
Дарья Егорова, Виктор Жидченко. Облачный PaaS-сервис визуального параллельного программирования в

технологии графо-символического программирования. Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 47-56

47

Visual Parallel Programming as PaaS Cloud
Service with Graph-Symbolic Programming

Technology

Darya Egorova <dasharapova@mail.ru>,

Victor Zhidchenko <vzhidchenko@yandex.ru>

Software Systems Department, Information Science Faculty

Samara State Aerospace University (SSAU)

Samara, Russia

Abstract. Most computer programs are created in textual form. From high-level

programming languages to CPU instructions both programmer and computer work with

sequences of characters and words. Textual representation of the program combines

centuries-old tradition of writing as the universal form of fixing human thoughts with ease of

interpretation and analysis of text by computer. The sequential nature of text makes it suitable

for description of instruction sequences and sequential algorithms. At the same time the text

is inconvenient for clear representation of parallel programs. In such programs it is important

to depict instructions that can be executed concurrently. In this case the graphical (visual)

representation is more suitable.

In this paper we present the visual approach to parallel programming provided by Graph-

Symbolic Programming Technology. This technology uses text to represent small sequential

subprograms (mathematical expressions or small methods). Visual representation in graph

form is used to depict program logic and concurrency. The basics of this technology are

considered as well as advantages and disadvantages of visual parallel programming.

Synchronization primitives used in Graph-Symbolic Programming Technology and their

visual form are described. The method is proposed for compact and clear representation of

multiple similar parallel processes.

The technology is being implemented as a PaaS cloud service that provides the tools for

creation, validation and execution of parallel programs on cluster systems. The current state

of this work is also presented. We argue that visual programming and cloud technologies

provide the capability of shared development of programs and algorithms that text

programming lacks. The visual programming in such implementation gains the features of the

visual modeling.

Keywords: parallel; programming; visual; graph; tool; cluster; cloud

DOI: 10.15514/ISPRAS-2015-27(3)-3

For citation: Egorova Darya, Zhidchenko Victor. Visual Parallel Programming as PaaS

Cloud Service with Graph-Symbolic Programming Technology. Trudy ISP RAN/Proc. ISP
RAS, vol. 27, issue 3, 2015, pp. 47-56. DOI: 10.15514/ISPRAS-2015-27(3)-3.

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic

Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

48

1. Introduction

Text is traditionally used for describing computer programs. While programs are

sequential, it is convenient to express them as text, because the nature of text is

sequential. A sequence of letters comprises a word. A sequence of words comprises

a sentence. A sequence of sentences forms a text. An order of letters in a word, an

order of words in a sentence and an order of sentences in a text are very important.

Changing any of them can substantially change the text, especially when this text

describes some computer program.

On the other hand, when a program is parallel, its text representation becomes

inconvenient. In parallel program you want to see which parts of a program can run

concurrently and sequential text form can not show it. You have to imagine

interdependencies between different program parts and guess possible combinations

of their concurrent execution. When the program is large you have to scroll it up

and down to see the parts which actually can run concurrently.

This is where a graphical representation can help. A graphical or visual form is

usually bidirectional, so you can easily distinguish sequential and parallel parts of a

program. Another important factor is that visual representation is more suitable for

human comprehension then a text. When you want to explain something you often

get a piece of paper and begin to draw a scheme. The drawing is usually more

explanative than a text, it is more compact and is easier to remember.

There is also a substantial disadvantage in using graphics for parallel programs

representation. A parallel program often consists of hundreds or thousands of

threads or processes and the actual number of them is may be unknown prior to

program’s execution. Moreover, the number of threads can vary during execution.

When you write such a program in the text, it can be very compact. The clarity still

suffers but due to the compactness it is quite easy to imagine the threads structure.

Trying to depict such program graphically leads to more complex representation of

it. As you can not display thousands of threads on one picture, you have to replace

them with some abstract graphics structure. The clarity suffers as well as in the case

of the text. So instead of the intuitively clear picture you get some abstraction which

is less compact than text and whose usability depends on the chosen abstract form.

