
А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

35

Implementing Apache Spark Jobs Execution
and Apache Spark Cluster Creation for

Openstack Sahara
1

1
A. Aleksiyants <aleksiyantsa@gmail.com>

1
O. Borisenko <al@somestuff.ru>

1,2,4
D. Turdakov <turdakov@ispras.ru>

1
A. Sher <sher-ars@ispras.ru>

1,2,3
S. Kuznetsov <kuzloc@ispras.ru>

1
Institute for System Programming of the RAS,

25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia.
2
Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia.
3
Moscow Institute of Physics and Technology (State University)

9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
4
 National Research University Higher School of Economics (HSE)

11 Myasnitskaya Ulitsa, Moscow, 101000, Russia

Abstract. In this paper the problem of creating virtual clusters in clouds for big data analysis

with Apache Hadoop and Apache Spark is discussed. Both clouds and MapReduce models

are popular nowadays for a bunch of reasons: cheapness and efficient big data analysis

respectively. For these thoughts, having an open source solution for building clusters is

important. The article gives an overview on existing methods for Apache Spark cluster

creation in clouds. We consider two open source cloud engines OpenStack and Eucalyptus

and the most popular proprietary cloud service Amazon Web Services and examine cloud

related features presented by these systems. Afterwards, we regard possible ways of creating

virtual clusters for big data processing in OpenStack and describe their pros and cons. In the

second part we describe in details one of these solutions that uses service Sahara. Sahara

represents a cluster management system for OpenStack and it is used for setting up virtual

clusters and executing MapReduce jobs. Sahara did not support contemporary versions of

Apache Spark. The article introduces the results of our work that led to a Sahara

modification, describes its idea and implementation details. By virtue of our modification,

Sahara is able to create and use virtual clusters with contemporary versions of Apache Spark

in OpenStack clouds.

Keywords: Apache Spark, Openstack, Openstack Sahara, IaaS, PaaS

DOI: 10.15514/ISPRAS-2015-27(5)-3

1
 The work is supported by the RFBR, grant No 14-07-00602

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

36

For citation: Aleksiyants A., Borisenko O., Turdakov D., Sher A., Kuznetsov S.

Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for

Openstack Sahara. Trudy ISP RAN/Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48 (in

Russian). DOI: 10.15514/ISPRAS-2015-27(5)-3.

1. Introduction

Lots of modern computational tasks are implemented using MapReduce[1] parallel

paradigm. The computational process in this paradigm consists of two stages: Map

and Reduce. Before task execution all the data is distributed over nodes of the

cluster. On the Map stage, the master sends the executable task to the other nodes.

Then every worker (slave) processes its data. The next step is called Reduce which

means the master gets all results from workers and returns the final results which

depend on worker's results.

Since MapReduce paradigm is very popular there are a lot of frameworks

implementing this model of computations, such as Apache Hadoop, Apache Spark,

Infinispan, Gridgain, Riak and other solutions that provide Big Data Processing

abilities.[2][3][4][5] Moreover, such frameworks are not usually used as a

standalone system; there exists huge stack of related solutions and frameworks that

provide another abstraction levels such as jobs isolation, data distribution, task

scheduling and so on. Lots of efforts are needed to make these levels work together.

Some software companies (such as Cloudera, HortonWorks, MapR etc.) provide

their own distributions that include all the components for the whole stack of related

technologies.

The most popular MapReduce for today is Apache Hadoop framework. The main

goal of this project is implementation of MapReduce. Hadoop uses its file system

called HDFS (Hadoop Distributed File System). HDFS is a distributed, fault

tolerance block storage system that is the main priority in Apache Hadoop project

now.

Another example of MapReduce implementation is Apache Spark[6] that is a

successor for Apache Hadoop project. This system is probably the fastest

implementation of MapReduce[7][8]. In contrast to Hadoop, Spark performs most

computations in main memory boosting the performance. Apache Spark supports

most of the common big data stack technologies (primarily – Apache technology

stack). It seems that Apache Spark stands for replacement of Apache Hadoop since

it’s much faster and it was designed to fix Apache Hadoop issues.

