are strongly inspired
by the MSC. Therefore, the basic ideas, visual representation, and the set of
elements in the UML SD language are very similar to MSC. The main difference is
that the SD diagrams are an integral part of the UML standard. This means that all
objects used in SD diagrams (processes, variables, messages, etc.) are described in
various UML diagrams to detail the specific aspects of the objects behavior. On the
other hand, the stand-alone MSC standard has its own syntax and can be used
independently of other modeling languages in the ITU-T family. Another difference
of SD diagrams is that they usually represent the control flow of an object-oriented
program, whereas MSCs traditionally describe the behavior of distributed systems.
Interaction diagrams depict communication between system components (instances,
processes, objects, etc.) by means of messages. Each diagram represents a particular
scenario of the system, or a set of scenarios.

All instance events are ordered along the vertical instance axis independently of
other instances. The interaction between instances is performed via messages which
determine the relationships between events of these instances. In the MSC standard
all messages are asynchronous. This means that a message output and a message
input are two different asynchronous events. The UML SD standard also has a
synchronous type of messages. MSCs impose a partial ordering on the set of events.
Besides the message input and output events, there are other basic MSC elements
including local actions, conditions, instance creation and termination events,
message gates and others [18, 19]. Also, the MSC standard provides structural
elements that allow us to determine different kinds of event composition for several
instances. So, MSC inline expressions (combined fragments in UML SD) provide
the parallel, alternative or loop composition of events. Reference expressions and
High-level MSC diagrams (Interaction Overview Diagrams in UML SD) allow us to
perform the synthesis and composition of several diagrams. Note that the MSC
standard defines that the connections of all structural elements within diagrams are
made by means of a weak sequential composition.

Consider the example of a UML SD diagram in Fig. 1. This diagram describes the
scenario of interaction between the User and Server instances. All messages

200

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

except sendData (depicted with a message arrow of different type) are
asynchronous. The operations of the user login and interaction with the server are
placed in separate operands of the strict sequential composition operator strict,
which are separated by a dotted line. This means that further interactions with the
server are impossible until all events corresponding to the user login operation are
executed. After logging in, the user sends the synchronous message sendData and
executes some local action 1ocalWork. After receiving message from the user, the
server checks a session state. This is made in the break operator. If the user
session has expired, the logout message is sent to the user and then further
execution of all events within strict operator is terminated. Otherwise, the data
transmitted to the server are stored and

the user is [Server | @ notified about it.
strict)] legin()

createSession()

localWark()

break
[mSesgicnExpired]

logout()

saveDatal) gpapyson

Fig. 1. An example of a UML Sequence diagram which contains the synchronous
message sendData and two combined fragments strict and break.

3. A method for translation of MSC diagrams into Coloured Petri
Nets
Let us introduce the following definitions which are used in the translation
algorithms of this paper.
A structural fragment of MSC is a subset of MSC events, which is defined by the
following rules:
e a regular MSC diagram and a reference MSC diagram is a structural
fragment;
e cach inline expression of MSC (a combined fragment of UML SD) is a
structural fragment.

Thus, an MSC diagram can be represented as a set of structural fragments connected
by means of a weak sequential composition.

We define the start events of a structural fragment as MSC events which can be
executed first among all events of this structural fragment. By analogy with start

201

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

events, we also define the final events of a structural fragment. These are the events
that can be executed last among all events within this structural fragment.

Then, a set of MSC traces is a set of event execution sequences in the diagram,
where each event execution sequence begins with a start event. The end of each
event execution sequence can be either a final event, or an event after execution of
which the MSC will not contain dynamically legal execution traces of events.

Below we present a general method to transform the MSC diagrams into CPN. The
input of the translation method is an MSC, HMSC, or MSC document given in the
text notation according to the MSC standard. For UML SD and CMSC elements the
additional syntax is incorporated to the existing grammar of the MSC language. The
output of the algorithm is a coloured Petri net in a format compatible with the CPN
Tools system. In this paper we use the CPN definition given in [16]. Note that the
algorithm output is a hierarchical CPN if the original specification was defined by
HMSC, or if the input MSC contains MSC reference expressions.

It can be considered that the translation method has three main stages.

At the first stage an input MSC is processed to build its internal representation
called a partial order graph. The graph is generated as follows. For each event in
the MSC, a node in the partial order graph is created. This node stores some
information about the event. Nodes in the generated graph are connected with each
other via directed arcs. The connection between nodes is equal to the connection
between the corresponding events in the input diagram.

At the second stage, processing of the partial order graph (creating auxiliary graph
nodes, unfolding MSC references, etc.) is performed.

At the third stage, the partial order graph is translated into CPN. The resulting net
can be described as follows. Each node of the partial order graph corresponds to a
transition of CPN. Each arc connecting two nodes of the partial order graph
corresponds to a place and two oriented arcs connecting two transitions of CPN.
The orientation of the generated arcs in the resulting Petri net coincides with the
arcs orientation in the partial order graph. The places used to transfer control
between MSC events are marked by a UNIT colour type. The execution of an MSC
event corresponds to firing of a transition in the resulting CPN. The start events of
MSC correspond to the transitions with start input places which have an initial
marking 1° (). The final events of MSC correspond to transitions with the end
output places and without outgoing arcs.

The translation method described above builds a CPN which simulates all possible
event traces of the input MSC. In other words, the set of all possible MSC traces
will coincide with the set of all possible event sequences (firing of transitions) of the
resulting CPN. An initial transition of each firing sequence in the resulting CPN is a
transition that corresponds to a start event of the input diagram.

Note that in this paper we do not consider the time concept of the MSC and UML
SD standards. We also do not consider the following UML SD elements: neg,
assert, ignore and consider. These elements do not change the set of

202

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

diagram traces and hence do not affect the CPN generated by the translation
method.

