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Abstract. Optimizing compilers make significant contribution to the performance of modern 

computer systems. Among them VLIW architecture processors are the most compiler-

dependent, since their performance is ensured by effective compile time scheduling of 

multiple commands in a single clock. This leads to an eventual complication of VLIW 

compilers. Taking as an example optimizing compiler developed for the Elbrus family 

processors, it runs consequently over 300 stages of code optimization in basic mode. Such an 

amount of stages is needed to obtain decent performance, but it also makes compilation quite 

time consuming. It turns out that the main reason for compilation time increase when using 

high level compilation is applying some aggressive unreversable code transformations, which 

eventually leads to code size increase that is also unwanted. In addition, there remains the 

problem of using a number of optimizations that are useful for rare contexts. To reach the 

objectives, namely increasing performance, decreasing compilation time and code size, it is 

reasonable to choose an appropriate strategy on an early compilation stage according to some 

procedure specific characteristics. This paper discusses the procedures classification 
problems for this task and suggests several possible solutions.  
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1. Introduction  

To obtain decent performance modern optimizing compilers apply a huge sequence 

of code transformations. Usually compilers use a fixed optimization sequence for all 

procedures according to optimization level (-O0, -O1, -O2, -O3) and each 

optimization stage tries to improve performance of available code segments using 

statistically proven heuristics which leads to suboptimal results in most cases [1, 2]. 

In order to achieve the best possible performance for a given program it is important 

to find the most suitable optimization sequence for each procedure. This could be 
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done with iterative approaches, which compile procedures in a given program using 

different optimization sequences with either executing the resulting code [3,4] or 

estimating the execution time [5] and choosing the best one. Although both 

techniques achieve good performance results on a number of tasks, their weak spots 

is a need of a large compilation time which is not always acceptable and a necessity 

to execute tasks on appropriate input data so that the training runs would match the 

further execution in terms of branch probabilities and code coverage. The 

importance and difficulty of constructing a good training input data can be 

demonstrated with profiling data that was collected using train execution of the 

spec2000 benchmark [6] using Elbrus compiler. It was found out for this benchmark 

that applying a low-optimizing sequence to the procedures with zero train profile 

data leads to a 6% performance degradation of CFP tasks of spec2000 on average. 

The biggest decelerations occurred on 179.art (-18%) and on 301.apsi (-47%), 

where the reason for 301.apsi degradation is that one of its main procedures never 

executes during train run. As for huge applications it is often too difficult to 

generate good train data, which will cover all important parts of code, moreover, for 

some types of code like libraries or operational system it is nearly impossible. Also 

it should be mentioned that in most cases high compilation time corresponds with 

the resulting code size growth, this happens because most time-consuming phases 

including hyper-blocks construction, scheduling and loop software pipelining are 

located in the end of optimization line and the time they work corresponds with the 

size of the intermediate code that was made as result of different aggressive loop 

and acyclic transformations such as splitting, peeling, tail duplication etc. 

Earlier researches in the field of iterative compilers [7,8] offer techniques that allow 

to construct a set of optimization sequences that cover the given procedures space 

rather well. In those works to minimize the needed execution time authors choose a 

possibly small set of options or sequences that show performance increase on most 

tests. To reach good performance results with affordable compilation time and 

resulting size of code and avoid the need of training executions it is reasonable to 

try to choose a compilation sequence from such a set on an early compilation stage 

using some characteristics of the procedure. The main goal of this research is to 

explore and construct the possible methods of procedures classification that would 

allow to perform this objective.  

First of all it would be shown that to make a good selection of optimization 

sequences for a set of procedures using characteristics a compilation quality 

functional is needed (section 2). It would also be explained how to construct a 

functional to take several factors into consideration, like execution time, 

compilation time, resulting code size and other possible limits. Then the task of 

predicting good sequences selection for a given number of procedures would be 

formulated in terms of minimizing constructed quality functional (section 3). After a 

list of main existing methods of classification and clusterizations would be 

described and given a possible one that allows to solve the task. In section 4 some 

experimental results would be provided.      
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2. Compilation quality functional  

To make a statistical solution of procedures types selection a large training set is 

needed. For this purpose all procedures of spec2000 benchmark with a full input 

data were used. The reason for this pack choice is that it is well balanced in terms of 

different types of tasks and is used as a performance benchmark for most high-

performance computers. The steps for solution is to choose the best sequences 

assignment for the training set using full statistic on compilation, execution or other 

important characteristics and then to make an attempt to predict it using only 

procedures information available on early compilation stage. 

