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Abstract. Optimizing compilers make significant contribution to the performance of modern
computer systems. Among them VLIW architecture processors are the most compiler-
dependent, since their performance is ensured by effective compile time scheduling of
multiple commands in a single clock. This leads to an eventual complication of VLIW
compilers. Taking as an example optimizing compiler developed for the Elbrus family
processors, it runs consequently over 300 stages of code optimization in basic mode. Such an
amount of stages is needed to obtain decent performance, but it also makes compilation quite
time consuming. It turns out that the main reason for compilation time increase when using
high level compilation is applying some aggressive unreversable code transformations, which
eventually leads to code size increase that is also unwanted. In addition, there remains the
problem of using a number of optimizations that are useful for rare contexts. To reach the
objectives, namely increasing performance, decreasing compilation time and code size, it is
reasonable to choose an appropriate strategy on an early compilation stage according to some
procedure specific characteristics. This paper discusses the procedures classification
problems for this task and suggests several possible solutions.
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1. Introduction

To obtain decent performance modern optimizing compilers apply a huge sequence
of code transformations. Usually compilers use a fixed optimization sequence for all
procedures according to optimization level (-O0, -O1, -O2, -O3) and each
optimization stage tries to improve performance of available code segments using
statistically proven heuristics which leads to suboptimal results in most cases [1, 2].
In order to achieve the best possible performance for a given program it is important
to find the most suitable optimization sequence for each procedure. This could be

87

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

done with iterative approaches, which compile procedures in a given program using
different optimization sequences with either executing the resulting code [3,4] or
estimating the execution time [5] and choosing the best one. Although both
techniques achieve good performance results on a number of tasks, their weak spots
is a need of a large compilation time which is not always acceptable and a necessity
to execute tasks on appropriate input data so that the training runs would match the
further execution in terms of branch probabilities and code coverage. The
importance and difficulty of constructing a good training input data can be
demonstrated with profiling data that was collected using train execution of the
spec2000 benchmark [6] using Elbrus compiler. It was found out for this benchmark
that applying a low-optimizing sequence to the procedures with zero train profile
data leads to a 6% performance degradation of CFP tasks of spec2000 on average.
The biggest decelerations occurred on 179.art (-18%) and on 301.apsi (-47%),
where the reason for 301.apsi degradation is that one of its main procedures never
executes during train run. As for huge applications it is often too difficult to
generate good train data, which will cover all important parts of code, moreover, for
some types of code like libraries or operational system it is nearly impossible. Also
it should be mentioned that in most cases high compilation time corresponds with
the resulting code size growth, this happens because most time-consuming phases
including hyper-blocks construction, scheduling and loop software pipelining are
located in the end of optimization line and the time they work corresponds with the
size of the intermediate code that was made as result of different aggressive loop
and acyclic transformations such as splitting, peeling, tail duplication etc.

Earlier researches in the field of iterative compilers [7,8] offer techniques that allow
to construct a set of optimization sequences that cover the given procedures space
rather well. In those works to minimize the needed execution time authors choose a
possibly small set of options or sequences that show performance increase on most
tests. To reach good performance results with affordable compilation time and
resulting size of code and avoid the need of training executions it is reasonable to
try to choose a compilation sequence from such a set on an early compilation stage
using some characteristics of the procedure. The main goal of this research is to
explore and construct the possible methods of procedures classification that would
allow to perform this objective.

First of all it would be shown that to make a good selection of optimization
sequences for a set of procedures using characteristics a compilation quality
functional is needed (section 2). It would also be explained how to construct a
functional to take several factors into consideration, like execution time,
compilation time, resulting code size and other possible limits. Then the task of
predicting good sequences selection for a given number of procedures would be
formulated in terms of minimizing constructed quality functional (section 3). After a
list of main existing methods of classification and clusterizations would be
described and given a possible one that allows to solve the task. In section 4 some
experimental results would be provided.
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2. Compilation quality functional

To make a statistical solution of procedures types selection a large training set is
needed. For this purpose all procedures of spec2000 benchmark with a full input
data were used. The reason for this pack choice is that it is well balanced in terms of
different types of tasks and is used as a performance benchmark for most high-
performance computers. The steps for solution is to choose the best sequences
assignment for the training set using full statistic on compilation, execution or other
important characteristics and then to make an attempt to predict it using only
procedures information available on early compilation stage.

