
Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

87

Procedures Classification for Optimizing
Strategy Assignment

O.A. Chetverina <chetverina_o@mcst.ru >,

 ZAO MCST, Leninskii prospect, 51, Moscow, 119991, Russian Federation

Abstract. Optimizing compilers make significant contribution to the performance of modern

computer systems. Among them VLIW architecture processors are the most compiler-

dependent, since their performance is ensured by effective compile time scheduling of

multiple commands in a single clock. This leads to an eventual complication of VLIW

compilers. Taking as an example optimizing compiler developed for the Elbrus family

processors, it runs consequently over 300 stages of code optimization in basic mode. Such an

amount of stages is needed to obtain decent performance, but it also makes compilation quite

time consuming. It turns out that the main reason for compilation time increase when using

high level compilation is applying some aggressive unreversable code transformations, which

eventually leads to code size increase that is also unwanted. In addition, there remains the

problem of using a number of optimizations that are useful for rare contexts. To reach the

objectives, namely increasing performance, decreasing compilation time and code size, it is

reasonable to choose an appropriate strategy on an early compilation stage according to some

procedure specific characteristics. This paper discusses the procedures classification
problems for this task and suggests several possible solutions.

Keywords: optimizing compiler; optimizing phases sequence; performance tuning; reducing
compilation time; procedures classification.

DOI: 10.15514/ISPRAS-2015-27(3)-6

For citation: O.A. Chetverina. Procedures Classification for Optimizing Strategy

Assignment. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 3, 2015, pp. 87-100. DOI:

10.15514/ISPRAS-2015-27(3)-6.

1. Introduction

To obtain decent performance modern optimizing compilers apply a huge sequence

of code transformations. Usually compilers use a fixed optimization sequence for all

procedures according to optimization level (-O0, -O1, -O2, -O3) and each

optimization stage tries to improve performance of available code segments using

statistically proven heuristics which leads to suboptimal results in most cases [1, 2].

In order to achieve the best possible performance for a given program it is important

to find the most suitable optimization sequence for each procedure. This could be

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

88

done with iterative approaches, which compile procedures in a given program using

different optimization sequences with either executing the resulting code [3,4] or

estimating the execution time [5] and choosing the best one. Although both

techniques achieve good performance results on a number of tasks, their weak spots

is a need of a large compilation time which is not always acceptable and a necessity

to execute tasks on appropriate input data so that the training runs would match the

further execution in terms of branch probabilities and code coverage. The

importance and difficulty of constructing a good training input data can be

demonstrated with profiling data that was collected using train execution of the

spec2000 benchmark [6] using Elbrus compiler. It was found out for this benchmark

that applying a low-optimizing sequence to the procedures with zero train profile

data leads to a 6% performance degradation of CFP tasks of spec2000 on average.

The biggest decelerations occurred on 179.art (-18%) and on 301.apsi (-47%),

where the reason for 301.apsi degradation is that one of its main procedures never

executes during train run. As for huge applications it is often too difficult to

generate good train data, which will cover all important parts of code, moreover, for

some types of code like libraries or operational system it is nearly impossible. Also

it should be mentioned that in most cases high compilation time corresponds with

the resulting code size growth, this happens because most time-consuming phases

including hyper-blocks construction, scheduling and loop software pipelining are

located in the end of optimization line and the time they work corresponds with the

size of the intermediate code that was made as result of different aggressive loop

and acyclic transformations such as splitting, peeling, tail duplication etc.

Earlier researches in the field of iterative compilers [7,8] offer techniques that allow

to construct a set of optimization sequences that cover the given procedures space

rather well. In those works to minimize the needed execution time authors choose a

possibly small set of options or sequences that show performance increase on most

tests. To reach good performance results with affordable compilation time and

resulting size of code and avoid the need of training executions it is reasonable to

try to choose a compilation sequence from such a set on an early compilation stage

using some characteristics of the procedure. The main goal of this research is to

explore and construct the possible methods of procedures classification that would

allow to perform this objective.