Any type of classification and clusterization methods perform allocation of areas in 

parameters space, which are then respectively called classes or clusters and could be 

used to make some assignment of type, in our case an assignment of optimization 

sequence.  Using an example from table 1 it could be easily seen that a need to 

construct a quality functional comes up even when the only goal of classification is 

to minimize execution time.  

Table 1. Example of sequence choice 

 Sequence 1 time  Sequence 2 time  Best sequence 

 Procedure 1 100 50 2 

 Procedure 2 95 100 1 

 Procedure 3 100 105 1 

 Sum time 295 255 2 

 

Suppose there are 3 procedures that hit the same area in parameters space, in the 

shown example the best sequence choice for 2 out of 3 procedures would lead to 

decrease of performance both in sum and on average. It could be assumed that 

procedures with different optimal sequences should be in different areas but actually 

this assumption is wrong because even the same procedure with different input data 

could lead to different best choices results. This means that there is a need to 

construct a numerical evaluation method that would qualify the sequences 

assignments on the whole set of procedures. The most common technique to 

formalize the understanding of the best choice is to construct a functional, which 

reaches minimum at decision point. In this case the domain for such functional is an 

assignment space for procedures: 

 

� = {��, … ��} – all procedures in a set 


 = {��, … ��} – the list of optimization sequences, 


(�(��), … �(��))→ �   –  a functional defined on the space 
�, where �: � → 
 

To minimize the execution time the following functionals could be chosen: 

���(�� , �(��)) - execution time of procedure ��  when compiled using �(��) 

sequence, then 
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��(��), … �(��)� = ∑ ���(�� , �(��)) � (1) 

 


��(��), … �(��)� = ∏ ���(�� , �(��))�  (2) 

 

A functional that considers not only the execution time, but also compilation time 

could be constructed: 

����(�� , �(��)) - compilation time of procedure ��  when compiled using �(��) 

sequence 

 


��(��), … �(��)� = (∑ ���(�� , �(��))� )�(∑ ����(�� , �(��))� ) (3) 

 

This functional describes the acceptable ratio of performance loss and compilation 

gain, larger values of “r” mean higher importance of performance over compilation. 

Though even with infinite value of r compilation could be reduced in case if 2 

sequences produce the same code in terms of execution time. Other important 

limitation as code size could be introduced into quality functional similarly. 

3. Functional minimizing classification  

Suppose a quality functional was already chosen, then classification task could be 

formulated in the following terms:  

� = {��, … ��} – all procedures in a set 


 = {��, … ��} – the list of optimization sequences, 

�– the space of procedures characteristics 

 ℎ: � → � – assignment of characteristic vector for procedures 


(�(��), … �(��))→ � is defined on the space 
�, where �: � → 
 

 

Then the classification is an allocation of areas S in the space H with a sequence 

vector in L that produces a constant assignment for each area S, that is: 

 

∀#   �� ℎ$�(#)� = ��%&' 

 

The goal is to make a classification (with some minimal number of training 

elements in the area = q), that minimizes the given functional:  

 


��(��), … �(��)� → �(% (4) 

 

To substantiate the statistical approach it is reasonable to require for each procedure 

�� having a locality ) in characteristic space containing at least * points for which  
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�(�) = + �(��), � ∈ )  
-�./�', � ∉ )  (5) 

 


��(��), … �(��)� ≤ 
(-�./2�', … -�./2�')  

3.1 Procedures characteristics 

As was mentioned earlier the major use of such early compilation stage sequence 

prediction is expected on codes that for some cases are not suitable for training 

execution. So the goal is to choose a number of characteristics that work well 

enough to predict a good optimization sequence and do not depend on precise 

profile information. To choose the best set different characteristics were considered 

and using correlation matrix the most valuable were picked and normalized. The 

best characteristics that were found to predict the optimal compilation sequence 

with no train profiling information are:  

• number of operations in the procedure;  

• average node size, which in some sense stand for the branch frequency; 

• number of call operations; 

• maximum loop level in a procedure; 

• average operation counter, which could also be considered as procedure 

density; 

• percentage of operation of field reads;  

• percentage of operations with floating point; 

• percentage of operations that calculate an address for a read.  