4. Translation of UML SD elements

Since the standard of UML sequence diagrams is based on the MSC standard, most
elements were adopted from MSC. In [20], the comparison of UML SD and MSC
elements is made.

Several UML SD elements have different names in regard to the MSC standard
terminology. For example, the instances in MSC diagrams correspond to lifelines in
UML SD diagrams; local actions correspond to execution occurrences; MSC
references correspond to interaction occurrences. In the translation algorithms
described below, we will use the terminology of the MSC standard.

Note that some UML SD elements which are not in the MSC standard can be
modeled by the MSC elements already discussed in [18, 19]. These elements are
continuation (can be modeled by setting and guarding conditions of the MSC),
interaction constraint (can be modeled by predicate conditions of the MSC), state
invariant (can be modeled by the condition MSC element described in [18]),
conditional message (can be modeled by a regular message within an optional
operator opt), operation calls / replies (can be modeled by synchronous and
asynchronous messages).

Below we consider the translation algorithms for the UML SD elements which are
not modeled by the MSC elements earlier discussed.

4.1 Synchronous messages

These are the messages for which the output and input events are synchronized.
This means that the sender of a synchronous message has to wait for the response
from the receiver. This response will indicate what the input message processing is
finished by the receiver, and the sender can continue the event execution.

The translation algorithm for the synchronous message msg can be described as
follows. First, two transitions Out msg and In msg are created in the output
CPN. These transitions correspond to the output and input events of msg. The
transition Out _msg is connected to the transition In_msg via a place and directed
arcs similarly to the translation rules for a regular message. Next, the transition
Reply msg is created which means that suspension by the process that sends the
message msqg is finished. The transitions Out msg and In msg are connected
with the transition Reply msg through the place and two directed arcs as usual.
Figure 2 shows the CPN which is the result of translation of the UML sequence
diagram (see Fig. 1) with the synchronous message sendData.

4.2 The strict operator

This operator represents a strict sequencing between several sets of diagram events.

203

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

We define a synchronizing event Es of an MSC diagram for the instances P1, P2,
..., Pn (n > 1) as an event which can be executed only when all events from P/, P2,
..., Pn located before Es have been already executed.

The translation of the st rict operator is performed as follows.

1. All events within the strict operator are translated to a CPN using the
common algorithm for MSCs from Section 3.

2. For every strict operator with n (n > I) operands, (n-1) auxiliary
transitions are created in the CPN. Each created transition simulates a
synchronizing event between instances involved in the strict operator.

3. The synchronizing transitions 77 (0 < i < n) created in the previous step are
placed at the joint of strict operands according to the following rules.
All transitions corresponding to final events of the operand i are connected
via places to the synchronizing transition 7i. The synchronizing transition
Ti is in turn connected to all transitions corresponding to start events of the
operand (i+/). Thus, in the resulting CPN, firing of transitions
corresponding to events from the operand (i+1) of the strict operator is
possible only after firing of all transitions corresponding to events from the
operand i.

I. Strict_Operator .I
In_sendData @ Out_sendData

-I-l Reply_sendData

Fig. 2. CPN which is the result of translation of UML SD shown in Fig. 1.

A more detailed description of the translation of synchronizing events is given in
[18]. Figure 2 shows the CPN which is the result of translation of the UML SD
diagram (see Fig. 1) containing the strict operator.

204

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

4.3 The break operator

Semantics of this operator is similar to that of the break statement in many
programming languages. If the break operator is performed in a sequence
diagram, then execution of all events remaining in the enclosing (parent) structural
fragment is skipped. In the UML SD standard structural fragments are called
interaction fragments. It should be noted that the break operator is slightly
different from the exceptional case operator exc of the MSC language [18]. In the
MSC standard, the exc operator finishes execution of a current diagram.

The break operator belongs to combined fragments of UML SD. This fragment
has one operand and should cover all instances of the parent interaction fragment. If
the operand has a guard condition and the condition is true, then all events of this
operand can be executed, and all remaining events of the parent fragment are
ignored. If the guarding condition is false, the break operand is ignored and the
rest of the enclosing interaction fragment is chosen.

The break operator can be represented as the alternative choice expression alt of
the MSC language, where the first operand is equivalent to a single break operand,
and the second operand is a part of the diagram that follows the parent fragment of
the break operator.

Note that in the MSC and UML SD languages the use of the alt operator and its
special cases (opt, exc, break) attached to several instances can lead to the
problem of non-local choice in diagrams [1, 17, 21]. The problem is that the
standards do not define which instance checks the guards, and who decides which
branch should be chosen if multiple guards are true.

In our work this problem is resolved by creating the synchronizing events for each
execution branch of an alt operator containing non-local choice. A more detailed
description of the translation of an alternative expression with a non-local choice is
given in [18]. The same approach is used when translating the break operator.

The translation algorithm of the break operator consists of the following steps.

1. Input and output auxiliary nodes are created for all structural fragments of a
current diagram during the generation of a partial order graph.

2. Identifiers of current and parent fragments are assigned to all nodes in the
partial order graph.

3. Each break fragment is translated to the output CPN according to the
translation rules for alt operators as follows. The alt operator has two
fixed operands. For each operand the synchronizing nodes are created to
simulate a local choice. Final events of the first operand are connected to
output auxiliary nodes of the parent fragment in the partial order graph (this
simulates an exit from the parent fragment). Start nodes of the second
operand of the alt operator will be output auxiliary nodes of the break
fragment (this simulates the skipping of the break operator).

205

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

Figure 2 shows the CPN which is the result of translation of the UML SD (see Fig.
1) containing the break operator.