First of all it would be shown that to make a good selection of optimization

sequences for a set of procedures using characteristics a compilation quality

functional is needed (section 2). It would also be explained how to construct a

functional to take several factors into consideration, like execution time,

compilation time, resulting code size and other possible limits. Then the task of

predicting good sequences selection for a given number of procedures would be

formulated in terms of minimizing constructed quality functional (section 3). After a

list of main existing methods of classification and clusterizations would be

described and given a possible one that allows to solve the task. In section 4 some

experimental results would be provided.

Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

89

2. Compilation quality functional

To make a statistical solution of procedures types selection a large training set is

needed. For this purpose all procedures of spec2000 benchmark with a full input

data were used. The reason for this pack choice is that it is well balanced in terms of

different types of tasks and is used as a performance benchmark for most high-

performance computers. The steps for solution is to choose the best sequences

assignment for the training set using full statistic on compilation, execution or other

important characteristics and then to make an attempt to predict it using only

procedures information available on early compilation stage.

Any type of classification and clusterization methods perform allocation of areas in

parameters space, which are then respectively called classes or clusters and could be

used to make some assignment of type, in our case an assignment of optimization

sequence. Using an example from table 1 it could be easily seen that a need to

construct a quality functional comes up even when the only goal of classification is

to minimize execution time.

Table 1. Example of sequence choice

 Sequence 1 time Sequence 2 time Best sequence

 Procedure 1 100 50 2

 Procedure 2 95 100 1

 Procedure 3 100 105 1

 Sum time 295 255 2

Suppose there are 3 procedures that hit the same area in parameters space, in the

shown example the best sequence choice for 2 out of 3 procedures would lead to

decrease of performance both in sum and on average. It could be assumed that

procedures with different optimal sequences should be in different areas but actually

this assumption is wrong because even the same procedure with different input data

could lead to different best choices results. This means that there is a need to

construct a numerical evaluation method that would qualify the sequences

assignments on the whole set of procedures. The most common technique to

formalize the understanding of the best choice is to construct a functional, which

reaches minimum at decision point. In this case the domain for such functional is an

assignment space for procedures:

� = {��, … ��} – all procedures in a set

 = {��, … ��} – the list of optimization sequences,

(�(��), … �(��))→ � – a functional defined on the space
�, where �: � →

To minimize the execution time the following functionals could be chosen:

���(�� , �(��)) - execution time of procedure �� when compiled using �(��)

sequence, then

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

90

��(��), … �(��)� = ∑ ���(�� , �(��)) � (1)

��(��), … �(��)� = ∏ ���(�� , �(��))� (2)

A functional that considers not only the execution time, but also compilation time

could be constructed:

����(�� , �(��)) - compilation time of procedure �� when compiled using �(��)

sequence

��(��), … �(��)� = (∑ ���(�� , �(��))�)�(∑ ����(�� , �(��))�) (3)

This functional describes the acceptable ratio of performance loss and compilation

gain, larger values of “r” mean higher importance of performance over compilation.

Though even with infinite value of r compilation could be reduced in case if 2

sequences produce the same code in terms of execution time. Other important

limitation as code size could be introduced into quality functional similarly.

3. Functional minimizing classification

Suppose a quality functional was already chosen, then classification task could be

formulated in the following terms:

� = {��, … ��} – all procedures in a set

 = {��, … ��} – the list of optimization sequences,

�– the space of procedures characteristics

 ℎ: � → � – assignment of characteristic vector for procedures

(�(��), … �(��))→ � is defined on the space
�, where �: � →

Then the classification is an allocation of areas S in the space H with a sequence

vector in L that produces a constant assignment for each area S, that is:

∀# �� ℎ$�(#)� = ��%&'

The goal is to make a classification (with some minimal number of training

elements in the area = q), that minimizes the given functional:

��(��), … �(��)� → �(% (4)

To substantiate the statistical approach it is reasonable to require for each procedure

�� having a locality) in characteristic space containing at least * points for which

Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

91

�(�) = + �(��), � ∈)
-�./�', � ∉) (5)

��(��), … �(��)� ≤
(-�./2�', … -�./2�')

3.1 Procedures characteristics

As was mentioned earlier the major use of such early compilation stage sequence

prediction is expected on codes that for some cases are not suitable for training

execution. So the goal is to choose a number of characteristics that work well

enough to predict a good optimization sequence and do not depend on precise

profile information. To choose the best set different characteristics were considered

and using correlation matrix the most valuable were picked and normalized. The

best characteristics that were found to predict the optimal compilation sequence

with no train profiling information are:

• number of operations in the procedure;

• average node size, which in some sense stand for the branch frequency;

• number of call operations;

• maximum loop level in a procedure;

• average operation counter, which could also be considered as procedure

density;

• percentage of operation of field reads;

• percentage of operations with floating point;

• percentage of operations that calculate an address for a read.