Any type of classification and clusterization methods perform allocation of areas in
parameters space, which are then respectively called classes or clusters and could be
used to make some assignment of type, in our case an assignment of optimization
sequence. Using an example from table 1 it could be easily seen that a need to
construct a quality functional comes up even when the only goal of classification is
to minimize execution time.

Table 1. Example of sequence choice

O.A. Chetverina. Procedures Classification for Optimizing Strategy Assignment. Trudy ISP RAN /Proc. ISP RAS,
vol. 27, issue 3, 2015, pp. 87-100

Sequence 1 time

Sequence 2 time

Best sequence

Procedure 1

100

50

2

Procedure 2 95 100 1
Procedure 3 100 105 1
Sum time 295 255 2

Suppose there are 3 procedures that hit the same area in parameters space, in the
shown example the best sequence choice for 2 out of 3 procedures would lead to
decrease of performance both in sum and on average. It could be assumed that
procedures with different optimal sequences should be in different areas but actually
this assumption is wrong because even the same procedure with different input data
could lead to different best choices results. This means that there is a need to
construct a numerical evaluation method that would qualify the sequences
assignments on the whole set of procedures. The most common technique to
formalize the understanding of the best choice is to construct a functional, which
reaches minimum at decision point. In this case the domain for such functional is an
assignment space for procedures:

P = {p,, ...pn} — all procedures in a set

L = {l,, ...l } — the list of optimization sequences,

F(l(py), .- l(pp))= R — afunctional defined on the space L", where l: P = L
To minimize the execution time the following functionals could be chosen:

exe(p;, L(p;)) - execution time of procedure p; when compiled using [(p;)
sequence, then

&9

F(l(py), . l(pn)) = Xy exe(p;, (p) (1)

F(I(py), ... 1(py)) = [; exe(p;, L(p) (2)

A functional that considers not only the execution time, but also compilation time
could be constructed:

comp(p;, l(p;)) - compilation time of procedure p; when compiled using I(p;)
sequence

F(I(p1), - 1(py)) = (T exe(y, [(p)))" (T comp (py, L(p)) (3)

This functional describes the acceptable ratio of performance loss and compilation
gain, larger values of “r” mean higher importance of performance over compilation.
Though even with infinite value of r compilation could be reduced in case if 2
sequences produce the same code in terms of execution time. Other important
limitation as code size could be introduced into quality functional similarly.

3. Functional minimizing classification

Suppose a quality functional was already chosen, then classification task could be
formulated in the following terms:

P = {p,, ...pn} — all procedures in a set

L = {l,, ...l } — the list of optimization sequences,

H— the space of procedures characteristics

Ch: P — H — assignment of characteristic vector for procedures

F(l(py), - l(pp))— R is defined on the space L™, where [l: P — L

Then the classification is an allocation of areas S in the space H with a sequence
vector in L that produces a constant assignment for each area S, that is:

vS I(ChL(S)) = const

The goal is to make a classification (with some minimal number of training
elements in the area = q), that minimizes the given functional:

F(l(py), ... l(py)) » min (4)

To substantiate the statistical approach it is reasonable to require for each procedure
pr having a locality D in characteristic space containing at least g points for which
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Hp) = {defalt,p ¢p O

F(H(py), ... H(py)) < F(default, ...default)

3.1 Procedures characteristics

As was mentioned earlier the major use of such early compilation stage sequence
prediction is expected on codes that for some cases are not suitable for training
execution. So the goal is to choose a number of characteristics that work well
enough to predict a good optimization sequence and do not depend on precise
profile information. To choose the best set different characteristics were considered
and using correlation matrix the most valuable were picked and normalized. The
best characteristics that were found to predict the optimal compilation sequence
with no train profiling information are:

e number of operations in the procedure;

e average node size, which in some sense stand for the branch frequency;

e number of call operations;

e maximum loop level in a procedure;

e average operation counter, which could also be considered as procedure
density;

e percentage of operation of field reads;

e percentage of operations with floating point;

e percentage of operations that calculate an address for a read.

Most of those are profiling data independent, though the average operation counter
is not. In case of no train profile information Elbrus compiler uses a predicted
profiling based on statistical information. It was found to be good enough to use this
static profiling for classification.

