A.C. Acpatsn, H.H. Ky3stopun. ITpuGIiikeHHBIH anropuT™ JUisl XpOMAaTHYECKON PacKpacKu JBYIOJIBHBIX IPadoB 3a
nonuHOMHaNbHOE B cpeaueM Bpems. Tpyast UCIT PAH, tom 27, Beim. 5, 2015 1., ¢. 191-198

Approximating Chromatic Sum
Coloring of Bipartite Graphs in Expected
Polynomial Time

1 A.S. Asratian <arasr@mai.liu.se>
2 N.N. Kuzyurin <nnkuz@jispras.ru>
! Linkopings Universitet, Department of Mathematics, Sweden, 581 83,
2 Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., 109004, Moscow, Russia

Abstract. It is known that if complexity class P is not equal to NP the sum coloring problem
cannot be approximated within 1+epsilon for some positive constant epsilon.

We consider finite, undirected graphs without loops and multiple edges.
Let G=(V,E) be a graph. By a coloring of G we mean a mapping ¢ of V to the numbers 1,2,
..., V] . A coloring c is proper if c(v) is not equal to c(u) whenever the vertices u and v are
adjacent.

Let S(G,c) is the sum_of c(v) over all vertices v. By a chromatic sum of G we mean the
number S(G)=min S(G,c) where minimum is taken over all proper colorings c of G.

The problem of finding S(G) is called the sum coloring problem.

It was shown that the sum coloring problem is NP-complete.

A graph G is called bipartite if the set of vertices of G can be partitioned into
two non-empty sets V1 and V2 such that every edge of G has one end in each of the sets.

For a number b, we say that an algorithm A approximates the chromatic sum within factor b
over graphs on n vertices, if for every such graph G the algorithm A outputs a proper coloring
¢, such that S(G,c) is not greater than b S(G).

It is known that there exists 27/26-approximation polynomial algorithm for the chromatic
SUM COLORING PROBLEM on any bipartite graph. On the other side, it was shown that
here exists epsilon>0, such that there is no (1+epsilon)-approximation polynomial algorithm
for the sum coloring problem on bipartite graphs, unless P is not equal to NP.

In this paper we consider the problem of developing an (1+epsilon)-approximation algorithm
for the sum coloring of bipartite graphs which is polynomial in the average case for arbitrary
small epsilon. We prove the existence of such algorithm.
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1. Introduction
Let G =(V,,V,,E) be a bipartite graph with 72+m vertices such that | V| |= m,
|V, |[=n, m <n.Byacoloring we mean a mapping:

c:VuV, > {1,2,...,n+mj.
A coloring is proper if ¢(v) # c(u) whenever (u,v) € E .
Let S(G,c)= zver/c(v)' By a chromatic sum we mean S(G) = min,.S(G,¢)
where minimum is taken over all proper colorings of G . The problem of finding
S(G) is called the SUM COLORING PROBLEM.
The notion of chromatic sum was first introduced in [6] where it was shown that the

SUM COLORING PROBLEM is NP-complete on arbitrary graphs. A few b -
approximation algorithms which find a coloring ¢ with S(G,c) <b-S(G) were
presented. In [7] a 10/9 -approximation polynomial algorithm for the SUM
COLORING PROBLEM on any bipartite graph was described. This result was
improved in [8] where an 27/26 -approximation algorithm for the same problem
was constructed. On the other side, in [7] the authors have shown that there exists
& >0, such that there is no (1+ &) -approximation polynomial algorithm for the
SUM COLORING PROBLEM on bipartite graphs, unless P = NP.

In this paper we present for any positive & an (1 + &) -approximation algorithm for
this problem with expected polynomial time. The probabilistic distribution is
uniform over all bipartite graphs with N vertices, N =n+m, m < n . Note that
the first example of approximation algorithm with expected polynomial time
guaranteeing approximation ratio better than inapproximability threshold in the

worst case was presented in [9]. Probabilistic analysis of algorithms for random
graphs is the focus of much research now [1-5, 9].