Most of those are profiling data independent, though the average operation counter

is not. In case of no train profile information Elbrus compiler uses a predicted

profiling based on statistical information. It was found to be good enough to use this

static profiling for classification.

3.2 Ideal theoretical solution

First of all for the given training space that includes all characteristics, which are

used in quality functional, an optimal solution that stands for the minimum

functional point could be calculated. For the chosen functional (3) and the

considered lines finding the minimum required making about 2*n steps of gradient

descent, that is 2*n steps, where on each we make a change of a coordinate in

assignment vector that gives the maximum functional value decrease. To check the

stability of the resulting vector in
� several starting points with the constant

assignment of each line for all set of procedures were used. The solution is a vector

with n coordinates where n is the number of procedures in the training set:

��34 , �35 … �36� (6)

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

92

Sequence vector (6) would be called the optimal theoretical vector of sequences for

procedures P, where �37 is the optimal theoretical sequence for procedure �� . It

should be noted that �37 would not always afford the best performance or

performance with compile time result on procedure �� . It is optimal only in sense of

the whole set of considered procedures, which is due to functional minimum.

As it would be shown in experimental section solution (6) doesn’t always lead to

best results on a real run when assigning the corresponding compilation sequences

for all procedures in program, and therefore it is declared theoretical. This occurs

because statistical information for each procedure is collected with simultaneous

sequences assignment for other procedures in the program, modification of those

procedures sometimes leads to other memory usage interaction and as a result to

different execution time. The only way to completely avoid this effect is to collect

statistical information for all possible configurations, which is not feasible and even

to be partially used requires availability of information for all additionally

executable procedures to make the right choice for the given one. Therefore, it was

decided to drop out this fact in the currently constructed solution, though keep it in

consideration for future researches in case of –fwhole-program compilation mode.

3.3 Existing classification and clusterization methods

Unlike to methods of clusterization [9] in this situation it is impossible to construct

a metric that would determine the valuable in terms of our needs distance between

procedures. The reason is that the distance between couples of procedures would

depend on the other procedures in same cluster. For this case the clusterization

methods allow to selects areas according to only characteristic metrics, but it is

possible only with appropriate characteristics normalization. The uniform

normalization by itself works out bad for this task, thought probably some

techniques that use functional value movement with characteristic change could be

developed.

Classification methods (support vector machine - SVM, Bayesian network) don’t

require to construct a metric that would divide classes. But as was mentioned before

it is not enough to increase the possibility of picking the best sequence when using

procedures characteristics for prediction. Though in the first attempt to make a

classification solution a Bayesian network [10] has been tried. Although it showed a

high percent of an optimal sequence prediction (above 95%) the resulting execution

time of training tasks set increased by 21% on average. It was found out that the

most frequently optimal sequence reduced the performance of some weighty

procedures, which required a number of aggressive transformations to achieve

acceptable performance. Due to this reason even a small percent of mistakes leaded

to unacceptable result. Other considered methods have the same problem - the

maximum that they allow is to add a weight to the mistake when choosing the

wrong solution, which in our case means not optimal, but they don’t differ the value

of a mistake.

Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

93

3.4 Procedures classification

To solve this problem a cluster error minimization algorithm was developed. First

we construct the full error table. For each sequence ��8 and for each procedure ��

the minimization error is the following

 �99:�� , ��8; = log (
��34 … ��8 … �36�/
��34 , �35 … �36�) (7)

For optimal sequence of procedure �� functional

��34 … ��8 … �36� =
��34 , �35 … �36�,

so error (7) is zero for the optimal sequence and could be zero or positive for the

other sequences.