There are many ways the visual means are used in programming. Most of them are

auxiliary to the "traditional" text programming as they help to perform some

particular tasks like building class diagrams, dependency graphs or trace logs.

Natural visual programming is provided by visual programming languages. Most of

them represent a program as a graph which consists of nodes connected to each

other by some links (directed or undirected). Depending on the meaning of nodes

and links there are many different approaches to represent a program which can be

split into several sets:

• UML diagrams [1]

• Domain-specific Visual Languages

• Petri Nets

Дарья Егорова, Виктор Жидченко. Облачный PaaS-сервис визуального параллельного программирования в

технологии графо-символического программирования. Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 47-56

49

• Finite-state and Automata-based Programming [2]

• Data Flow Diagrams

• Control Flow Diagrams

In this paper we describe the present results of the work carried out during several

years in Samara State Aerospace University (SSAU) in developing methods and

tools for visual parallel programming. We use as a basis the visual programming

technology for sequential programming, which is called Graph-Symbolic

Programming Technology (GSP-technology) also developed in SSAU [3]. We have

extended this technology to describe parallel programs and have evolved it through

several desktop versions to development environment working with computing

cluster. Today we are working on migrating this technology to the cloud and

making PaaS service for visual parallel programming. The results of our work have

been used as methods and tools of parallel programming in the education process in

SSAU and in research activity in the area of numerical analysis.

2. The Basics of Graph-Symbolic Programming Technology

GSP-technology represents the program as a graph. The nodes of this graph are little

programs (modules), which perform simple operations on variables of project

domain. The set of variables form a data dictionary.

The nodes are connected with links. The links show the flow of control between the

nodes. Every link is provided with the predicate – a logic condition, which permits

or denies the flow of control by this link. This condition is a logical function,

defined on variables from the data dictionary.

There are situations, when several links going from one node have a true predicate.

To resolve this issue, each link has a priority. The link with the highest priority

defines the flow of control.

A graph may contain another graph as a node – so, the program is a graph hierarchy.

Fig. 1 shows an example graph that solves quadratic equations.

The benefits of GSP are:

• Clear and compact representation of the control flow in a program.

• Elimination of many programming errors as graphic representation is very

simple for a human and helps to see many logic errors and inconsistencies.

• Simplicity of the program modification.

• Automatic data flow between the nodes. A programmer is protected from

making an error on this stage.

• The program structure is stored into a database. It helps to perform many

automatic tasks, such as graph structure verification, measuring of graph

complexity, automatic control of graph hierarchy consistency, automatic

testing and convenient debugging of programs, automatic creating of

program documentation.

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic

Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

50

Fig. 1. Graph of a program for solving quadratic equations

Being sequential by default, the GSP-technology was further developed for creating

parallel programs. GSP graphic representation of programs helps to solve main

parallel programming problems:

• Program's visualization.

• Complexity of the interprocess synchronization.

Many tasks have explicit parallelism. The trivial example is determination of real

roots of a quadratic equation. GSP graphic representation is very suitable for such

tasks. You can simply draw two (or several) parallel branches instead of thinking

how to put in order different tasks and how to represent them in a convenient

manner.

The graphic language of GSP-technology is expanded with two types of links:

• The parallel link (a link that shows the beginning of a parallel branch) is

labeled with the circle in the beginning.

• The terminating link (a link which determines the end of a parallel branch)

is labeled with inclined segment.

The program is divided into several processes, which can be performed in parallel.

Each process is represented as a separate branch - a set of nodes interconnected with

ordinary links and executed sequentially. The number of branches is unlimited. It is

forbidden to connect two nodes from different branches.

All branches operate on the same set of data defined in data dictionary. Sometimes,

for the purposes of performance optimization and convenience, it is necessary to

define local copies of the same data for each parallel branch. It is accomplished by

setting the flag "local" for the corresponding variable in data dictionary. The

variables with "local" flag set are created in each process separately during

execution.