4.4 Critical Region

The critical operator is an atomic block of events. The block atomicity is defined
by two conditions. Firstly, all events within the critical region cannot be interrupted by
other events of the SD diagram which are located on the same instances as this critical
region. Secondly, the atomicity of events inside the critical region cannot be broken
even if it is contained within the parallel execution operator par.

An example of the UML SD diagram containing the critical operator is shown in
Fig. 3. In this diagram, when the processes Userl and Server enter the critical
region by the first branch of a parallel execution, the interaction with these
processes in other parallel branches will not be allowed until the execution of the
critical region for these processes has been finished.

(Semver| (Useri| [Usecz)
Eﬂr ,I
critical] create(data)
save(data)
) get{data2)
| I] dataz
- - -

Fig. 3. An example of the UML Sequence Diagram which contains a critical region inside a
par combined fragment.

To satisfy the first condition, it is necessary to create the synchronizing input and
output events for each critical operator which are attached to instances
involved in the critical region. The second condition is satisfied by introduction of
additional places of the output CPN with flags for all events within a parent
fragment par. Thus, an event of an instance can be executed if the flag for this
instance is true. The flags for all instances involved in the critical region will be set
to false when an entrance to the critical region occurs. The flags will be set to true
when an exit from the critical region occurs. Note that the critical operator
increases the size of the generated CPN in the case when this operator is placed to a
par-expression with a large number of events.

206

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

colset CRITICALSTATE = record S:B0O0L ~ UL-BO0L * U2:BOOL;

{S=lalse, 1 1 @
Ul =Falsas, @
U2={2U2 criticalState) }

Critical BEGIN_S UL

critical State
[{# 5 craticalState) andalss
(#FUL criticalStake)]

CRITICALSTATE

{Smirue,
U= true,
UZ=(#U2 criticatState)}

Fig. 4. The fragment of CPN which is the result of translation of critical region from the
UML SD shown in Fig. 3.

The detailed translation algorithm of the critical region can be described as follows.

1. Synchronizing transitions are created at the beginning and end of each
critical region.

2. If the critical region is not contained within a par operator, then the
algorithm is finished.

3. If the critical region is contained within a par operator (if there are several
nested par operators then we consider the highest level of nesting), then
the next step is performed.

4. The fusion place Critical with a special colour type CRITICALSTATE is
created. The place is defined as a CPN ML record «record P1: BOOL * ...
* Pn: BOOLy, where P1, ..., Pn are the names of diagram instances. This
place will store the information about flags for each instance, signalizing
about entering/finishing the critical region. The place Critical has an initial
marking «/ " {Pl=true, ..., Pn=true}». If a flag is true for a particular
instance, this means that the instance is in a normal mode of execution.
Otherwise, it is assumed that the instance has entered a critical region.

5. For each transition corresponding to an event within a higher-level par
operator with a critical region and belonging only to instances that are
involved in this critical region, the next actions are made. A bidirectional
arc marked by criticalState (the variable criticalState has the colour type
CRITICALSTATE) is created. This arc connects the place Critical with the
current transition. The transition is marked by the CPN ML guard function
«[(#P1 criticalState) andalso ... andalso (#Pk criticalState)]», where Pl,
..., Pk are the instance names to which the current event is attached. If the

207

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

transition already has a guard function, then the above guard expression
with the prefix «andalso» is added at the end of this function.

6. The synchronizing transition which simulates entering the critical section
for the instances P/, ..., Pk, (k <= n) is connected to the Critical place as
follows. An incoming arc is marked by criticalState. An outgoing arc is
marked by the expression {Pl=false, ..., Pk=false, .., Pn=(#Pn
criticalState)}. This expression means that the flags of the instances
involved in the critical region are reset to false, thereby preventing other
events of these instances to run outside the region. This synchronizing
transition is also marked by the guard function from step 5.

7. The synchronizing transition which simulates the finishing of the critical

section for the instances P/, ..., Pk, (k <= n) is connected to the Critical
place as follows. An incoming arc is marked by criticalState. An outgoing
arc is marked by the expression {Pl=true, ..., Pk=true, ..., Pn=(#Pn

criticalState)}. This expression means that the flags of the instances
involved in the critical region are reset to true.
Figure 4 shows the CPN fragment which is the result of translation of the
critical operator from the UML SD diagram shown in Fig. 3.

5. Translation of diagram elements with data

An important feature of MSC and UML SD diagrams to consider them as precise
and formal specifications of software systems is the data concept.

Both standards do not impose restrictions on the data notation, so any data language
can be incorporated into MSCs and UML sequence diagrams. In the MSC standard
data declarations are placed in the MSC document. In the UML standard data
declarations are placed in the Class Diagrams and Communication Diagrams.

In this paper we only consider the case of data declarations in the MSC document
[19]. We also assume that the MSC data language allows simple types — Boolean,
Integer and String — and the composite type Enumeration. An expression
in the data language consists of variables, literals, parentheses, arithmetic and
assignment operators, and comparisons.

The MSC document in addition to data type and variable declarations also describes
the signatures of all messages with data used in the diagrams. The message
signature N(T1, T2, ..., Tn) is a set of a message name N and the ordered set of
parameter types 7i which defines the data tuples transmitted by this message. For
example, the message signature frame(Integer, Boolean) means that a diagram
contains a message with the name frame. This message transmits a data tuple with a
content of Integer and Boolean types.

The data in diagrams are used in messages, local actions and conditions. Data
expressions in messages and local actions can contain only variable assignment
operations. A data expression in conditions cannot contain an assignment operator

208

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

and can be a statement with a Boolean return value. An example of an MSC
diagram containing messages with data is shown in Fig. 5.

The translation algorithm of events with data consists of two stages.

At the first stage, the colour type and variable declarations in the CPN ML language
are generated from the input MSC document. These declarations will be used in the
CPN obtained by translation of MSC with data events.