The main idea is to allocate on each step an area with new sequence assignment that

would give a good functional value decrease comparing to the current. Which in

terms of calculated errors would mean minimizing the summary error.

The clusters construction:

• Start.

• Assign the default sequence for each procedure. Calculate sum error W for

all procedures.

• Repeat:

o Choose not marked procedure p with maximum current error and

the optimal sequence �@8.

o Calculate the distances to all characteristics borders. Calculate

sum error for all space with �@8.

o Define it as a current cluster.

o Repeat for each characteristic:

� Repeat until cluster size ≥ * and the calculated error

decrease: with coefficient '� < 1.0 decrease the distance

to one of the borders of the cluster

� Repeat until the calculated error decrease: with

coefficient 'F < 1.0 increase the distance to one of the

borders of the cluster

o Accept the cluster if it decreases error by -G ≥ 'H ∗ G. Mark the

starting procedure with the flag.

• End.

The constructed areas are * − -(��&(�%/� rectangles and could intersect. To

choose the sequence for a procedure with the set of constructed cluster borders we

take the sequence that corresponds with the last cluster that procedure belongs to.

Parameters '�, 'F, 'H are heuristically chosen so borders movement would capture

enough procedures to get more precise direction of error change.

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

94

Classes’ construction can be started with any sequence; in proposed algorithm the

default sequence was chosen because it is optimal on average. Also was made an

attempt to start cluster construction with all procedures and choose the one that

gives the highest minimization of functional value.

The received clusters with both attempts are very similar, though the last one is

much more time-consuming. The other variant that was tested is the binary search

of boundaries. This gave also a close result, and this mechanism could be assumed

preferable because of no border parameters need.

The possible weakness of proposed classification is the absence of functional

monotony by parameter coordinates; this could lead to inaccurate border

calculation. Parameters t1, t2 or binary search of boundaries should reduce this

effect because in both cases first steps in parameter space are big in terms of

considered procedures number thus are statistically proven. One more limitation of

constructed classes is that they are * − -(��&(�%/� rectangles, though with the

allowed intersection could actually take other forms. This could perform less

accurate area selection but further significantly reduces required time for compiler

to compute the proper class for a procedure.

4. Experimental results

The proposed clusterization was implemented in Elbrus compiler. As the training

set 9183 procedures of spec2000 benchmark were used. The whole amount of

procedures in the given pack is much greater but it was possible to use only the

procedures with a measurable execution time. In all cases the clusterization was

constructed using full information on execution and compilation time corresponding

with each sequence assignment to each procedure, then the solver, that computes

procedures characteristics on early compilation stage and chooses the cluster

according to calculated borders, was developed in the compiler. The assignment

takes place in the end of interprocedural compilation stage, thus the time required

for the sequences selection is included in whole task compilation time and is

counted in the recieved compilation speedup.

As was already explained, the effectiveness of sequences assignment depends not

on the highest probability of choosing the best line for procedure alone but on

integral characteristic for the whole set. So to show the quality of constructed

clusterization it is reasonable to consider all the tasks and not procedures separately.

For this purpose results of implementing sequences assigned by optimal and

clusterization selections were compared on whole spec2000 benchmark tasks. In

this case we used functional that minimizes only performance time(1) and

constructed 7 clusters. The result is shown on fig. 1. As it was already discussed in

section III “Ideal theoretical solution” the optimal solution for the tasks was

combined of optimal theoretical sequence for each procedure. It was noted that

because of the memory interaction some tasks, for example, 200.sixtrack, slowed

down even with applying this optimal solution. As the result the real measure of

optimal solution gained almost 5% less performance increase than it was supposed

Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

95

to be according to theoretical calculations. The same comparison with functional (3)

– considering both execution and compilation time yielded worse clusterization

results, it occurred mainly because a large amount of procedures are not executed

and optimal solution gave much better compilation time results on them.

Fig. 1. Optimal and cluster solution, spec2000, 7 clusters.

Fig. 2. Spec2000 no train execution, 5 clusters.