2. Approximation scheme with expected polynomial time

Let N =n+m. We consider now a straightforward approach testing all possible

colorings of G and choosing the one with the best possible color sum.

Algorithm 1. Test all possible vertex colorings of a bipartite graph and choose a
proper coloring with minimum color sum.

Lemma 1. The time complexity of Algorithm 1 is O(N") = O((2n)*").
Let O be a positive number, 0 < 0 <1 and

Vi={veV, :(1—5)%Sdegv£(l+§)%},
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V) =1{veV, :(l—5)gﬁdegvﬁ(l+5)g},

17'1 =\

VL, =V,\V.
2.1 Algorithm VERTEX-COLOR.
Input: A bipartite graph G = (V},V,,E) suchthat |V, |=m, |V,|=n, m<n,
and a parameter £ > 0.
Output: A proper coloring ¢ of G such that S(G) < S(G,c) < (1+¢£)S(G).
1.1f € <max{40n~"°, n™"*,50n"">} then goto 7.
2.1f m < n®® then goto 7.
3.5et 8 = minfoe, £ 0%}

50 50

4. Count the number ¢, =|I7'1 |, and ¢, =|I7'2 |.

51ft, >~Nn or t, > n"* then goto 7.

6. Color V, by color 1 and color V; by color 2 and STOP.

7. Run Algorithm 1 and STOP.

Theorem 1. For any fixed &> 0 Algorithm VERTEX-COLOR finds a proper
coloring within 1+ & of the optimum color sum in expected polynomial time.
Proof. Note that at step 2 and step 5 of the algorithm we get S(G,c)=n+2m
using very simple coloring strategy. The main idea of the proof is to extract
sufficiently large almost regular bipartite subgraph G' = (V/,V;,E") of G such
that for any vel] (1-8")r<degv<(1+6')r, and for any veV,
(1-6"Yk <deg v < (1+ 6")k . Such an almost regular subgraph can guarantee a
tight lower bound on S(G) close to the upper bound S(G) < n+ 2m . The main

difficulty is to estimate the probability that the size of such subgraph is large
enough.

Weuse m' and n' for denoting | V| and | V] | respectively.
1
Lemma 2. For any 0 <0’ < 5 and an induced subgraph G' = (V],V,,E’) as

above

n'+2m' —-100m' < S(G"Y<n"+2m'.
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Proof of Lemma 2. The upper bound is evident (we color V1' by color 2 and color

Vz' by color 1). To prove the lower bound we use the folowing inequalities

(148D cM+(1+8Vk Y cM= D (c(u)+c(v) =

veVl' veVz' e=(u,v)ekE’
>3|E"|23r(1-5")ym'".
This implies the inequality

D) .3 D c(v)=3m’ 11_55 >3m'(1-28").
+

veVl' r veVz'
. . . k o
Adding to both parts of the inequality (1— —)Z V,c(v) and taking into account
r ve 2

that ¢(v) > 1 for any v we obtain that for any proper coloring ¢ of G'

S(G',0) =D c(v)+ Y e(v) = 3m'—65'na'+(1—5) O

veVl’ veVz’ r veVz'

22m’+m'—65'm'+(1—§)n'=2m'+n'+m'—65’m’—§n’2
2m'+n' +m'—66m' —m' —46m' =n'+2m'—106'm’'.
Here we used the inequality m'r(1+3")>n'k(1—0") which for any
0<5'<%implies
ko, 148 _ 25

—n'<m m'(1+
r 1-06' 1-0'

The proof of Lemma 2 is complete.

)< m'(1+45).

Now we estimate the size of G .
Lemma 3. There is ¢ > 0 depending on O such that

Pr{|V", [2/n} < expiinlogn—cn®?}.

Pr{|V",[2 n**} <exp{n®* logn—cn'?}.
Proof. We need the following lemma.

Lemma ([5]). Let X,,...,X, be independent random variables such that X, takes

two values: 0 and 1,and Prix,=1}=p, Prix,=0}=1-p.

