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Abstract. Microtask crowdsourcing implies decomposing a difficult problem into smaller
pieces. For that a special human-computer platform like CrowdFlower or Amazon
Mechanical Turk is used to submit tasks for human workers motivated by -either
micropayments or altruism to solve. Examples of successful crowdsourcing applications are
food nutrition estimation, natural language processing, criminal invasion detection, and other
problems so-called “Al-hard”. However, these platforms are proprietary and requiring
additional software for maintaining the output quality. This paper presents the design,
architecture and implementation details of an open source engine for executing microtask-
based crowdsourcing annotation stages. The engine controls the entire crowdsourcing process
including such elements as task allocation, worker ranking, answer aggregation, agreement
assessment, and other means for quality control. The present version of the software is
implemented as a three-tier system, which is composed of the application level for the end-
user worker interface, the engine level for the Web service controlling the annotation process,
and the database level for the data persistence. The RESTful API is used for interacting with
the engine. The methods for controlling the annotation are implemented as processors that are
initialized using the dependency injection mechanism for achieving the loose coupling
principle. The functionality of the engine has been evaluated by both using unit tests and
replication of a semantic similarity assessment experiment.
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1. Introduction

Nowadays, crowdsourcing is a popular and a very practical approach for producing
and analyzing data, solving complex problems that can be splitted into many simple
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and verifiable tasks, etc. Amazon's MTurk', a well known online labor marketplace,
promotes crowdsourcing as the artificial artificial intelligence.

In the mechanized labor genre of crowdsourcing, a requester submits a set of tasks
that are solved by the crowd workers on the specialized platform. Usually, the
workers receive micropayments for their performance; hence, it is of high interest to
reach the happy medium between the cost and the quality. The work, as described in
this paper, presents an engine for controlling a crowdsourcing process.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 defines the problem of lacking the control software for crowdsourcing.
Section 4 presents a two-layer approach for crowdsourcing applications separating
the engine from the end-user application. Section 5 describes the implementation of
such an engine. Section 6 briefly evaluates the present system. Section 7 concludes
with final remarks and directions for the future work.

2. Related Work

There are several approaches for controlling the entire crowdsourcing process.
Whitehill et al. proposed the GLAD? model that, for the first time, connects such
variables as task difficulty, worker experience and answer reliability for image
annotation [1].

Bernstein et al. created the Soylent word processor, which automatically submits
text formatting and rewriting tasks to the crowd on MTurk [2]. The paper also
introduces the Find-Fix-Verify workflow, which had highly influenced many other
researchers in this field of study.

Demartini, Difallah & Cudré-Mauroux developed ZenCrowd, another popular
approach for controlling crowdsourcing, which was originally designed for mapping
the natural language entities to the Linked Open Data [3]. ZenCrowd is based on the
EM-algorithm and deploys the tasks to MTurk.

The idea of providing an integrated framework for a crowdsourcing process is not
novel and has been addressed by many authors both in academia and the industry,
e.g. WebAnno [4], OpenCorpora [5] and Yet Another RussNet [6].

However, the mentioned products are problem-specific and using them for
crowdsourcing different tasks may be non-trivial. Moreover, that software do often
force the only possible approach for controlling the process of crowdsourcing,
which in some cases may result in suboptimal performance.

2.1 Task Allocation

Lee, Park & Park created a dynamic programming method for task allocation among
workers showing that consideration of worker's expertise increases the output

quality [7].

! http://mturk.com/
2 http://mplab.ucsd.edu/~jake/
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Yuen, King & Leung used probabilistic matrix factorization to allocate tasks in the
similar manner that recommender systems do [8].

Karger, Oh & Shah proposed a budget-optimal task allocation algorithm inspired by
belief propagation and low-rank matrix approximation being suitable for inferring
correct answers from those submitted by the workers [9].

2.2 Worker Ranking

Welinder & Perona presented an online algorithm for estimating annotator
parameters that requires expert annotations to assess the performance of the workers
[10].

Difallah, Demartini & Cudré-Mauroux used social network profiles for determining
the worker interests and preferences in order to personalize task allocation [11].
Daltayanni, de Alfaro & Papadimitriou developed the WorkerRank algorithm for
estimating the probability of getting a job on the oDesk online labor marketplace
utilizing employer implicit judgements [12].

2.3 Answer Aggregation

The answers are often aggregated with majority voting, which is highly efficient for
small number of annotators per question [9]. Some works use a fixed number of
answers to aggregate [5].

Sheshadri & Lease released SQUARE?, a Java library containing implementations
of various consensus methods for crowdsourcing [13], i.e. such methods as
ZenCrowd [3], majority voting, etc.