3.2 Ideal theoretical solution

First of all for the given training space that includes all characteristics, which are
used in quality functional, an optimal solution that stands for the minimum
functional point could be calculated. For the chosen functional (3) and the
considered lines finding the minimum required making about 2*n steps of gradient
descent, that is 2*n steps, where on each we make a change of a coordinate in
assignment vector that gives the maximum functional value decrease. To check the
stability of the resulting vector in L™ several starting points with the constant
assignment of each line for all set of procedures were used. The solution is a vector
with n coordinates where 7 is the number of procedures in the training set:

(lp) Uy, - 1p,)  (6)
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Sequence vector (6) would be called the optimal theoretical vector of sequences for
procedures P, where [, is the optimal theoretical sequence for procedure p;. It
should be noted that [, would not always afford the best performance or
performance with compile time result on procedure p;. It is optimal only in sense of
the whole set of considered procedures, which is due to functional minimum.

As it would be shown in experimental section solution (6) doesn’t always lead to
best results on a real run when assigning the corresponding compilation sequences
for all procedures in program, and therefore it is declared theoretical. This occurs
because statistical information for each procedure is collected with simultaneous
sequences assignment for other procedures in the program, modification of those
procedures sometimes leads to other memory usage interaction and as a result to
different execution time. The only way to completely avoid this effect is to collect
statistical information for all possible configurations, which is not feasible and even
to be partially used requires availability of information for all additionally
executable procedures to make the right choice for the given one. Therefore, it was
decided to drop out this fact in the currently constructed solution, though keep it in
consideration for future researches in case of —fwhole-program compilation mode.

3.3 Existing classification and clusterization methods

Unlike to methods of clusterization [9] in this situation it is impossible to construct
a metric that would determine the valuable in terms of our needs distance between
procedures. The reason is that the distance between couples of procedures would
depend on the other procedures in same cluster. For this case the clusterization
methods allow to selects areas according to only characteristic metrics, but it is
possible only with appropriate characteristics normalization. The uniform
normalization by itself works out bad for this task, thought probably some
techniques that use functional value movement with characteristic change could be
developed.

Classification methods (support vector machine - SVM, Bayesian network) don’t
require to construct a metric that would divide classes. But as was mentioned before
it is not enough to increase the possibility of picking the best sequence when using
procedures characteristics for prediction. Though in the first attempt to make a
classification solution a Bayesian network [10] has been tried. Although it showed a
high percent of an optimal sequence prediction (above 95%) the resulting execution
time of training tasks set increased by 21% on average. It was found out that the
most frequently optimal sequence reduced the performance of some weighty
procedures, which required a number of aggressive transformations to achieve
acceptable performance. Due to this reason even a small percent of mistakes leaded
to unacceptable result. Other considered methods have the same problem - the
maximum that they allow is to add a weight to the mistake when choosing the
wrong solution, which in our case means not optimal, but they don’t differ the value
of a mistake.
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3.4 Procedures classification

To solve this problem a cluster error minimization algorithm was developed. First
we construct the full error table. For each sequence [;, and for each procedure py
the minimization error is the following

err|pr. i, | =10g(F(ly, - Liy - 1p,)/F Iy, Lo, - 1p,)) (7

For optimal sequence of procedure pj, functional

F(lb1 Y PR lbn) = F(lbl,lb2 lbn),
so error (7) is zero for the optimal sequence and could be zero or positive for the
other sequences.
The main idea is to allocate on each step an area with new sequence assignment that
would give a good functional value decrease comparing to the current. Which in
terms of calculated errors would mean minimizing the summary error.
The clusters construction:
e  Start.
e  Assign the default sequence for each procedure. Calculate sum error W for
all procedures.
e Repeat:
o Choose not marked procedure p with maximum current error and
the optimal sequence [, .
o Calculate the distances to all characteristics borders. Calculate
sum error for all space with [, .
o Define it as a current cluster.
o Repeat for each characteristic:
= Repeat until cluster size > q and the calculated error
decrease: with coefficient t; < 1.0 decrease the distance
to one of the borders of the cluster
= Repeat until the calculated error decrease: with
coefficient t, < 1.0 increase the distance to one of the
borders of the cluster
o Accept the cluster if it decreases error by dW = t; * W. Mark the
starting procedure with the flag.
e End.
The constructed areas are q — dimesional rectangles and could intersect. To
choose the sequence for a procedure with the set of constructed cluster borders we
take the sequence that corresponds with the last cluster that procedure belongs to.
Parameters ty,t,,t; are heuristically chosen so borders movement would capture
enough procedures to get more precise direction of error change.
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Classes’ construction can be started with any sequence; in proposed algorithm the
default sequence was chosen because it is optimal on average. Also was made an
attempt to start cluster construction with all procedures and choose the one that
gives the highest minimization of functional value.