194



A.C. Acpatsn, H.H. Ky3stopun. ITpuGIiikeHHBIH anropuT™ JUisl XpOMAaTHYECKON PacKpacKu JBYIOJIBHBIX IPadoB 3a
nonuHOMHaNbHOE B cpeaueM Bpems. Tpyast UCIT PAH, tom 27, Beim. 5, 2015 1., ¢. 191-198

Let X = z;x[ and EX = np . Then the following inequalities hold:
for any 0 >0
PriX —EX <—0EX} <expi—~(5 12)EX},
forany 0 <0 <1
PriX —EX > SEX} <expi—(5 /3)EX}.
Using this Lemma we have for v € V]':
Prid(v) < n(1-5)2} < exp{—(5°/2)n/2},
Prid(v) > n(1+8)2} < exp{—(5?/3)n/2}.

We give the proof for Vz . The proof for ¥y is similar.
To do this we estimate the following probability:

Pr{| V' |>k}<n (Pr{fixed kyverticesvin V's have dWw)<(1-9)n/2}-

k
Pr{fixed k,verticesvin V's have d(v)=>(1+0)n/2}),

where k = kl + k2 . Using the Lemma and taking into account independence of the
corresponding events we have

Pr{fixed kverticesvin V's have d(v) < (1-8)n/2} <
expi—(6°/3)k;m/2} < exp{—cmk,},
Pr{fixed k,verticesvin V'y have dv)=(1+0)m/2} <
expi{—(0>/3)k,m/2} < exp{—cmk,},

where ¢ depends on O .

Letting in the last inequalities k¥ = n* we obtain
Pr{{V2ky<n exp{—cm(k, +k,)} <
k
expiklogn—cmk} < exp{n”*logn—cn'?}.

To finish the proof of Theorem 1 it is necessary to estimate the approximation ratio
of the algorithm VERTEX-COLOR and its expected running time.

2.2 Approximation ratio
If the algorithm terminates at step 2 then we use the inequality
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n+m<S(G)<n+2m.
This gives that for the proper coloring ¢ obtained at step 2

S(G.c)=n+2m< G-~ 5614+ <
n+m n+m
<S(G)1+n?) < S(G)(1+¢),

because & > n "2

solution at step 7).
Because at step 7 we always find an optimal solution it is sufficient to estimate
approximation ratio for step 6. To do this we use Lemma 2. If the algorithm

(in the opposite case the algorithm always finds an optimal

terminates at step 6 then # < \/; and 1, < n®*. Thus we have
n'= n—t 2 n—\/;, m = m—t, 2 m—\/; . Because the degree of a vertex in

G' can decrease by at most \/; we can estimate O as follows:
m M
degy > (1—5)5—\5: (-8,

24n
which implies &' = & + \/_.
m

By Lemma 2
n+2m—-100m—t,—t, < S(G') < S(G)<n+2m.
This implies the inequality
n+2m—106m—23n < S(G) <n+2m,
and then the inequality
(n+2m)(1 —105—2) <S(G)<n+2m.
Jn

Thus, for the coloring ¢ that the algorithm outputs at step 6 the following inequality
holds

S(G.e) < S(G)(1-105 -2y,

N

Now we use the following technical lemma.

Lemma. Let 0 <9 < min{L,i}, £>40n""". Then
50 50
25
(1-106 —-==)" <l +e.
Jn
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Proof. We have

(1-105-2>

N

)-(1+&)=1
This is equivalent to

5—105(1+5)—£(1+5)=
n

Jn
5—(1+5)(105+%)20.

This implies

& Ssq054 2

1+¢ \/;

Taking into account the inequality & < &50 we have
1200
n>

52

This inequality follows from the condition of the Lemma: & > 40n " .

2.3 Expected running time

Step 4 is performed in quadratic (in 72) time. By Lemmas 1 and 3 the expected time
of step 7 is at most

O((2n)*"Yexp{vn logn—cn'?} <
cexp{2nlog2n++/nlogn—cn'*} —0

as 1 tends to infinity.
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