Meyer et al. developed DKPro Statistics’ implementing various popular statistical
agreement, correlation and significance analysis methods that can be internally used
in answer aggregation methods [14].

2.4 Cost Optimization

Satzger et al. presented an auction-based approach for crowdsourcing allowing
workers to place bids on relevant tasks and receive payments for their completion
[15].

Gao & Parameswaran proposed algorithms to set and vary task completion rewards
over time in order to meet the budget constraints using Markov decision processes
[16].

Tran-Thanh et al. developed the Budgeteer algorithm for crowdsourcing complex
workflows under budget constraints that involves inter-dependent micro-tasks [17].

3 http://ir.ischool.utexas.edu/square/
4 https://code.google.com/p/dkpro-statistics/
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3. Related Work

Hosseini et al. defines the four pillars of crowdsourcing making it possible to
represent the crowdsourcing system C as the following quadruple [18]:

C=(W,R T, P). (1)
Here, W is the set of workers who benefit from their participation in the process C,
R is the task requester who benefits from the crowd work deliverables, T is the set of
human intelligence tasks provided by the requester R, and P is the crowdsourcing
platform that connects these elements.

Unfortunately, there is no open and customizable software for controlling C. This
problem is highly topical since using MTurk, the largest crowdsourcing platform, is
not possible outside the U.S. making it interesting to develop an independent
substitution that can be hosted.

4. Approach

The reference model of a typical mechanized labor crowdsourcing process is present
at Fig. 1 and consists of the following steps repeated until either convergence is
achieved or the requester stops the process:

a worker requests a task from the system,

the system allocates a task for that worker,

the worker submits an answer for that task,

the system receives and aggregates the answer,

the system updates the worker and task parameters.

v |

Task Answer Answer
Allocation Receiving Aggregation

Fig. 1. Reference Model

bl

4.1 Use Case Diagram

Modern recommender systems like Prediction]O’ and metric optimization tools like
MOES separate the application layer from the engine layer to simplify integration
into the existent systems. In crowdsourcing, it is possible to separate the worker

3 http://prediction.io/
¢ https://github.com/Y elp/MOE
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annotation interface (the application) and the crowdsourcing control system (the
engine) for the same reason.

The use case diagram present at Fig. 2 shows two actors—the requester and the
application—interacting with the engine. The application works with the engine
through the specialized programming interface (API) and the requester works with
the engine using the specialized graphical user interface (GUI).

Register Worker
Allocate Task

Application Submit Answer

Request Status ﬁ

Requester

m
)
Q
5
o

Fig. 2. UML Use Case Diagram

4.2 Sequence Diagram

The sequence diagram at Fig. 3 shows the interaction between those elements: a
worker uses the end-user application that is connected to the engine that actually
controls the process and provides the application with the appropriate data.
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Fig. 3. UML Sequence Diagram
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5. Implementation

The proposed system is implemented in the Java programming language as a
RESTful Web Service using such APIs as JAX-RS’ within the Dropwizard®
framework. The primary data storage is PostgreSQL®, a popular open source object-
relational database.

5.1 Class Diagram

The class diagram at Fig. 4 represents the crowdsourcing system as according to the
equation 1. The Process class defines a system C and specifies how its elements
W, T and A should be processed by the corresponding implementations of these
interfaces.

Particularly, an actual processor inherits that abstract class and implements one or
many of the following interfaces: WorkerRanker, TaskAllocator,
AnswerAggregator. The reason for that is the dependency uncertainty of each
particular processor implementation that has been approached by the dependency
injection mechanism'’.

«interface»

WorkerRanker
rank(w: Worker): WorkerRanking Process
rank(w: Worker, t: Task): WorkerRanking «@ Named» {value=id}
-id: String
«interface» «@ Named» {value=options}
TaskAllocator -options: Map<String, Object>
-workerRanker: WorkerRanker
allocate(w: Worker): TaskAllocation -taskAllocator: TaskAllocator
-answerAggregator: AnswerAggregator
«@ Inject»
«interface» +Process()
AnswerAggregator

aggregate(t: Task): AnswerAggregation

Fig. 4. UML Class Diagram

For example, an implementation of the majority voting technique, which is a
popular approach for answer aggregation, should inherit the AnswerAggregator
interface and provide the implementation of the aggregate method that returns
an AnswerAggregation instance representing the aggregated answer for the
given Task instance. In order to access the answers stored in the database, the
corresponding data access object—Answer DAO—should be injected. Since that the
answers cannot be fetched without the correct process identifier, the corresponding

7 https://jcp.org/en/jsr/detail?2id=339
8 http://dropwizard.io/

° http://www.postgresql.org/

10 https://jcp.org/en/jsr/detail?id=330
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Process instance should be injected, too. Direct injection of Process to
AnswerAggregator and vice versa causes a circular dependency. The cycle has
been successfully broken by injecting a lazily initialized Process provider instead of
its actual instance.