Most of those are profiling data independent, though the average operation counter 

is not. In case of no train profile information Elbrus compiler uses a predicted 

profiling based on statistical information. It was found to be good enough to use this 

static profiling for classification. 

3.2 Ideal theoretical solution 

First of all for the given training space that includes all characteristics, which are 

used in quality functional, an optimal solution that stands for the minimum 

functional point could be calculated. For the chosen functional (3) and the 

considered lines finding the minimum required making about 2*n steps of gradient 

descent, that is 2*n steps, where on each we make a change of a coordinate in 

assignment vector that gives the maximum functional value decrease. To check the 

stability of the resulting vector in 
� several starting points with the constant 

assignment of each line for all set of procedures were used. The solution is a vector 

with n coordinates where n is the number of procedures in the training set: 

��34 , �35 … �36� (6) 
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Sequence vector (6) would be called the optimal theoretical vector of sequences for 

procedures P, where �37 is the optimal theoretical sequence for procedure �� . It 

should be noted that �37 would not always afford the best performance or 

performance with compile time result on procedure �� . It is optimal only in sense of 

the whole set of considered procedures, which is due to functional minimum.  

As it would be shown in experimental section solution (6) doesn’t always lead to 

best results on a real run when assigning the corresponding compilation sequences 

for all procedures in program, and therefore it is declared theoretical. This occurs 

because statistical information for each procedure is collected with simultaneous 

sequences assignment for other procedures in the program, modification of those 

procedures sometimes leads to other memory usage interaction and as a result to 

different execution time. The only way to completely avoid this effect is to collect 

statistical information for all possible configurations, which is not feasible and even 

to be partially used requires availability of information for all additionally 

executable procedures to make the right choice for the given one. Therefore, it was 

decided to drop out this fact in the currently constructed solution, though keep it in 

consideration for future researches in case of –fwhole-program compilation mode.  

3.3 Existing classification and clusterization methods 

Unlike to methods of clusterization [9] in this situation it is impossible to construct 

a metric that would determine the valuable in terms of our needs distance between 

procedures. The reason is that the distance between couples of procedures would 

depend on the other procedures in same cluster. For this case the clusterization 

methods allow to selects areas according to only characteristic metrics, but it is 

possible only with appropriate characteristics normalization. The uniform 

normalization by itself works out bad for this task, thought probably some 

techniques that use functional value movement with characteristic change could be 

developed. 

Classification methods (support vector machine - SVM, Bayesian network) don’t 

require to construct a metric that would divide classes. But as was mentioned before 

it is not enough to increase the possibility of picking the best sequence when using 

procedures characteristics for prediction. Though in the first attempt to make a 

classification solution a Bayesian network [10] has been tried. Although it showed a 

high percent of an optimal sequence prediction (above 95%) the resulting execution 

time of training tasks set increased by 21% on average. It was found out that the 

most frequently optimal sequence reduced the performance of some weighty 

procedures, which required a number of aggressive transformations to achieve 

acceptable performance. Due to this reason even a small percent of mistakes leaded 

to unacceptable result. Other considered methods have the same problem - the 

maximum that they allow is to add a weight to the mistake when choosing the 

wrong solution, which in our case means not optimal, but they don’t differ the value 

of a mistake. 
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3.4 Procedures classification 

To solve this problem a cluster error minimization algorithm was developed. First 

we construct the full error table. For each sequence ��8  and for each procedure �� 

the minimization error is the following 

 �99:�� , ��8; = log (
��34 … ��8 … �36�/
��34 , �35 … �36�) (7) 

 

For optimal sequence of procedure �� functional  


��34 … ��8 … �36� = 
��34 , �35 … �36�, 

so error (7) is zero for the optimal sequence and could be zero or positive for the 

other sequences.  