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

96

When using functional (3) most effect was achieved after constructing first 5

clusters. The corresponding sequence assignment for those clusters reduced

compilation time by 17% on average and increased performance by 8.5% on the

training set. fig. 2 shows the improvement obtained on certain tasks of spec2000

benchmark. As a test pack for the clusterization spec95 [6] benchmark was used.

The execution and compilation result for this pack is shown on fig. 3. The average

increase of performance reached 3% and the average compilation time decrease was

over 16%.

Measured results prove effectiveness of classification algorithm, though due to the

absence of functional coordinate monotony it is not proved that the best possible

solution is received. Another question is the quality of available procedures

characteristics choice, which showed to be good enough for the considered set of

compilation sequences but could appear not to be representative to make quality

selection from different set of sequences.

Fig. 3. Spec95 no train execution, out of train set, 5 clusters.

5. Future works

Results presented in experimental section show the possibility of good sequence

prediction using classification methods. But some questions should be cleared and

researches to be done. First, it could be possible to make hierarchical clustering if

inserting some metric that would allow to avoid problems with sporadic points that

give inaccurate values for some reasons, this could allow better cluster borders

calculation. Another question is how to construct the best training set in sense of

avoiding procedures execution interaction. As it can be seen on Figure 1 the

execution profiling of the whole task with one sequence can lead to errors in future

Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

97

procedure sequence selection. Also it could be more effective to combine sequences

construction with some estimation of future prediction possibility using available

procedures characteristics. Finally, there could be done some researches on

ascertainment if the found procedure characteristics are good enough to provide

maximum possible potential in best classes allocation.

6. Conclusion

This paper introduces problems that come up on the way to develop automatic

optimizing sequence selector that provides performance increase and reduces the

needed compilation time for each procedure. Necessity of a quality functional on the

space of all possible assignment is explained. Also it should be mentioned that such

functional could include any possible limitations besides compilation and execution,

in some cases it could be valuable to limit code size increasing or reduce the number

of registers that are allowed for code planning. The last limit could be useful to

lower register spill fill blocking between the calls and returns from large procedures.

An effective algorithm that can be used to select clusters in the procedures

characteristics space is suggested.

The classification methods were implemented in Elbrus compiler. It was shown that

a good optimization sequence could be chosen even when it is impossible to execute

the code and no train profiling information is available. The results were achieved

and introduced using spec2000 and spec95 benchmarks.

References
[1]. Prasad A. Kulkarni, W.Zhao, H.Moon, et al. Finding Effective Optimization Phase

Sequence. [A]. Proc. of ACM SIGPLAN 2003 Conference on Languages, Compilers

and Tools for Embedded Systems, US: 2003.

[2]. Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, David I. August.

Compiler optimization-space exploration. Proceedings of the international symposium

on Code generation and optimization: feedback-directed and runtime optimization,

March 23-26, 2003, San Francisco, California.

[3]. Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika

Subramanian, Linda Torczon, Todd Waterman. ACME: adaptive compilation made

efficient. LCTES '05 Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on

Languages, compilers, and tools for embedded systems, Pages 69 – 77

[4]. Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson. Evaluating Heuristic

Optimization Phase Order Search Algorithms. Proceedings of the International

Symposium on Code Generation and Optimization, p.157-169, March 11-14, 2007

[5]. Prasad A. Kulkarni, Michael R. Jantz, David B. Whalley. Improving both the

performance benefits and speed of optimization phase sequence searches. LCTES'10

Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages,

compilers, and tools for embedded systems, April 2010

[6]. Standard Performance Evaluation Corporation, http://www.spec.org/

[7]. Suresh Purini, Lakshya Jain. Finding good optimization sequences covering program

space. Transactions on Architecture and Code Optimization (TACO), January 2013.

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

98

[8]. M. Haneda, P. M. W. Knijnenburg, H. A. G. Wijshoff. Generating new general compiler

optimization settings. Proceedings of the 19th annual international conference on

Supercomputing, June 20-22, 2005, Cambridge, Massachusetts

[9]. Jain, Murty and Flynn. Data Clustering: A Review. ACM Comp. Surv., 1999.

[10]. Judea Pearl, Stuart Russell. Bayesian Networks. UCLA Cognitive Systems Laboratory,

Technical Report (R-277), November 2000.