Generation of the colour types and variables for MSC elements with data is as
follows:

1. Data types declared in the data block of the MSC document are converted
into the corresponding colour types of CPN ML.

2. Local variables declared for each instance in the inst block of the MSC
document are converted to variables of CPN ML with the same name and
with the colour type resulting from the transformation at step 1.

3. Message signatures declared in the msg block of the MSC document are
used to simulate message buffers in the resulting CPN. The signature N(T/,
T2, ..., Tn) is translated to a product colour type of the CPN ML
language: colset pT1T2...Tn = product T1 * T2 * ... * Tn. To simulate the
buffer which contains messages with the same signature N(T/, 72, ..., Tk),
the 1ist colour type is used: pTIT2...TkList = list pTIT2...Tk.

4. For colour types generated at step 3, auxiliary variables pTI72...Tn_var
and pTIT2...TnList var of types pT1T2...Tn and pT1T2...TnList are created.

At the second stage, the translation of an MSC diagram which uses data declared in
the MSC document is performed.

The translation of local actions and conditions with data is described in [19]. Below
we describe the translation of messages with data. The MSC and UML SD
standards imply that communicating instances send messages through the buffer
which is local regarding to messages. This means that there is one FIFO buffer for
every message in a diagram. Buffers which contain MSC messages with data are
modeled by places of the 1ist colour type in the resulting CPN. The list is a queue
of records (CPN product types), where each record contains the set of transmitted
data values. Thus, the translation algorithm for messages with data is as follows:

1. For each message msg i(Tl, T2, ..., Tn) in the diagram, a place in the
resulting CPN is created to simulate the message buffer as follows. The
name msg i and the colour type pTI72...TnList are assigned to the place.
The initial marking for this place is set up to the value 1°[], which indicates
that the buffer is empty.

2. The input and output events of the message msg i are translated into the
corresponding transitions of the CPN.

3. Each transition corresponding to the input/output events of the message
msg_i is connected to fusion places modeling the variable states. The
details of variable state simulation in the resulting CPN are given in [19].

209

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

4. For a transition corresponding to an output event of the message msg i, an
input arc from the place msg i is created with the inscription
pTIT2...TnList var. Also the output arc is created with the inscription
pTIT2...TnList var ™ [(VarTl, VarT2, ..., VarTn)], where VarTi are the
variable names with data transmitted from the sender instance. This
expression describes the addition of a tuple with a message content into the
buffer.

5. For a transition corresponding to an input event of the message msg i, an
input arc from the place msg i is created with the inscription
«pTIT2...Tn_var :: pTIT2..TnList vary. This expression means that a
head element and a tail part of the buffer are got and saved to the specified
variables. Also, the output arc is created for this transition with the
inscription pTIT2...TnList var, which is used to simulate the removal of
the upper buffer element.

6. The process of obtaining and saving the transmitted data by the receiver
instance is modeled in the resulting CPN as follows. The fusion places are
created for each variable listed in the actual parameters of the message
signature msg_i. These places are used to store the transmitted data of the
message msg i into the local variables of the receiver process (see the
translation of local actions with the data for full details [19]). The transition
corresponding to the input event of the message msg i is connected to the
created fusion places. The outgoing arcs from each fusion place are marked
by the corresponding variable names. The arcs coming into the fusion
places are marked by the inscription «7j var = #j pTIT2...Tn_var», where
Tj var is the j-th variable name of the receiver in the signature msg i, and
the expression «# pTIT2 ... Tn_var» means that the j-th element from the
tuple variable pTI72 ... Tn_var is got.

Figure 6 shows the CPN which is the result of translation of the MSC from Fig. 5
containing non-regular messages with data introduced in the next section.

6. Translation of compositional MSC elements

The non-standard extension of MSC diagrams called Compositional Message
Sequence Charts (CMSCs) [3, 4] has been developed to increase the expressive
power of the MSC language and to describe scenarios with complex parallel
communication of processes.

In [3, 4], the authors show that the expressiveness of MSC diagrams is not sufficient
for the specification of a certain type of interactions, such as sliding window
protocols. In the CMSC language it is possible to describe this kind of protocols
using partial-defined messages. The use of this type of messages, on the one hand,
allows messages to be decomposed into several diagrams. On the other hand, such
messages use a different buffer type which is similar to the buffer model in the
communicating finite-state machines or SDL language.

210

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

by

msgpinetFr = inFr, s$8uff = rBut)
A~

!

msginextFr, shuffer)

Fig. 5. The HMSC diagram with two MSCs which contain the unmatched message msg.

The CMSC language is defined as the MSC language, except for the definition of
messages. In Compositional MSC diagrams, the input and output message events
are partially defined. This means that for the partial-defined message there are
multiple input events for a single output event and vice versa. Such messages in a
CMSC are called unmatched messages.
Unmatched send message events and unmatched receive message events use a new
buffer model. This buffer is local relative to the two instances involved in the
message exchange (this is a so-called pair buffer).
An example of the CMSC diagram is shown in Fig. 5. Unmatched messages are
shown as arrows with a dotted part. The CMSC shows the decomposition of the
unmatched message msg which is contained in two different reference MSC
diagrams.
Below we describe the translation algorithm for unmatched messages.

1. Each input and output event of the unmatched message umsg i(T1, 72, ...,

Tn) is converted to the corresponding transition of the CPN.
2. If the message does not contain any data then the following steps are made.

2.1 The fusion place simulating a buffer is created with the UNIT
colour type and the name «CMSC PI-to-P2», where Pl is the
name of the instance that sends the message umsg i and P2 is the
name of the instance that receives this message. Note that the
name of the created place is unique for the couple of instances P/
and P2 which communicate in the direction from the first to the
second instance.

2.2For each transition corresponding to the output unmatched
message event from P/ to P2, an output arc is created. This arc is
connected to the place «CMSC P1-to-P2».