The main idea is to allocate on each step an area with new sequence assignment that 

would give a good functional value decrease comparing to the current. Which in 

terms of calculated errors would mean minimizing the summary error.  

The clusters construction:  

• Start. 

• Assign the default sequence for each procedure. Calculate sum error W for 

all procedures. 

• Repeat: 

o Choose not marked procedure p with maximum current error and 

the optimal sequence �@8.  

o Calculate the distances to all characteristics borders. Calculate 

sum error for all space with �@8.  

o Define it as a current cluster.  

o Repeat for each characteristic: 

� Repeat until cluster size ≥ * and the calculated error 

decrease: with coefficient '� < 1.0 decrease the distance 

to one of the borders of the cluster 

� Repeat until the calculated error decrease: with 

coefficient 'F < 1.0 increase the distance to one of the 

borders of the cluster 

o Accept the cluster if it decreases error by -G ≥ 'H ∗ G. Mark the 

starting procedure with the flag. 

• End. 

The constructed areas are * − -(��&(�%/� rectangles and could intersect. To 

choose the sequence for a procedure with the set of constructed cluster borders we 

take the sequence that corresponds with the last cluster that procedure belongs to. 

Parameters '�, 'F, 'H are heuristically chosen so borders movement would capture 

enough procedures to get more precise direction of error change.   
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Classes’ construction can be started with any sequence; in proposed algorithm the 

default sequence was chosen because it is optimal on average. Also was made an 

attempt to start cluster construction with all procedures and choose the one that 

gives the highest minimization of functional value. 

The received clusters with both attempts are very similar, though the last one is 

much more time-consuming. The other variant that was tested is the binary search 

of boundaries. This gave also a close result, and this mechanism could be assumed 

preferable because of no border parameters need. 

The possible weakness of proposed classification is the absence of functional 

monotony by parameter coordinates; this could lead to inaccurate border 

calculation. Parameters t1, t2 or binary search of boundaries should reduce this 

effect because in both cases first steps in parameter space are big in terms of 

considered procedures number thus are statistically proven.  One more limitation of 

constructed classes is that they are * − -(��&(�%/� rectangles, though with the 

allowed intersection could actually take other forms. This could perform less 

accurate area selection but further significantly reduces required time for compiler 

to compute the proper class for a procedure. 

4. Experimental results 

The proposed clusterization was implemented in Elbrus compiler. As the training 

set 9183 procedures of spec2000 benchmark were used. The whole amount of 

procedures in the given pack is much greater but it was possible to use only the 

procedures with a measurable execution time. In all cases the clusterization was 

constructed using full information on execution and compilation time corresponding 

with each sequence assignment to each procedure, then the solver, that computes 

procedures characteristics on early compilation stage and chooses the cluster 

according to calculated borders, was developed in the compiler. The assignment 

takes place in the end of interprocedural compilation stage, thus the time required 

for the sequences selection is included in whole task compilation time and is 

counted in the recieved compilation speedup.  

As was already explained, the effectiveness of sequences assignment depends not 

on the highest probability of choosing the best line for procedure alone but on 

integral characteristic for the whole set. So to show the quality of constructed 

clusterization it is reasonable to consider all the tasks and not procedures separately. 

For this purpose results of implementing sequences assigned by optimal and 

clusterization selections were compared on whole spec2000 benchmark tasks. In 

this case we used functional that minimizes only performance time(1) and 

constructed 7 clusters. The result is shown on fig. 1.  As it was already discussed in 

section III  “Ideal theoretical solution” the optimal solution for the tasks was 

combined of optimal theoretical sequence for each procedure. It was noted that 

because of the memory interaction some tasks, for example, 200.sixtrack, slowed 

down even with applying this optimal solution. As the result the real measure of 

optimal solution gained almost 5% less performance increase than it was supposed 
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to be according to theoretical calculations. The same comparison with functional (3) 

– considering both execution and compilation time yielded worse clusterization 

results, it occurred mainly because a large amount of procedures are not executed 

and optimal solution gave much better compilation time results on them.  