Классификация процедур для выбора
стратегии оптимизации

Ольга Четверина <chetverina_o@mcst.ru>

 ЗАО МЦСТ, Ленинский проспект, 51,

 Москва, 119991, Россия

Аннотация. Оптимизирующие компиляторы вносят существенный вклад в повышение

производительности современных вычислительных систем. Наиболее

чувствительными к качеству компиляции являются процессоры с VLIW архитектурой,

поскольку в этом случае производительность обеспечивается за счет одновременного

исполнения в одном такте нескольких статически спланированных команд, это

приводит к усложнению VLIW компиляторов. Так, компилятор для семейства

процессоров Эльбрус в режиме –O3 выполняет последовательно более 300

оптимизирующих фаз. Такое количество этапов необходимо для достижения

требуемой производительности итогового кода, но является затратным по времени

компиляции. Значительное увеличение времени компиляции при высокоуровневой

оптимизации в первую очередь вызвано применением ряда агрессивных необратимых

преобразований, приводящих к также нежелательному росту итогового кода. Кроме

того, остается проблема использования некоторых полезных только для отдельных

контекстов оптимизаций. Для одновременного учета требований повышения

производительности, уменьшения времени компиляции и размера итогового кода

имеет смысл выбрать подходящую оптимизирующую последовательность на раннем

этапе компиляции в зависимости от специфических характеристик процедуры. В

представленной статье обсуждается проблема классификации процедур для
осуществления такого выбора и предлагается ряд способов ее решения.

Ключевые слова: optimizing compiler; optimizing phases sequence; performance tuning;
reducing compilation time; procedures classification.

DOI: 10.15514/ISPRAS-2015-27(3)-6

Для цитирования: Ольга Четверина. Классификация процедур для выбора стратегии

оптимизации. Труды ИСП РАН, том 27, вып. 3, 2015 г., стр. 87-100 (на английском

языке). DOI: 10.15514/ISPRAS-2015-27(3)-6.

Ольга Четверина. Классификация процедур для выбора стратегии оптимизации. Труды ИСП РАН, том 27, вып.

3, 2015 г., с. 87-100

99

Список литературы

[1]. Prasad A. Kulkarni, W.Zhao, H.Moon, et al. Finding Effective Optimization Phase

Sequence. [A]. Proc. of ACM SIGPLAN 2003 Conference on Languages, Compilers

and Tools for Embedded Systems, US: 2003.

[2]. Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, David I. August.

Compiler optimization-space exploration. Proceedings of the international symposium

on Code generation and optimization: feedback-directed and runtime optimization,

March 23-26, 2003, San Francisco, California.

[3]. Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika

Subramanian, Linda Torczon, Todd Waterman. ACME: adaptive compilation made

efficient. LCTES '05 Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on

Languages, compilers, and tools for embedded systems, Pages 69 – 77

[4]. Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson. Evaluating Heuristic

Optimization Phase Order Search Algorithms. Proceedings of the International

Symposium on Code Generation and Optimization, p.157-169, March 11-14, 2007

[5]. Prasad A. Kulkarni, Michael R. Jantz, David B. Whalley. Improving both the

performance benefits and speed of optimization phase sequence searches. LCTES'10

Proceedings of the ACM SIGPLAN/SIGBED 2010 conference on Languages,

compilers, and tools for embedded systems, April 2010

[6]. Standard Performance Evaluation Corporation, http://www.spec.org/

[7]. Suresh Purini, Lakshya Jain. Finding good optimization sequences covering program

space. Transactions on Architecture and Code Optimization (TACO), January 2013.

[8]. M. Haneda, P. M. W. Knijnenburg, H. A. G. Wijshoff. Generating new general compiler

optimization settings. Proceedings of the 19th annual international conference on

Supercomputing, June 20-22, 2005, Cambridge, Massachusetts

[9]. Jain, Murty and Flynn. Data Clustering: A Review. ACM Comp. Surv., 1999.

[10]. Judea Pearl, Stuart Russell. Bayesian Networks. UCLA Cognitive Systems Laboratory,

Technical Report (R-277), November 2000.

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,

vol. 27, issue 3, 2015, pp. 87-100

100