As mentioned before, nowadays a software engineer should know not only how to

develop applications for Spark but also how to configure this framework with all the

needed related technologies for his particular task. It seems to be a problem since

configuration part is not really related to developing process.

At the beginning of our project, there were Spark deployment applications but none

of them were able to deploy Spark in cloud environments [9][10] with full

flexibility of related technology stack. There are different definition of cloud

computing but we will use the following: "Cloud is a parallel and distributed

А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

37

computing system consisting of a collection of inter-connected and virtualized

computers that are dynamically provisioned and presented as one or more unified

computing resources based on service-level agreements (SLA) established through

negotiation between the service provider and consumers."[11]

There are 3 most common types of cloud services provided nowadays:

1. Infrastructure as a Service (IaaS) provides access to the whole virtual

machine. A client is able to use all functionality and memory given to the

machine. In other words, a client maintains the operating system and

software of each particular machine himself.

2. Platform as a Service (PaaS). This service provides a platform allowing

clients to run and manage certain types of applications supported by the

provider. Client can deploy his applications and he doesn’t really concern

about virtual machine configuration.

3. The last type is Software as a Service (SaaS). This type of service stands

for client getting access to applications that are already deployed in the

cloud just as a user.

The most common IaaS systems that could be used for clusters creation for big data

processing are OpenStack, Amazon EC2 and Eucalyptus. Our project has the

following goals:

1. Automated Apache Spark clusters construction in cloud environment.

2. Provide user an ability to choose what version of Apache Spark framework

to deploy in a cloud.

3. Provide user an ability to use Apache Spark in couple with related

technologies within the same virtual cluster.

4. Provide PaaS access for constructed cluster which stands for simple Spark

jobs execution without any knowledge about the real cluster configuration

(just click&run).

5. Provide IaaS access for constructed clusters which stands for user ability to

login to any virtual machine in cluster and get full control for managing his

cluster if one wants to.

The next section is a brief overview of modern IaaS systems that we have

mentioned and their main capabilities.

2. Platform overview

2.1 Openstack

OpenStack is an open source cloud platform with modular pluggable architecture

and multitenancy support. OpenStack consists of several services that communicate

via REST API. Let's take a look at the main OpenStack services.

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

38

Nova

Nova is the main module of OpenStack. Nova is responsible for running and

maintaining VMs that are controlled by hypervisor. Nova consists of independent

daemons responsible for different tasks. Daemons use reliable message queue for

communications. The main daemons are Scheduler and Compute. At the

initialization step Scheduler decides which node should host new VM. Compute

provides communication between hypervisors and central component that manages

requests for VMs creations/deletions/etc. All the states changes are sent to the

central component that also manages primary database. Nova also stores all the

supplementary data about VMs in the cloud.

Keystone

Keystone is the second major subsystem. Keystone is responsible for user

authentication and providing lists of services with their endpoints. Any interaction

of services and users happens through Keystone. When a client (service or user)

wants to interact with any service it sends its credentials to Keystone and if they are

correct Keystone subsystem provides a token that is valid for some time span. After

that the client can send requests to services with the given token.

Glance

Glance is an OS image management service. Glance can use various storage

backends for images: file systems or object storage systems like Swift. The main

task of the project is providing boot images for VMs in Nova.

Neutron

Neutron is a service for network management. Neutron is a rather complicated

service which provides virtual network connectivity to VMs in Nova. Neutron

allows users to organize multilevel networks with complicated topologies,

complicated security in- and outbound rules. It provides tenants networks isolation

and external network services such as floating IP pools and traffic balancing.

Neutron can use various network hardware resources directly through specially

designed for each hardware resource plugins.

Cinder

Cinder is a block storage service. Cinder is responsible for providing persistent

block storage to VMs on-demand. These block volumes are attached to compute

nodes via iSCSI protocol and then they could be used by VMs as a local storage

volumes that don't disappear after VM shutdown.

А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

39

Swift

Swift is a highly available, distributed, eventually consistent object storage [12].

Object stands for file plus unstructured user-defined metadata for each file. Swift

has support for stored objects compressing. Swift provides access via REST API

much common to Amazon S3 which makes them easily interchangeable.