211

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

2.3 For each transition corresponding to the input unmatched message
event from P/ to P2, an input arc is created. This arc connects the
place «CMSC PI-to-P2» with the current transition.

3. If the message contains data then the following steps are made.

3.1 The fusion place simulating a buffer is created as follows. The
place type is set to pTIT2...TnList. The place name is set to
«CMSC PI-to-P2-umsg_i», where PI is the name of the instance
that sent the message with data, P2 is the name of the instance that
receives this message, and umsg i is the message name. The place
is marked by 1°[]. Note that the name of the created place is
unique for the couple of instances P/ and P2 with a given type of
the message signature. Thus, the unmatched messages with the
same signature will be sent by P/ through a common buffer. The
same is true for the receiving of unmatched messages.

3.2 The processing of transitions corresponding to the output events of
unmatched messages with data is carried out by the translation
rules of step 4 of the previous section.

3.3 The processing of transitions corresponding to the input events of
unmatched messages with data is carried out by the translation
rules of steps 5 and 6 of the previous section.

Figure 6 shows the CPN which is the result of translation of the CMSC (see Fig. 5)
with the unmatched message msg.

1(startPort_S) 1(startPort_ R)

CMSC S-to-R-msq] | .
S-to-R-msg-R 1
PINTINTLIist

inFr INT 4+

pINTINTList_var (#1 PINTINT_var)

PINTINT _var::pINTINTList var

pINTINTList_var~~ 1
[(nextFr, sBuff)]

PINTINTList_var

PINTINTList
10

' CMSC S-to-R-msg \
(endPort_s) CendPort_R)

Fig. 6. The CPN which is the result of translation of the HUSC shown in Fig. 5.

212

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

7. Size estimate of the resulting CPN
Below we consider the estimate of the number of transitions, places, and arcs in the
CPN, given as the result of translation algorithms described in our paper.
Let us consider the MSC diagram with N events, M messages and the number P of
Instances containing events.
Introduce the following notation: S is the number of start and final MSC events; AC
is the number of local actions and conditions; IP is the number of parallel operators
par; IL is the number of loop operators; N;p is the maximum number of events
among par operators of the diagram; BR is the number of break operators; ST is
the number of strict operators; OPg; is the maximum number of operands among
strict operators of the diagram; CR is the number of critical operators
within par operators; VAR is the number of variables defined in the MSC.
Then the upper bound T of the number of transitions in the resulting CPN will be:
T <N + 2P (IP + IL) + ST (OPgy - 1) + P-BR + 2CR.
The upper bound P of the number of places in the resulting CPN has the following form:
PSN+M+ S+ VAR + 2P (IP + IL) + ST -(OPy — 1) ‘P + P'BR + 2CR.
The upper bound A of the number of arc in the resulting CPN has the following form:
A < 2N + 4M + 2 -VAR:(AC + 2M) + 4P (IP + IL) + 2ST-(OPgr
- 1) ‘P + 2P'BR + 2CR Nyp.
As we can see, a significant contribution to the size estimate of the resulting CPN is
made by the operators par, loop, break and critical.

8. Case study: Alternating Bit Protocol

Let us consider an example of the property verification for the MSC specification of
a protocol known as the Alternating Bit Protocol (ABP) [22].

This protocol is bidirectional. This means that the data between the two
communicating machines are transmitted in both directions. The protocol operates
as follows. The sender sends a sequence of data frames to the receiver. Each data
frame consists of two parts: a one-bit frame number and a portion of data. When a
data frame arrives to the receiver, it sends to the sender an acknowledgment frame
that contains the number of the received frame. Both processes use a timer to wait
for the next frame. Thus, the sender is sending a current data frame continuously
until it receives an acknowledgment from the receiver with the current frame
number. On the other hand, after getting a data frame, the receiver is sending an
acknowledgment frame to the sender continuously until it receives a new data frame
from the sender.

The MSC specification of the ABP protocol is presented in [23]. In the
specification, the par operator and CMSC elements are used to describe the
distributed interaction between two machines. The timer execution events of
communicating processes are modeled in the resulting CPN by firing of transitions

213

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

corresponding to these timer events. The transmitted data in the protocol are a
sequence of integers from 1 to 4.
To reduce the state space of the resulting CPN and apply the CPN verifier based on
SPIN [24], the initial MSC specification should be rewritten into a quasi-regular
form in which diagrams do not contain unlimited loops [19]. To do this, we
introduced additional restrictions on the protocol model without loss of generality:
the frame number that can be lost during transmission is limited by a constant.
For analysis and verification of the ABP model, the following properties of a proper
behavior are formulated:

1. The sequence of the received data is equal to the sequence of the sent data.

2. The receiver does not accept the same message twice.

3. The sender does not send a new message before a previous one was

acknowledged.
4. The sequence of the received frames is a prefix of the sequence of the sent
frames.

The property 1 is a postcondition. For the protocol model, it means that if the event
execution of the MSC specification ends at its endpoint, then this property is
satisfied. For the CPN model of the protocol, it means that the resulting net should
not have dead markings except the markings corresponding to the endpoint of the
MSC specification. Properties 2, 3 and 4 are specified by linear temporal logic
(LTL) formulas [23].
The analysis of the model properties was made in the CPN Tools (property 1) and in
the automated verification system developed in IIS SB RAS on the basis of SPIN
(properties 2, 3 and 4). Verification of the properties described above showed that
they are satisfied for the ABP protocol model.
The property validation was also made for the ABP protocol model containing
errors. In the first case, we considered a protocol model in which one of the
processes can send a new message non-deterministically, without waiting for
reception of the previous one. In the second case, we considered a protocol model in
which the sender can send non-deterministically a frame with incorrect data. During
verification of these ABP models, the following property violations were detected.
In the first case, property 3 was violated (and property 4, consequently). In the
second case, property 4 was violated.
For the violated properties, the counterexamples were generated which contain
traces in the MSC specification leading to a broken state. The file with a
counterexample is a sequence of CPN transitions and net markings.
Using the counterexamples, the errors were localized in the original MSC
specification. Since each transition corresponds to a concrete event in an MSC, and
the MSC variables state is calculated by the values of places with the same name as
original variables, the localization of errors in a diagram by a counterexample is
straightforward.