On startup, the application configures itself with the provided configuration files,
setting up the top-level Guice!' dependency injector. After establishing a database
connection, a database-aware child injector has been created, because it is not
possible to achieve during the framework bootstrapping stage. Then, for each
defined process, the application initializes a child injector containing process-
specific bindings, and that injector is inherited from the database-aware one.
Finally, the application exposes these processes by the RESTful API.

5.2 Package Diagram

The system is composed of several packages responsible for its functionality. Since
that the Dropwizard framework is used, the most of boilerplate code is already
included in the framework. However, such a sophisticated initialization requires
additional middleware resulting in the package hierarchy represented at Fig. 5
detailed in Table 1.

E;lmtsar
api
—hcli

dropwizard
guice

processors
worker
task

answer

—D resources

views

Fig. 5. UML Package Diagram

' https://github.com/google/guice
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Table 1. Packages

Package Description

mtsar Utility classes useful to avoid the code repetition.

mtsar.api Entity representations.

mtsar.api.sql Data access objects and object mappers.

mtsar.cli Command-line tools for maintenance and evaluation
tasks.

mtsar.dropwizard Middleware for Dropwizard.

mtsar.processors Actual implementations of the methods for controlling
workers, tasks, answers.
mtsar.resources Resources exposed by the RESTful API.

mtsar.views View models used by the GUI.

6. Evaluation

The system functionality is tested using JUnit'2. At the present moment, only classes
contained in the mtsar.processors and mtsar.resources packages are
provided with the appropriate unit tests. The continuous integration practice is
followed by triggering a build on Travis CI'3 for each change to ensure that all the
unit tests have been successfully passed.

In order to make sure the system works, the RUSSE'* crowdsourced dataset has
been used (see [19] for details). The russe process has been configured to use the
zero worker ranker that simply ranks any worker with zero rank, inverse count task
allocator that allocates the task with the lowest number of available answers, and the
majority voting answer aggregator (Fig. 6). Then, the workers, tasks and answers
stored in this dataset have been submitted into the system via the RESTful API and
the conducted experiment showed that no data have been lost during this activity
and the engine does allocate tasks and aggregate answers correctly w.r.t. the chosen
processors.

12 http://junit.org/

13 https://travis-ci.org/
1 http://russe.nlpub.ru/
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Process "russe"

Key Value Action
workerCount 280 Detalls
workerRanker mtsar.processors.worker.ZeroRanker

taskCount 398 Detalls
taskAllocator mtsar.processors.task.InverseCountAllocator

answerCount 4200 Details
answerAggregator mtsar.processors.answer.MajorityVoting

Additional Options

Key Value

i No additional options found.

@& Dashboard # Processes © GitHub

sechanical Tsar

Mec .
Fig. 6. Graphical User Interface

7. Conclusion

In this study, a crowdsourcing engine for mechanized labor has been presented and
described among the used approach and its implementation. Despite the conducted
experiment showing promising preliminary results, there are the following reasons
for the further work.

Firstly, it is necessary to conduct a field study, which was not possible due to the
lack of time. Secondly, it is necessary to integrate state of the art methods for
worker ranking, task allocation and answer aggregation into the engine to provide a
requester with the best annotation quality at the lowest cost. Finally, it may be
useful to extend the engine API and GUI in order to make it more convenient and
user-friendly.

The source code of the system is released on GitHub'® under the Apache License.
The documentation is available on GitHub!® in English and on NLPub!” in Russian.
Acknowledgements. This work is supported by the Russian Foundation for the
Humanities, project Ne 13-04-12020 “New Open Electronic Thesaurus for Russian”.
The author is grateful to the anonymous referees who offered useful comments on
the present paper.