Horizon

Horizon is a Web GUI application for OpenStack services. It works as a client for

each Openstack service and aggregates the capabilities of the services in one place

for common usage of all the subsystems. Horizon is based on Django framework

and uses native client libraries for each Openstack project.

Heat

Heat is a configuration management tool for OpenStack. For node management

Heat uses templates which represent some sort of scenarios. These templates should

be written in AWS format (Amazon Web Services) or HOT (Heat Orchestration

Template). It also provides its own metadata server which tries to convert Nova

metadata in terms of Amazon EC2 metadata but there is no full compatibility and it

provides not all of the Amazon EC2 metadata terms.

Sahara

Sahara (formerly «Savanna») provides PaaS access for most common big data tools

using Heat or its own engine for VM configuration. This project will be observed

later in more detailed way.

Ceilometer
Ceilometer is a resource usage monitoring system. This system is used for gathering

information about using VMs. The service is mostly used in business projects for

controlling VMs of clients and billing.

2.2 Eucalyptus

Yet another open source cloud platform. Like OpenStack, Eucalyptus consists of

several loosely coupled components communicating over WSDL (Web Service

Description Language) [13]. Let's take a look at the Eucalyptus architecture and its

main components.

Node controller

Node Controller is deployed on every physical node that is intended to be used for

VM hosting. It is responsible for launching, maintaining and destroying VMs. The

service represents a communication point between Cluster Controller and operating

systems on VMs. Also Node Controller knows all the configurations of VMs on its

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

40

host. When one wants to create a VM the Cluster Controller sends a signal to some

Node Controller and after that the Node Controller creates a VM from image on the

node and passes control to hypervisor of VM.

Cluster controller

This component gathers information about running VMs and manages the network.

Cluster Controller could be run on any machine that is connected to the Cloud

Controller and the network of Node Controllers. Cluster controller gets commands

from high level controllers and transmits them to specific Node Controllers.

Gathered cluster data sends back to Cloud Controller.

Virtual network overlay

This component represents the network for Eucalyptus components. All VMs

should be interconnected and at least one of them should have a connection to the

Internet. At the start VMs interfaces are attached to software Ethernet bridge of a

physical machine. Then VMs get IP and MAC addresses. VMs can communicate

freely inside their cluster but if it is needed to send a message to another node then

Virtual network overlay works as a router.

Storage controller (Walrus)

Walrus is a storage with Amazon S3 compatible API. It is used for storing user data

and VM images.

Cloud controller

Cloud Controller is an entry point to the system for users. Cloud Controller is

responsible for resource provisioning and monitoring, managing user and system

data, GUI and authentication.

Eucalyptus does not have any tools for deploying Hadoop or Spark on clusters[14].

There are articles about Hadoop performance on Eucalyptus clusters but tuning and

configuring were done by scripts[15].

2.3 Amazon Elastic Cloud (EC2)

Amazon EC2 is the most popular proprietary cloud platform. EC2 uses hypervisor

Xen for creating VMs. At the same time EC2 has a lot of options for configuring.

This platform has a MapReduce service called Amazon Elastic MapReduce

(Amazon EMR) for big data processing which can deploy and run Spark as PaaS.

This service can create clusters with different extensions like Hive, Pig, Impala and

others. Since this project is proprietary we can use it just as it is provided without

any control.

А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

41

2.4 Conclusions

We have observed the most popular modern IaaS systems that are suitable for big

data processing clusters creation: Eucalyptus, Amazon EC2 and OpenStack.

Amazon EC2 is a proprietary platform with its own closed-source MapReduce

service. Eucalyptus platform has no special support for creating big data processing

clusters at all, unlike Openstack, which has Sahara project. As a result, we decided

to concentrate on the latter. In the rest of this paper we describe existing Apache

Spark clusters deployment existing approaches, our proposed solution and its

implementation.

3. Apache Spark clusters deployment existing approaches

At the start of our project, OpenStack had a subsystem called Heat[16]. One of the

goals of Heat project was to make OpenStack behave similar to Amazon EC2. This

would have made possible to use Amazon cluster deploying scripts (bundled with

Spark sources) for OpenStack. In the last-year work[17] we have managed to adapt

it for Openstack environment but it’s still not flexible, doesn’t provide an ability to

use other components of big data processing tools they need to use specially

prepared images for each Apache Spark release.