214

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

9. Conclusion

The scenario-based specification languages are a convenient and expressive way to
describe a system behavior during the design and development stages. The most
popular in practice among them are the MSC and UML SD languages. Despite a
wide application of these notations, the methods of analysis and verification are still
underdeveloped.

In this paper we describe the method for translation of MSC diagrams into coloured
Petri nets. To the best of our knowledge, our method is the first to cover a large set
of the MSC and UML SD diagram elements with minimal restrictions on the
considered elements. Unlike the related papers, the translation method fully
supports the diagram elements with dynamic data and elements of compositional
MSC diagrams. The consideration of all elements listed above, on the one hand,
allows us to apply the translation method for most interaction diagrams used in
practice. On the other hand, this allows us to use the method for verification of
distributed systems with complex object interactions.

A CPN given as a result of the translation method can be analyzed and verified by
the known verification methods and program tools. In particular, one can analyze
some properties of MSC diagrams using the CPNTools, and verify properties
specified by LTL formulas using the method [24].

The software tool was implemented on the basis of the translation algorithms. The
translator has been tested on various examples of communication protocols. In
particular, the alternating bit protocol specified by MSCs has been considered. For
the protocol, the CPN model was generated. Some properties of the resulting CPN
was analyzed by the CPN Tools and verified by the CPN verifier [24].

In our further work we plan to develop the approach for formal justification of
correctness of the translation algorithms. We will study other MSC extensions
intended for specification of distributed systems. Also, we plan to use the translator
for verification of other examples of distributed systems and communication
protocols.

References

[1]. ITU-T Recommendation Z.120 (02/2011): Message Sequence Charts (MSC), 2011.

[2]. Unified Modeling Language (UML) 2.5. Object Management Group, 2013.
(http://www.omg.org/spec/UML/2.5/Beta2/)

[3]. Genest B. Compositional Message Sequence Charts (CMSCs) Are Better to Implement
Than MSCs. TACAS 2005, LNCS 3440, 2005. P. 429-444.

[4]. Genest B., Muscholl A., Peled D. Message Sequence Charts. Lectures on Concurrency
and Petri Nets, LNCS 3098, 2003. P. 537-558.

[5]. Rajeev Alur, Holzmann G.J., Peled D. An Analyzer for Message Sequence Charts.
TACAS 96, LNCS 1055, 1996. P. 35-48.

[6]. UBET (MSC/POGA) toolset — http://cm.bell-labs.com/cm/cs/what/ubet/index.html

[7]. Cinderella MSC computer tool — http://www.cinderella.dk/msc.htm

[8]. IBM Rational Tau system — www.ibm.com/software/products/en/ratitau

215

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems

Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

[9]. Gaudin E., Brunel E. Property Verification with MSC. SDL 2013, LNCS 7916, 2013. P.
19-35.

[10]. Fernandes J.M., Tjell S., Jorgensen J.B., Ribeiro O. Designing Tool Support for
Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri Net.
SCESM '07: Proc. of the Sixth International Workshop on Scenarios and State
Machines, Washington, DC, USA, 2007. P. 2.

[11]. Yang N., Yu H., Sun H., Qian Z. Modeling UML sequence diagrams using extended
Petri nets, Telecommunication Systems, Springer, 2012. V. 51, N. 2-3, P. 147-158.

[12]. Eichner C., Fleischhack H., Meyer R., Schrimpf U., Stehno S. Compositional Semantics
for UML 2.0 Sequence Diagrams Using Petri Nets. SDL-Forum 2005, LNCS 3530,
2005. P. 133-148.

[13]. Lima V., Talhi C., Mouheb D., Debbabi M., Wang L., Pourzandi M. Formal verification
and validation of UML 2.0 Sequence Diagrams using source and destination of
messages. Electron. Notes Theor. Comput. Sci., 2009. V. 254, P. 143-160.

[14]. Shen H., Robinson M., Niu J. Model Checking Combined Fragments of Sequence
Diagrams. Software and Data Technologies, Springer, 2013. V. 411, P. 96-111.

[15]. Holzmann G. The Spin model checker: primer and reference manual. Addison Wesley,
2003. 608 p.

[16]. Jensen K., Kristensen L.M. Coloured Petri Nets: Modeling and Validation of Concurrent
Systems, Springer, 2009. 384 p.

[17]. Micskei Z., Waeselynck H. The many meanings of UML 2 Sequence Diagrams: a
survey. Software and Systems Modeling, Springer, 2011. V. 10, N. 4, P. 489-514.

[18]. Chernenok S.A., Nepomniaschy V.A. Analysis of Message Sequence Charts of
Distributed Systems Using Coloured Petri Nets, Preprint 171, Institute of Informatics
Systems, Novosibirsk, 2013 (in Russian). http://www.iis.nsk.su/files/preprints/171.pdf

[19]. Chernenok S.A., Nepomniaschy V.A. Analysis and Verification of Message Sequence
Charts of Distributed Systems with the Help of Coloured Petri Nets. Modeling and
Analysis of Information Systems, 2014. V. 21, N. 6, P. 94-106 (in Russian).

[20]. Haugen O. Comparing UML 2.0 Interactions and MSC-2000. 4th International SDL and
MSC Workshop, LNCS 3319, 2005. P. 65-79.