The received clusters with both attempts are very similar, though the last one is
much more time-consuming. The other variant that was tested is the binary search
of boundaries. This gave also a close result, and this mechanism could be assumed
preferable because of no border parameters need.

The possible weakness of proposed classification is the absence of functional
monotony by parameter coordinates; this could lead to inaccurate border
calculation. Parameters tl, t2 or binary search of boundaries should reduce this
effect because in both cases first steps in parameter space are big in terms of
considered procedures number thus are statistically proven. One more limitation of
constructed classes is that they are q — dimesional rectangles, though with the
allowed intersection could actually take other forms. This could perform less
accurate area selection but further significantly reduces required time for compiler
to compute the proper class for a procedure.

4. Experimental results

The proposed clusterization was implemented in Elbrus compiler. As the training
set 9183 procedures of spec2000 benchmark were used. The whole amount of
procedures in the given pack is much greater but it was possible to use only the
procedures with a measurable execution time. In all cases the clusterization was
constructed using full information on execution and compilation time corresponding
with each sequence assignment to each procedure, then the solver, that computes
procedures characteristics on early compilation stage and chooses the cluster
according to calculated borders, was developed in the compiler. The assignment
takes place in the end of interprocedural compilation stage, thus the time required
for the sequences selection is included in whole task compilation time and is
counted in the recieved compilation speedup.

As was already explained, the effectiveness of sequences assignment depends not
on the highest probability of choosing the best line for procedure alone but on
integral characteristic for the whole set. So to show the quality of constructed
clusterization it is reasonable to consider all the tasks and not procedures separately.
For this purpose results of implementing sequences assigned by optimal and
clusterization selections were compared on whole spec2000 benchmark tasks. In
this case we used functional that minimizes only performance time(l) and
constructed 7 clusters. The result is shown on fig. 1. As it was already discussed in
section III “Ideal theoretical solution” the optimal solution for the tasks was
combined of optimal theoretical sequence for each procedure. It was noted that
because of the memory interaction some tasks, for example, 200.sixtrack, slowed
down even with applying this optimal solution. As the result the real measure of
optimal solution gained almost 5% less performance increase than it was supposed
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to be according to theoretical calculations. The same comparison with functional (3)
— considering both execution and compilation time yielded worse clusterization
results, it occurred mainly because a large amount of procedures are not executed
and optimal solution gave much better compilation time results on them.
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Fig. 2. Spec2000 no train execution, 5 clusters.
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When using functional (3) most effect was achieved after constructing first 5
clusters. The corresponding sequence assignment for those clusters reduced
compilation time by 17% on average and increased performance by 8.5% on the
training set. fig. 2 shows the improvement obtained on certain tasks of spec2000
benchmark. As a test pack for the clusterization spec95 [6] benchmark was used.
The execution and compilation result for this pack is shown on fig. 3. The average
increase of performance reached 3% and the average compilation time decrease was
over 16%.

Measured results prove effectiveness of classification algorithm, though due to the
absence of functional coordinate monotony it is not proved that the best possible
solution is received. Another question is the quality of available procedures
characteristics choice, which showed to be good enough for the considered set of
compilation sequences but could appear not to be representative to make quality
selection from different set of sequences.
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Fig. 3. Spec95 no train execution, out of train set, 5 clusters.

5. Future works

Results presented in experimental section show the possibility of good sequence
prediction using classification methods. But some questions should be cleared and
researches to be done. First, it could be possible to make hierarchical clustering if
inserting some metric that would allow to avoid problems with sporadic points that
give inaccurate values for some reasons, this could allow better cluster borders
calculation. Another question is how to construct the best training set in sense of
avoiding procedures execution interaction. As it can be seen on Figure 1 the
execution profiling of the whole task with one sequence can lead to errors in future
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procedure sequence selection. Also it could be more effective to combine sequences
construction with some estimation of future prediction possibility using available
procedures characteristics. Finally, there could be done some researches on
ascertainment if the found procedure characteristics are good enough to provide
maximum possible potential in best classes allocation.