At the present time there are three ways of building Apache Spark clusters.

3.1 Manual configuration

The first way is to configure all the components manually which means that we

need to deploy all the needed components separately and for each VM we use. In

the minimal configuration that means that we should install JVM, Scala, Apache

Spark on each node; manually set connectivity and roles in that cluster and run all

the nodes hoping that no errors were made during configuration. If we need more

than just Apache Spark, we should do all the steps for each separate component.

NB: some helper tools such as Cloudera manager exist for that task, but that still

means that you should setup all the base requirements for Cloudera manager on

each VM in your cluster and then manually provision the cluster with Cloudera

web-interface which is still complicated and long process.

3.2 Amazon EC2 IaaS approach

We have already mentioned the PaaS for big data processing that Amazon provides

(EMR). Nevertheless there is another approach which is used by Apache Spark

developers team and which we have used earlier [17].

This approach stands for deploying clusters in Amazon EC2[18][19] (or using

similar adapted scripts in Openstack). In this case one should use pre-configured

images with installed components and configuring scripts. To support HDFS, the

images should use two types of storage devices for storing persistent and temporary

data.

The script executes the following steps:

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

42

1. The launching process is initiated from Amazon EC2 API. This process

launches VMs with chosen OS from image based on Red Hat Enterprise

Linux 5.3.

2. The script sets up security groups via API.

3. The script waits for 5 minutes.

4. The script gets nodes IP addresses via API.

5. Configuration files are created for all nodes.

6. A script is run on the master node over ssh. This script downloads

configuration templates from repositories.

7. The master node sends a file containing master and worker addresses over

ssh to other nodes.

8. The master node creates worker's configuration files from templates.

9. The script sends created configuration files to workers.

10. The master node runs HDFS and Apache Spark.

After these steps the cluster are ready to work.

Drawbacks for this approach are the following:

1. Pre-configured images for Amazon EC2 are private. We used to prepare

images for Openstack based on CentOS but it takes a lot of time and

Apache Spark releases appear too fast.

2. Our scripts need a lot of tune-up for particular Openstack environment: we

should provide networks ids for internal and external networks, external IP

address allocation method, we should know what networking system uses

particular Openstack installation (it could be Quantum/Neutron or legacy

Nova networking), we should implement separate adaptors for

communications for each version of API.

3. This approach is not extendable and doesn't allow using other than Apache

HDFS and Apache Spark frameworks.

These actions could be managed more easily with orchestration tools such as

Ansible/Salt/Chef/Puppet but the main problems of this approach would remain the

same.

3.3 Openstack Sahara approach

The third option is using Sahara project in OpenStack. The main goals of Sahara are

creating clusters for big data processing in OpenStack, deploying MapReduce and

running jobs on clusters.[20] Before our project succeeded, Sahara could create

clusters with only vanilla Apache Spark 1.0 which was already obsolete at that

moment and there was no choice of other frameworks for such clusters. Also it

provided access to created clusters in IaaS terms only.

At the present time Amazon EC2 lets users to create clusters with Apache Hadoop

or Apache Spark automatically. But this project is not open source and does not

satisfy us.

А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

43

Considering the last two approaches, the most attractive is direct integration with

OpenStack because of Sahara existence.

At the start of the project all these solutions either did not satisfy our requirements

or needed a lot of supplementary work during every cluster launch. Therefore there

was no open source system that would create clusters with current Apache Spark

version from different distributors.

We decided to implement the missing functionality in Openstack Sahara project.

4. Proposed solution

Sahara works with different distributions for big data. Spark support in Sahara was

limited to creation of clusters with vanilla Spark 1.0 only with basic support for

running jobs via Sahara REST API with custom methods for Spark.

At the same time Sahara could create clusters with other MapReduce frameworks

like Hortonworks, Cloudera and MapR. These distributors frequently update

versions for distributions components including Spark. Since Sahara tries to keep up

with versions of these frameworks it made sense to add Spark support as a general

adapter for all the distributions and to make one specific implementation as an

example for others. We have chosen to implement Spark support for Cloudera and

this choice is quite random – it could be done in the same way for the others.