[21]. Abdallah R., Gotlieb A., Helouet L., Jard C. Scenario Realizability with Constraint
Optimization. FASE 2013, LNCS 7793, 2013. P. 194-209.

[22]. Tel G. Introduction to distributed algorithms. Cambridge University Press New York,
USA, 2000. 612 p.

[23]. Chernenok S. A. Examples of Analysis and Verification of Message Sequence Charts.
Appendix, 2015. (http://bitbucket.org/chernenok/msc-verification)

[24]. Stenenko A.A., Nepomniaschy V.A. Model Checking Approach to Verification of
Coloured Petri Nets, Preprint 178, Institute of Informatics Systems SB RAS,
Novosibirsk, 2015 (in Russian). http://www.iis.nsk.su/files/preprints/178.pdf

NMpumeHeHUe packpallueHHbIx ceTeun MeTpu
Aana sepudnkaumm pacnpegeneHHbIX
cucrtem, cneunduLmMpoBaHHbIX
MSC-agnarpammamu

216

Cepreit YepHenok. ITpimMeHeHne packpanieHHbIX ceteid [leTpu 1is BepuduKauum pacrpe/ieiCHHbIX CHCTEM,
cneruuupoBanasix MSC-aunarpammamu. Tpyast UCIT PAH, Tom 27, Beim. 3, 2015 1., ¢. 197-218

Cepeeii Yepnenox <chernenoksergey@gmail.com>,
Banepuii Henomuawuit <vnep@iis.nsk.su>,
Huemumym cucmem ungpopmamuru um. A.I1. Epwosa CO PAH,
630090, Poccus, e. Hoeocubupck, yn. Jlaspenmvesa, 0. 6.

AHHOTamMsA. SI3bIK JuarpaMM HociepoBarenbHocTel coobmenuit (MSC-guarpamm)
SBJIAETCS CIIEHAPHO-OPHCHTHPOBAHHBIM SI3BIKOM cHenU(UKanWii, KOTOPHIH IIHPOKO
HCTIONB3YETCST Ha JTale MPOEKTHPOBAHUS ISl OIMMCAHHUS B3aHMMOJCHCTBHS KOMIIOHEHT B
pacnpeneneHHbIX cucrteMax. OpHAKO, CYIISCTBYIOIIME METOABI M CpPEICTBAa IIPOBEPKH
KoppektHocTH MSC-muarpaMm HEZOCTaTO4YHO pas3BUTHL. K MX OCHOBHBIM HEIOCTAaTKaM
OTHOCATCS ~ HeOoypIIOW HabOp MOANEpKHMBAaeMbIX KOHCTpyKuuil ~ MSC-mmarpamm,
OTpaHMYEHUS] HA TOBEACHME 3JIEMEHTOB JHarpaMM U Ha HabOp aHATM3MPYEMBIX CBOMCTB.
JlaHHast cTaThs oOmMHUCHIBaeT MeToA TpaHcmauu MSC-amarpaMM B pacKpallleHHBIE CETH
ITerpu (CPN), koTopblii HCIONb3yeTcss s aHanu3a W Bepudukauum cBoiictB MSC-
quarpaMM. MeToJ TpaHCISIMM COCTOMT M3 TPEX OCHOBHBIX JTAaloOB: MOCTPOCHHUE
BHYTpeHHero mpencraBieHuss MSC-muarpamMmbel B BHAE rpada YacTHYHOTO IIOPSZIKA,
obpaborka y31moB rpada u mpeoOpasoBanme rpada B CPN. PesympraTomM TpaHcmsmun
SBJIETCS MepapXUiecKasl pacKpalmeHHas ceTb [lerpu B ¢opmare, COBMECTHMOM C H3BECTHOM
cuctemoii MopenupoBanusi U ananuza CPN Tools. Kpome 3meMeHTOB U3 OCHOBHOTO
cranaapra MSC paccMmaTpuBaroTCs ClleAyone KOHCTpyKuuu MSC-auarpaMm: 371€MeHTHI
a3b1ka JaHHBIX MSC (cooOrmeHus, TOKalnbHbIe JeHCTBUS U YCIOBUS C AaHHBIMHU), JIEMEHTHI
Iuarpamm B3aumozeiictBuil crangapra UML (CHHXpOHHBIE cOOOIIEHNS, KOMOMHUPOBAaHHbBIE
(parMeHTHl) U KOHCTPYKIUH KOMITO3UIMOHHBIX MSC-1uarpaMm (4acTH4HO-OTpeEeIeHHbIS
coobmenus). Ha ocHoBe 3TOro Meroma TpaHCISIIMHU peaian3oBaH TpaHcisTop u3 MSC-
muarpamMm B CPN. CpoiictBa pesynsrupytomux CPN anamusupyrorcss ¥ BepHOUIHPYIOTCS
nipu oMoty cucreMsl CPN Tools u Bepuduxaropa CPN Ha ocHoBe cuctems! SPIN. Ecim B
pe3ynbTaTe BepH(HUKALUM IPOBEPSEMOE CBOWCTBO OKa3bIBaeTCsA JIOKHBIM U HaiilleH
KOHTPIPUMEpP, TO MECTO OIIMOKM MOXXeT OBITh JIOKaJM30BaHO B ucxogHoit MSC-
crnenuduxanuu. [y 3Toro Ha OCHOBE KOHTpIpUMepa renepupyercs Tpacca B MSC 1o mecta
omnOKy, MPEeACTaBIA0NIas COO0M MOCIeI0BaTeNFHOCTh COOBITUH AUAarpaMMBbl M COCTOSIHUH
MIePEeMEHHBIX KaXKI0Tro Iponecca. [IpruMeHeHne MeToja TPaHCISIIUKM M CPEICTB aHAIM3a U
BepU(HKAINHU IPOAESMOHCTPUPOBAHO Ha MpUMepe ceTeBoro nporokona ABP (Alternating Bit
Protocol).