Дарья Егорова, Виктор Жидченко. Облачный PaaS-сервис визуального параллельного программирования в

технологии графо-символического программирования. Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 47-56

51

Synchronization is accomplished with a semaphore technique. A special

“synchronization graph” is constructed together with the main program graph. The

nodes remain unchanged while the links represent nodes interdependences. A link,

drawn from Node1 to Node2, means, that Node2’s execution depends on Node1’s

state. Transmitting of Nodes’ state is made by means of messages.

Lc = [Ck
i0,j0, Ck

i1,j1, … Ck
im,jr] is a Message list, where Ck

i,j is a message with the
number k, sent to Nodei from Nodej.

If Lc contains Ci,j, then Nodei informs Nodej about the finish of its execution.

Every node checks messages addressed to it, before execution. A special semaphore

predicate is evaluated on these messages. In accordance with the previous example:

Rj = f(Ck
i0,j, Ck

i1,j, …, Ck
im,j) is a semaphore predicate of Nodej. Rj is a logical

function. If Rj = TRUE, then Nodej starts execution, in other case it waits for the
truth of Rj.

If all data in a program are independent and there is no need to synchronize parallel

branches, the synchronization graph becomes unnecessary and is not built. When it

is necessary to synchronize some parts of parallel branches, the user draws

synchronization links between the corresponding nodes depicting the sources and

targets of synchronization messages. The rest of synchronization graph is implicit

and is built automatically.

The process of parallel program development in GSP-technology includes the

following steps:

• Data dictionary setup – determining types and variables, needed to solve a

problem.

• Modules generation. Modules are written in one of the programming

languages (C++ is now supported). They are executed sequentially.

• Drawing the program graph.

• Predicates generation. Predicates are written as boolean functions in the

same programming language as modules.

• Drawing the synchronization graph if necessary.

• Semaphore predicates generation for the nodes being synchronized.

• Program compiling and building an executable file.

Fig. 2 shows an example of the graph of the parallel program.

The programming environment of GSP-technology comprises the visual editor for

drawing of graphs and defining data and modules, the graph compiler for generating

C-source files from graphs and the C-compiler for generating of executable file.

Execution environment of GSP-technology uses Message Passing Interface (MPI)

for parallel programs execution. Programs generated with GSP-technology can

work on clusters and other systems with MPI support.

Each parallel branch is presented with dedicated MPI process.

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic

Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

52

Fig. 2. Graph of a parralel program for global optimizaion

To emulate shared memory model in MPI environment, a special memory manager

is developed. It allocates memory for data dictionary, initializes program’s

variables, transmits data to and from the processes and frees unused memory.

Memory manager is executed in dedicated MPI process. It is a program that

receives data requests from different processes and reads/writes data to or from the

memory. Memory manager eliminates memory conflicts between processes.

The parallel program can contain many processes. When there are hundreds or

thousands of processes it is inconvenient or just impossible to draw such number of

parallel branches on the graph. For such cases GSP-technology uses a special kind

of graph nodes called "multitop".

Multitop is represented as one node on the graph and has three parameters

associated with it: the module or graph being executed with many processes, the

number of parallel processes (branches) represented by the multitop, and the name

of the variable which holds the sequence number of each process generated by the

multitop. The variable is used within the multitop’s module or graph to define its

actual function in the same manner as the process rank is used in MPI.

Fig. 3 shows an example of the graph which uses multitops to describe the program

similar to that on the Fig. 2 running on 500 processes.

Дарья Егорова, Виктор Жидченко. Облачный PaaS-сервис визуального параллельного программирования в

технологии графо-символического программирования. Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 47-56

53

Fig. 3. Graph of a parralel program for global optimizaion with multitops

Large number of processes in parallel program is usually used to perform some

similar tasks on different independent data without synchronization between the

processes. Representation of such tasks as a multitop seems to be a tradeoff

between the clarity and the compactness.