MapReduce implementation is defined by plugin system in Sahara. A client can

create clusters using quite simple interface. Moreover, it is possible to add and

remove cluster nodes online. You can see module interaction in Figure 1.

Figure 1

Cluster creation happens as follows:

1. Choose Hadoop version.

2. Choose image. Any image with cloud-init could be used.

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

44

3. Configure cluster and nodes. During this step, master and worker nodes are

defined by choosing running processes for nodes.

a. Create Node Group Template. Node group stands for group of

VMs that use the same set of frameworks and tools onboard. You

can assign roles to Node Groups such as HDFS Namenode, HDFS

Datanode etc.

b. Create Cluster Node Template. Cluster configuring stands for

selecting Node Groups that should be included to cluster and the

quantity of VMs for each Node Group.

4. Run cluster

At the start of the project you could run different MapReduce jobs (Pig, Hive, Java)

through Horizon web-interface on running cluster depending on Hadoop version.

Spark jobs were not on the list that time.

4.1 Sahara Architecture Overview

Figure 2 shows Openstack Sahara architecture. We have marked with colors the

components we have modified to achieve our goals.

Figure 2

1. Auth component is responsible for client authentication and authorization,

communicates with the OpenStack Identity service (Keystone).

2. DAL - Data Access Layer, persists internal models in DB.

А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

45

3. Provisioning Engine is a component responsible for communication with

the Openstack Compute (Nova), Orchestration (Heat), Block Storage

(Cinder) and Image (Glance) services.

4. Vendor Plugins is pluggable mechanism responsible for configuring and

launching data processing frameworks on provisioned VMs. Existing

management solutions like Apache Ambari and Cloudera Management

Console could be utilized for that purpose as well.

5. EDP - Elastic Data Processing is responsible for scheduling and managing

data processing jobs on clusters provisioned by Sahara.

6. REST API - exposes Sahara functionality via REST HTTP interface.

7. Python Sahara Client - like other OpenStack components, Sahara has its

own Python client

8. Sahara pages - a GUI for the Sahara is located in the OpenStack Dashboard

(horizon).[21]

Sahara gets requests over REST API with web framework Flask. As mentioned

before, support for different MapReduce distributions is implemented via plugins.

Sahara uses SQLAlchemy ORM to be able to use different RDBMS for internal data

handling (such as storing jobs and their state, clusters configurations etc).

Figure 3

Sahara runs jobs on cluster through JobEngine class. This class is the base class for

all types of jobs. Spark jobs are run from SparkJobEngine, which contains the most

technical part. Every distribution with Spark support has its own implementation of

this class. We have added another implementation for Cloudera called

EdpSparkEngine. Previously Cloudera plugin could run Hadoop jobs only and they

were run over Oozie.

We have made possible for Cloudera plugin to choose 'engine' class depending on

the type of a job one wants to run. Now plugin's class VersionHandler returns either

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

46

Oozie or Spark engine. In addition to this we have changed common

SparkJobEngine class so it could be used for all the plugins (Vanilla Spark and

Cloudera were implemented during the project). This feature is supported in

Cloudera 5.3.0 and 5.4.0.

Also we have changed the way Cloudera clusters are configured and made possible

to create Spark clusters on Yarn using Cloudera plugin in Spark. That feature

worked in standalone Cloudera version before (not in Sahara version).

Spark jobs are supposed to use storage for input and output. Originally Cloudera

Spark could work with HDFS but not with Swift. We have modified classes

responsible for configuring Cloudera cluster so now such clusters are able to work

with Swift using Cloudera HDFS to Swift adapter.

You can check all the implementation details in Sahara official repository; all the

code is available under open-source license.

6. Results

As a result of this project we have now full support for Apache Spark cluster

creation in Openstack environments with support for running Spark jobs via web-

interface. Also Swift object storage can be used by Spark applications transparently

in Cloudera plugin for Sahara instead of HDFS. All the code is included in

Openstack Liberty release and available in the official Openstack Sahara repository.