 

Fig. 1. Optimal and cluster solution, spec2000, 7 clusters. 

 

Fig. 2. Spec2000 no train execution, 5 clusters. 
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When using functional (3) most effect was achieved after constructing first 5 

clusters. The corresponding sequence assignment for those clusters reduced 

compilation time by 17% on average and increased performance by 8.5% on the 

training set. fig. 2 shows the improvement obtained on certain tasks of spec2000 

benchmark. As a test pack for the clusterization spec95 [6] benchmark was used. 

The execution and compilation result for this pack is shown on fig. 3. The average 

increase of performance reached 3% and the average compilation time decrease was 

over 16%.  

Measured results prove effectiveness of classification algorithm, though due to the 

absence of functional coordinate monotony it is not proved that the best possible 

solution is received. Another question is the quality of available procedures 

characteristics choice, which showed to be good enough for the considered set of 

compilation sequences but could appear not to be representative to make quality 

selection from different set of sequences. 

 

Fig. 3. Spec95 no train execution, out of train set, 5 clusters. 

5. Future works 

Results presented in experimental section show the possibility of good sequence 

prediction using classification methods. But some questions should be cleared and 

researches to be done. First, it could be possible to make hierarchical clustering if 

inserting some metric that would allow to avoid problems with sporadic points that 

give inaccurate values for some reasons, this could allow better cluster borders 

calculation. Another question is how to construct the best training set in sense of 

avoiding procedures execution interaction. As it can be seen on Figure 1 the 

execution profiling of the whole task with one sequence can lead to errors in future 
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procedure sequence selection. Also it could be more effective to combine sequences 

construction with some estimation of future prediction possibility using available 

procedures characteristics. Finally, there could be done some researches on 

ascertainment if the found procedure characteristics are good enough to provide 

maximum possible potential in best classes allocation. 

6. Conclusion 

This paper introduces problems that come up on the way to develop automatic 

optimizing sequence selector that provides performance increase and reduces the 

needed compilation time for each procedure. Necessity of a quality functional on the 

space of all possible assignment is explained. Also it should be mentioned that such 

functional could include any possible limitations besides compilation and execution, 

in some cases it could be valuable to limit code size increasing or reduce the number 

of registers that are allowed for code planning. The last limit could be useful to 

lower register spill fill blocking between the calls and returns from large procedures.  

An effective algorithm that can be used to select clusters in the procedures 

characteristics space is suggested.  

The classification methods were implemented in Elbrus compiler. It was shown that 

a good optimization sequence could be chosen even when it is impossible to execute 

the code and no train profiling information is available. The results were achieved 

and introduced using spec2000 and spec95 benchmarks.      
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Аннотация. Оптимизирующие компиляторы вносят существенный вклад в повышение 

производительности современных вычислительных систем. Наиболее 

чувствительными к качеству компиляции являются процессоры с VLIW архитектурой, 

поскольку в этом случае производительность обеспечивается за счет одновременного 

исполнения в одном такте нескольких статически спланированных команд, это 

приводит к усложнению VLIW компиляторов. Так, компилятор для семейства 

процессоров Эльбрус в режиме –O3 выполняет последовательно более 300 

оптимизирующих фаз. Такое количество этапов необходимо для достижения 

требуемой производительности итогового кода, но является затратным по времени 

компиляции.  Значительное увеличение времени компиляции при высокоуровневой 

оптимизации в первую очередь вызвано применением ряда агрессивных необратимых 

преобразований, приводящих к также нежелательному росту итогового кода.  Кроме 

того, остается проблема использования некоторых полезных только для отдельных 

контекстов оптимизаций. Для одновременного учета требований повышения 

производительности, уменьшения времени компиляции и размера итогового кода 

имеет смысл выбрать подходящую оптимизирующую последовательность на раннем 

этапе компиляции в зависимости от специфических характеристик процедуры. В 

представленной статье обсуждается проблема классификации процедур для 
осуществления такого выбора и предлагается ряд способов ее решения. 
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