3. Present state and future development

For a long time the graph editor in GSP-technology was a desktop application. It

comprised graph compiler as a component and was dependent on external C-

compiler and database management system (DBMS). This had led to the difficulties

in deployment of the system. To install the system in some new location (for

example in laboratory classes) one should install the graph editor, then install and

properly configure an external C-compiler and DBMS. Using a cluster as a target

system for the programs built in GSP-technology requested the direct access to the

cluster through the SSH protocol.

To make the use of the GSP-technology easier the web-version of the graph editor

was developed. The web-server and DBMS were installed together on the same host

and provided remote access to the editor. The editor worked with the database

locally and had an SSH connection to the cluster. The main disadvantage of such a

system is that the web-interface applies some restrictions to the editor making it less

convenient for the users than a desktop application.

Cloud computing has made it possible to combine the rich interface capabilities of

desktop graph editor with the centralized management of the hole system for many

users. We are working on the development of the Platform as a Service (PaaS)

system which will provide visual parallel programming with GSP-technology. PaaS

system comprises one virtual machine which hosts the web-server and database and

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic

Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

54

has an SSH connection to the cluster. Many virtual machines can also be run in the

same cloud environment each hosting the desktop version of the graph editor. As

the database is the same for the web-based and desktop graph editors, it is possible

to work on the same project for the team of developers using both versions of

editors concurrently.

Some additions have been made to the desktop version of the system. The

registration and subsequent authorization of the users running the desktop version

was added. During the logon process the user can see the status of other users

(online/offline or working with the same project as the current user). All changes

made by the user during the session are logged to the database. It is necessary for

producing the snapshots - the states of the project development process when some

valuable results are achieved, for example, for saving the intermediate working

versions of the algorithm which is under development. Another goal of user activity

logging is to track the changes made by different users and by the same user in

different versions of the system. With logging it is much easier to remember what

exactly you have changed while working with the project from the other place (for

example, from home) or to understand (and also to explain) the changes made to the

graphic model of the program by some other person.

Visual programming can benefit from cloud computing as it provides the capability

of shared development that text programming lacks. With text programming the

basic tool of team software development is version control system. The concurrent

editing of the same file with source code is practically useless. The basic approach

is the division of project to smaller tasks, assigning them to different developers and

combining results with version control system. With visual programming tool

running in the cloud it becomes possible to work on the same graph concurrently.

Such shared work is meaningful and can be convenient due to the compactness of

visual representation. Editing the same graph concurrently you can easier develop

the proper solution of a problem or find the error in a program faster. The visual

editing process is similar to the process of discussing something, while graphically

illustrating the main ideas being discussed. The visual programming in such

implementation gains the features of the visual modeling.

The main issues to resolve in PaaS visual programming service being developed are

the following: concurrent work of several users with one project, versioning,

compiling and running parallel programs from the desktop virtual machines on the

cluster, optimization of the communication between the system and the cluster.

There are also many tasks in the development of the GSP-technology: dynamic

processes creation in MPI programs generated by GSP-technology, direct local data

exchange between the parallel branches, creation of graph compilers for other

parallel programming technologies like OpenMP and CUDA, making interfaces

with other programming languages, technologies and libraries in order to leverage

code reuse.

Дарья Егорова, Виктор Жидченко. Облачный PaaS-сервис визуального параллельного программирования в

технологии графо-символического программирования. Труды ИСП РАН, том 27, вып. 3, 2015 г., с. 47-56

55

References

[1]. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with

UML," Addison Wesley Object Technology Series, Reading MA, 2000.

[2]. N.I. Polikarpova, A.A. Shalyto "Automata-based programming," SPb.: Piter, 2009

[Поликарпова Н.И., Шалыто А.А. Автоматное программирование. СПб:Питер,

2008. – 167 с.]