6. Conclusion

This paper introduces problems that come up on the way to develop automatic
optimizing sequence selector that provides performance increase and reduces the
needed compilation time for each procedure. Necessity of a quality functional on the
space of all possible assignment is explained. Also it should be mentioned that such
functional could include any possible limitations besides compilation and execution,
in some cases it could be valuable to limit code size increasing or reduce the number
of registers that are allowed for code planning. The last limit could be useful to
lower register spill fill blocking between the calls and returns from large procedures.
An effective algorithm that can be used to select clusters in the procedures
characteristics space is suggested.

The classification methods were implemented in Elbrus compiler. It was shown that
a good optimization sequence could be chosen even when it is impossible to execute
the code and no train profiling information is available. The results were achieved
and introduced using spec2000 and spec95 benchmarks.
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AHHoTanms. ONTUMH3UPYIOIINE KOMITHIISITOPBI BHOCSIT CYILECTBEHHBIH BKJIAJ B TOBBILICHHE
MIPOU3BOJUTEIBHOCTH COBPEMEHHBIX BBIUUCIIUTENBHBIX CHUCTEM. HanbGonee
YYBCTBUTEJIbHBIMU K Ka4eCTBY KOMIMIILMY SBJIAIOTCS Hpoueccopbl ¢ VLIW apxutekrypoi,
MIOCKOJIBKY B ATOM CIIydae IPOM3BOJUTEIBHOCTh 00ECHEUNBACTCS 32 CUET OJHOBPEMEHHOTO
WCIOJNHEHHUs B OJHOM TaKT€ HECKOJBKUX CTAaTHYECKH CIUIAHMPOBAaHHBIX KOMAaHJ, 3TO
OpUBOOUT K YycinoxHeHuto VLIW kommunaropos. Tak, KoMOnwisTop s ceMelcTBa
npoueccopoB  JnpdOpyc B pexxume —O3 BeimonHAeT nociepoBarensHo Oonee 300
ontumusupyrommx ¢a3. Takoe KOJMYECTBO 3TanoB HEOOXOAMMO JUIS  JOCTHXKCHHS
TpeOyeMoil MPOU3BOAUTENFHOCTH HTOTOBOTO KOJA, HO SIBIAETCS 3aTPaTHBIM 10 BPEMEHH
KOMIWIALUY. 3HAUUTEIbHOE YBEJINYEHHE BPEMEHH KOMIIWIALUM IIPH BBICOKOYPOBHEBOM
ONITHMH3AIMN B IIEPBYIO OYepeab BBI3BAHO NPUMEHEHUEM psijia arpeCCUBHBIX HEOOPATHMBIX
npeoOpa3oBaHui, IPUBOAIINX K TaKXKe HEXKeIaTeIBbHOMY POCTYy MTOTrOBOro koma. Kpome
TOTO, OCTaeTcsi IMpoOieMa HCIIOIb30BaHUS HEKOTOPHIX IOJIC3HBIX TOJBKO IUISL OTHCIBHBIX
KOHTEKCTOB oONTHUMHU3alMi. I OJHOBpEMEHHOro ydera TpeOOBaHUU IOBBIICHUS
MPOU3BOJUTENBHOCTH, YMEHBIICHUS] BPEMEHH KOMIMIAIMUM M pa3Mepa HMTOrOBOTO KoJa
UMEET CMBICI BBIOPATh MOAXOJSILYI0 ONTHMH3HMPYIOLIYIO MOCIEI0BATENILHOCTh Ha PAaHHEM
JTane KOMIWIALMU B 3aBUCHUMOCTH OT CHELM(HMYECKUX XapaKTepUCTHK INpouenypsl. B
NIPEACTABICHHON cTaThe O00OCyXkaaeTcs IpoOieMa KJIACCHPUKAUWM MPOUenyp Uil
OCYIIECTBIIEHHS TAKOTO BBIOOpA U MPEATAraeTcst psiJi CHOCOOO0B €€ PelIeHHs.
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