15 https://github.com/dustalov/mtsar
16 https://github.com/dustalov/mtsar/wiki
17 https://nlpub.ru/MTsar
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MHCcTpyMeHTapui KpayacopcuHra ans
MeXaHM3MPOBaAHHOIO TpyAa

IA. Yemanos <dau@imm.uran.ru>,
Hncmumym mamemamuxu u mexanuxu um. H.H.Kpacoeckozo
Ypanvckozo omoenenusi Poccutickoii akademuu HayK,
620990, 2. Examepunbype, yn. Cogpou Kosanescxot, 0. 16

AHHoTauus. KpayncopcuHr Ha OCHOBE BBINOJIHEHUSI MUKPO3a/1ay MPEIIoIaracT paseieHue
HCXOIHOW 3aJayd Ha MHOXKECTBO MEHEE KpPYMHbBIX. MUKpO3aaayd BBINOJHSAOTCS Ha
CIICLMAIM3UPOBAaHHBIX YENOBEKO-MAIIMHHBIX IaTgopmax, Takux kak CrowdFlower u
Amazon Mechanical Turk, 3a YTO y4YacTHHKH IIpoliecca KpayACOPCHHIa IOJIy4aroT
HEKOTOpoe Bo3HarpaxaeHue. Cpemu YCIEIIHBIX HPHMEPOB INPHUMEHEHUS KpayACOPCHHTA
cleyeT OTMETHUTh pelIeHne 3ajad 10 OLEHKE KAJIOPUMHOCTH NHMIM, o00paboTke
€CTECTBCHHOIO $3bIKa, OOHAPYKEHHIO HE3aKOHHOI'O IPOHUKHOBEHHS HA TEPPUTOPHIO, W
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npyrux «MU-tpymabx» 3amad. CymiecTByronye miaTopMbl IS BEIIOIHEHUS] MHKPO3aaad
SBJIAIOTCS 3aKPBITHIMHU; U OOECIeYeHWs KadecTBa pe3yibTaTa pPa3METKH HEeoOXOIHMO
MIPeANPUHAMATE JONOJIHUTENbHBIE YCHINMS 10 00padoTKe NaHHBIX. B nmaHHON cTaThbe
NPEJCTaBICH HHCTPYMEHTApUi [UIA BBINOIHEHHUS MHKPO3aJad C OTKPBITBIM HCXOJHBIM
KOZIOM, IIPOBEJNEHO ONMCAHUE apXUTEKTYpbl M Jeranel peanuszauuu. WHCTpymeHTapuit
yIOpaBisieT BCEMH AaCHEKTaMH TIPOIecca BBIIONHEHHS MHKpO3aJad: OCYIIECTBIISET
Ha3HaueHUE 3aJaHUM, OI[EHKY KBaIU(UKALUN YUaCTHUKOB, arperaluio OTBETOB U OIEHKY UX
COTJIaCOBAaHHOCTH, A TAKXKE BKIIIOYAET MHbIE MOJXOABI K 00ECIIEUEeHHIO KauecTBa pe3ybTaTa.
Texymas Bepcus MHCTPYMEHTapHUsl peasli30BaHa B BHAE TPEX3BEHHOW HH(OPMAIMOHHON
CHCTEMBI, COCTOSIIEH N3 YPOBHS MPUIIOXKEHHS ¢ HHTepdeiicoM Ul y9aCTHUKOB, YpoBHs Beb-
CepBHCa JUIS YIpaBJIeHUs MIPOLIECCOM, H YPOBHS XpaHEHUs JaHHBIX. Baaummopeiicteue ¢ Beo-
CEPBHCOM OCYIIECTBISICTCSl NPU ITOMOIIM INIPOrpaMMHOT0 HHTepdeiica, MOCTpOeHHOTo Ha
OCHOBE apXUTEKTYPHOI'O CTWJS NEpefadd COCTOSHMS IpeAcTaBieHHus. MeToasl yIpaBieHUs
pa3sMeTKOl peanu3yloTcs B BHAE MPOIECCOPOB, WHUIMAIH3HPYEMBIX TPH IOMOLIH
MEXaHH3Ma BHEIPEHUs 3aBHCHUMOCTEH IUIsl JOCTIDKEHHsS IPUHIMNA cIaboil CBA3HOCTH
cucTeMbl. PaboTOCOCOOHOCT MHCTPYMEHTAapHs MOATBEP)KAACTCS HAIMYHEM MOIYNIbHBIX
TECTOB M YCNENIHBIM BOCIPOM3BEIEHUEM JSKCIEPUMEHTa IO OLEHKE CEeMaHTHYECKOH
0IIM30CTH CIIOB.

KnwueBbie cjioBa: KpayJACOPCHHTI; MeXaHI/I?»I/IpOBaHHI)IIjI TpyA; HYCJIOBCKO-MalllMHHBIC
BBIYMCJICHUA, HA3HAYCHUEC 3aﬂaHI/II\/'I; OL€HKa TpyAa Y4aCTHUKOB; arperanus OTBETOB
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