[3]. A.N. Kovartsev, V.V. Zhidchenko, D.A. Popova-Kovartseva, P.V. Abolmasov "The

basics of graph-symbolic programming technology," Proceedings of the Open semantic

technologies for intelligent systems (OSTIS-2013) III international conference, pp. 195-

204, 2013 [Коварцев, А.Н. "Принципы построения технологии

графосимволического программирования" / А.Н. Коварцев, В.В. Жидченко, Д.А.

Попова-Коварцева, П.В. Аболмасов // Труды II Международной научно-

технической конференции «Открытые семантические технологии проектирования

интеллектуальных систем». -2013. - C. 195-204.]

Облачный PaaS-сервис визуального
параллельного программирования в
технологии графо-символического

программирования

Дарья Егорова <dasharapova@mail.ru>,

Виктор Жидченко <vzhidchenko@yandex.ru>

Самарский государственный аэрокосмический универсистет (СГАУ),

443086, Россия, г. Самара, Московское шоссе, 34

Аннотация. Большинство программ создается в текстовом виде. От языков

высокого уровня для машинных инструкций программист и компьютер имеют

дело с последовательностями символов и слов. Текстовая форма

представления программы сочетает в себе многовековые традиции

письменности как универсального способа фиксации человеческих мыслей с

удобством интерпретации и автоматического анализа текста вычислительным

устройством. Последовательная природа текста делает естественным его

применение для описания последовательностей инструкций и

последовательных алгоритмов. С другой стороны, она препятствует

наглядному описанию параллельных программ, когда важно показать не

последовательные, а одновременно исполняющиеся инструкции. Для этих

целей более удобны графические (визуальные) средства.

В работе представлен визуальный подход к параллельному

программированию, реализованный в технологии графо-символического

программирования. Технология использует текст для описания небольших

последовательных фрагментов программы (математических выражений и

Darya Egorova, Victor Zhidchenko. Visual Parallel Programming as PaaS Cloud Service with Graph-Symbolic

Programming Technology. Trudy ISP RAN /Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 47-56

56

простых подпрограмм). Для наглядного изображения логики программы и для

описания параллелизма применяется визуальное представление в виде графа.

В статье рассмотрены основы технологии графо-символического

программирования, а также преимущества и недостатки визуального

параллельного программирования. Приведено описание механизмов

синхронизации, используемых в рассматриваемой технологии, а также

визуального представления этих механизмов. Предложен способ наглядного

изображения большого количества однотипных процессов параллельной

программы.

Описано текущее состояние работ по реализации технологии графо-

символического программирования в виде облачного PaaS-сервиса,

предоставляющего средства для создания, анализа и выполнения

параллельных программ для кластерных систем. Показано, что облачные

технологии в сочетании с визуальным программированием делают

возможным принципиально новый подход к коллективной разработке не

только программ, но и алгоритмов, недоступный в традиционном текстовом

программировании. Визуальное программирование при этом приобретает

свойства визуального моделирования.

Keywords: parallel, programming, visual, graph, tool, cluster, cloud

DOI: 10.15514/ISPRAS-2015-27(3)-3

Для цитирования: Егорова Дарья, Жидченко Виктор. Облачный PaaS-сервис

визуального параллельного программирования в технологии графо-символического

программирования. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 47-56 (на английском
языке). DOI: 10.15514/ISPRAS-2015-27(3)-3.

Список литературы

[1]. H. Gomaa, "Designing Concurrent, Distributed, and Real-Time Applications with

UML," Addison Wesley Object Technology Series, Reading MA, 2000.

[2]. N.I. Polikarpova, A.A. Shalyto "Automata-based programming," SPb.: Piter, 2009

[Поликарпова Н. И., Шалыто А. А. Автоматное программирование. СПб:Питер,

2008. – 167 с.]

[3]. Коварцев, А.Н. "Принципы построения технологии графосимволического

программирования" / А.Н. Коварцев, В.В. Жидченко, Д.А. Попова-Коварцева, П.В.

Аболмасов // Труды II Международной научно-технической конференции

«Открытые семантические технологии проектирования интеллектуальных

систем». -2013. - C. 195-204.