References
[1]. Jeffrey D., Sanjay G. MapReduce: Simplified Data Processing on Large Clusters.

OSDI'04: Sixth Symposium on Operating System Design and Implementation, San

Francisco, CA, December, 2004.

[2]. Official Hadoop homepage - http://hadoop.apache.org/

[3]. Official Infinispan homepage - http://infinispan.org/

[4]. Official Cloudera CDH Apache Hadoop homepage -

http://www.cloudera.com/content/cloudera/en/productsand-services/cdh.html

[5]. Official BashoRiak homepage - http://basho.com/riak/

[6]. Official ApacheSpark homepage - http://spark.apache.org/

[7]. M. Chowdhury, M. Zaharia, I. Stoica. Performance and Scalability of Broadcast in

Spark. 2010.

[8]. VMWare Serengeti page - http://www.vmware.com/hadoop/serengeti

[9]. Official Cloudera Manager homepage -

http://www.cloudera.com/content/cloudera/en/products-andservices/cloudera-

enterprise/cloudera-manager.html

[10]. Buyya R., Broberg J., Goscinski D. Cloud Computing: Principles and Paradigms.

Wiley, 2011, 664 P.

[11]. Buyya R., Yeo C. S., Venugopal S. Market-oriented cloud computing: Vision, hype,

and reality for delivering it services as computing utilities. CoRR, (abs/0808.3558), 2008

[12]. Swift Architectural Overview - http://docs.openstack.org/developer/swift/overview

architecture.html

[13]. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language -

http://www.w3.org/TR/wsdl20/

А.В. Алексиянц, О.Д. Борисенко, Д. Ю. Турдаков и др. Реализация сервиса для выполнения Apache Spark задач

и создания Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27, вып. 5, 2015 г., c. 35-48

47

[14]. Nurmi, D. The Eucalyptus Open-Source Cloud-Computing System. Cluster Computing

and the Grid. 2009. 10.1109/CCGRID.2009.93

[15]. Nilson J. Hadoop MapReduce in Eucalyptus Private Cloud. Bachelor's Thesis in

Computing Science. Umea, Sweden, 2011

[16]. Official Openstack Heat homepage - https://wiki.openstack.org/wiki/Heat

[17]. O. Borisenko, D. Turdakov, S. Kuznetsov. Avtomaticheskoe sozdanie virtual'nȳkh

klasterov Apache Spark v oblachnoĭ srede Openstack. [Automating cluster creation and

management for Apache Spark in Openstack cloud] Trudy ISP RАN [The Proceedings

of ISP RAS], volume 26, issue 4, p. 33-43, 2014. (In Russian)

[18]. Official Amazon Elastic Compute Cloud (EC2) homepage -

http://aws.amazon.com/ec2/

[19]. Creeger, Mache. Cloud Computing: An Overview. ACM Queue 7. 5. 2009

[20]. OpenStack Sahara roadmap - https://wiki.openstack.org/wiki/Sahara/Roadmap

[21]. OpenStack Sahara Architecture -

http://docs.openstack.org/developer/sahara/architecture.html

Реализация сервиса для выполнения
Apache Spark задач и создания Apache
Spark кластеров на основе Openstack

Sahara
1

1
А.В. Алексиянц <aleksiyantsa@gmail.com>

1
О.Д. Борисенко < al@somestuff.ru >

1,2,4
Д. Ю. Турдаков <turdakov@ispras.ru>

1
А. В. Шер <sher-ars@ispras.ru>

1,2,3
С. Д. Кузнецов <kuzloc@ispras.ru>

1
 Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, дом 25
2
 Московский государственный университет имени М.В. Ломоносова,

119991, Россия, Москва, Ленинские горы, д. 1.
3
Московский физико-технический институт (государственный университет),

141700, Россия, Московская облаcть, г. Долгопрудный, Институтский пер., 9
4
 Национальный исследовательский университет «Высшая школа экономики»

101000, Россия, Москва, ул. Мясницкая, д.20

Аннотация. В работе рассматривается задача создания виртуальных Apache Spark и

Apache Hadoop кластеров для обработки больших данных в облачных средах.