Keywords: specification; translation; verification; distributed systems; communication
protocols; message sequence charts; UML sequence diagrams; coloured Petri nets

DOI: 10.15514/ISPRAS-2015-27(3)-14

Jas uutupoBanusa: YepHenok Cepreil. Ilpumenenue packpamennsix cereil Ilerpu mms
BepU(HKAINU PacIIpPENEIeHHBIX CHCTEM, crienuduipoBanHeix MSC-auarpammamu. Tpyzer
UCII PAH, tom 27, Bem. 3, 2015 1., crtp. 197-218 (Ha anrimiickoM si3bike). DOI:
10.15514/ISPRAS-2015-27(3)-14.

Cnucok numepamypbl

[1]. ITU-T Recommendation Z.120 (02/2011): Message Sequence Charts (MSC), 2011.
[2]. Unified Modeling Language (UML) 2.5. Object Management Group, 2013.
(http://www.omg.org/spec/UML/2.5/Beta2/)

217

S.A. Chernenok, V.A. Nepomniaschy. The Application of Coloured Petri Nets to Verification of Distributed Systems
Specified by Message Sequence Charts. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 197-218

[3]. Genest B. Compositional Message Sequence Charts (CMSCs) Are Better to Implement
Than MSCs. TACAS 2005, LNCS 3440, 2005. P. 429-444.

[4]. Genest B., Muscholl A., Peled D. Message Sequence Charts. Lectures on Concurrency
and Petri Nets, LNCS 3098, 2003. P. 537-558.

[5]. Rajeev Alur, Holzmann G.J., Peled D. An Analyzer for Message Sequence Charts.
TACAS 96, LNCS 1055, 1996. P. 35-48.

[6]. UBET (MSC/POGA) toolset — http://cm.bell-labs.com/cm/cs/what/ubet/index.html

[7]. Cinderella MSC computer tool — http://www.cinderella.dk/msc.htm

[8]. IBM Rational Tau system — www.ibm.com/software/products/en/ratitau

[9]. Gaudin E., Brunel E. Property Verification with MSC. SDL 2013, LNCS 7916, 2013. P.
19-35.

[10]. Fernandes J.M., Tjell S., Jorgensen J.B., Ribeiro O. Designing Tool Support for
Translating Use Cases and UML 2.0 Sequence Diagrams into a Coloured Petri Net.
SCESM '07: Proc. of the Sixth International Workshop on Scenarios and State
Machines, Washington, DC, USA, 2007. P. 2.

[11]. Yang N., Yu H., Sun H., Qian Z. Modeling UML sequence diagrams using extended
Petri nets, Telecommunication Systems, Springer, 2012. V. 51, N. 2-3, P. 147-158.

[12]. Eichner C., Fleischhack H., Meyer R., Schrimpf U., Stehno S. Compositional Semantics
for UML 2.0 Sequence Diagrams Using Petri Nets. SDL-Forum 2005, LNCS 3530,
2005. P. 133-148.

[13]. Lima V., Talhi C., Mouheb D., Debbabi M., Wang L., Pourzandi M. Formal verification
and validation of UML 2.0 Sequence Diagrams using source and destination of
messages. Electron. Notes Theor. Comput. Sci., 2009. V. 254, P. 143-160.

[14]. Shen H., Robinson M., Niu J. Model Checking Combined Fragments of Sequence
Diagrams. Software and Data Technologies, Springer, 2013. V. 411, P. 96-111.

[15]. Holzmann G. The Spin model checker: primer and reference manual. Addison Wesley,
2003. 608 p.

[16]. Jensen K., Kristensen L.M. Coloured Petri Nets: Modeling and Validation of Concurrent
Systems, Springer, 2009. 384 p.

[17]. Micskei Z., Waeselynck H. The many meanings of UML 2 Sequence Diagrams: a
survey. Software and Systems Modeling, Springer, 2011. V. 10, N. 4, P. 489-514.

[18]. C.A. Yepnenok, B.A. Henomusimuii. Ananu3 MSC-auarpaMm pacipeeneHHbIX CHCTEM
c momoulplo packpamieHHbix cereil Ilerpu // Ilpempunr 171, UCU CO PAH,
Hosocubupck, 2013. http://www.iis.nsk.su/files/preprints/171.pdf

[19]. C.A. Yepnenox, B.A. Henommsmmii. Ananum3 u Bepudukamus MSC-guarpamm
pacrpesielIEHHBIX CHCTEM ¢ MOMOLIBIO pacKpaleHHbIX ceredd Iletpu / MoneaupoBaHue
¥ aHanu3 uHGopMarmoHHeIX cuctem, 2014 r., T. 21, N 6, c. 94-106.

[20]. Haugen O. Comparing UML 2.0 Interactions and MSC-2000. 4th International SDL and
MSC Workshop, LNCS 3319, 2005. P. 65-79.

[21]. Abdallah R., Gotlieb A., Helouet L., Jard C. Scenario Realizability with Constraint
Optimization. FASE 2013, LNCS 7793, 2013. P. 194-209.

[22]. Tel G. Introduction to distributed algorithms. Cambridge University Press New York,
USA, 2000. 612 p.

[23]. Chernenok S. A. Examples of Analysis and Verification of Message Sequence Charts.
Appendix, 2015. (http://bitbucket.org/chernenok/msc-verification)

[24]. A.A. Crenenxo, B.A. Henommsmuii. Bepuduxamus packpamenusix cereil Ilerpu
merozoM npoBepku mozeneit / Ipenpunr 178, UICU CO PAH, HoBocubupck, 2015.
http://www.iis.nsk.su/files/preprints/178.pdf

218