Проведен обзор существующих методов создания Apache Spark кластеров. Также

1
 Работа поддержана грантом РФФИ 14-07-00602 А Исследование и

разработка методов автоматизации масштабирования и разворачивания

виртуальных кластеров для обработки сверхбольших объёмов данных в

облачной среде Openstack

A. Aleksiyants et al. Implementing Apache Spark Jobs Execution and Apache Spark Cluster Creation for Openstack

Sahara. Trudy ISP RAN/ Proc. ISP RAS, vol. 27, issue 5, 2015, pp. 35-48

48

описывается реализованный способ создания Apache Spark кластеров и сервиса для

выполнения Apache Spark задач в среде OpenStack. Предложенное решение включено в

проект OpenStack Sahara и доступно начиная с релиза OpenStack Liberty.

Ключевые слова: Apache Spark, Openstack, Openstack Sahara, IaaS, PaaS

DOI: 10.15514/ISPRAS-2015-27(5)-3

Для цитирования: Алексиянц А.В., Борисенко О.Д., Турдаков Д. Ю., Шер А.В.,

Кузнецов С. Д. Реализация сервиса для выполнения Apache Spark задач и создания

Apache Spark кластеров на основе Openstack Sahara. Труды ИСП РАН, том 27 (выпуск

5), 2015 г. стр. 35-48. DOI: 10.15514/ISPRAS-2015-27(5)-3.

Список литературы
[1]. Jeffrey D., Sanjay G. MapReduce: Simplified Data Processing on Large Clusters.

OSDI'04: Sixth Symposium on Operating System Design and Implementation, San

Francisco, CA, December, 2004.

[2]. Официальная страница проекта Hadoop - http://hadoop.apache.org/

[3]. Официальная страница проекта Infinispan - http://infinispan.org/

[4]. Официальная страница Cloudera CDH Apache Hadoop -

http://www.cloudera.com/content/cloudera/en/productsand-services/cdh.html

[5]. Официальная страница BashoRiak - http://basho.com/riak/

[6]. Официальная страница Apache Spark - http://spark.apache.org/

[7]. M. Chowdhury, M. Zaharia, I. Stoica. Performance and Scalability of Broadcast in

Spark. 2010.

[8]. Официальная страница VMWare Serengeti -

http://www.vmware.com/hadoop/serengeti

[9]. Официальная страница Cloudera Manager -

http://www.cloudera.com/content/cloudera/en/products-andservices/cloudera-

enterprise/cloudera-manager.html

[10]. Buyya R., Broberg J., Goscinski D. Cloud Computing: Principles and Paradigms. Wiley,

2011, 664 P.

[11]. Buyya R., Yeo C. S., Venugopal S. Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. CoRR, (abs/0808.3558), 2008

[12]. Обзор архитектуры Swift - http://docs.openstack.org/developer/swift/overview

architecture.html

[13]. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language -

http://www.w3.org/TR/wsdl20/

[14]. Nurmi, D. The Eucalyptus Open-Source Cloud-Computing System. Cluster Computing

and the Grid. 2009. 10.1109/CCGRID.2009.93

[15]. Nilson J. Hadoop MapReduce in Eucalyptus Private Cloud. Bachelor's Thesis in

Computing Science. Umea, Sweden, 2011

[16]. Официальная страница Openstack Heat - https://wiki.openstack.org/wiki/Heat

[17]. О. Д. Борисенко, Д. Ю. Турдаков, С. Д. Кузнецов. Автоматическое создание

виртуальных кластеров Apache Spark в облачной среде OpenStack. Труды

Института системного программирования РАН, том 17, 2009 г. Стр 31-50.

[18]. Официальная страница Amazon Elastic Compute Cloud (EC2) -

http://aws.amazon.com/ec2/

[19]. Creeger, Mache. Cloud Computing: An Overview. ACM Queue 7. 5. 2009

[20]. OpenStack Sahara roadmap - https://wiki.openstack.org/wiki/Sahara/Roadmap

[21]. Архитектура OpenStack Sahara - http://docs.openstack.org/developer/sahara/architecture.html

