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Abstract. This paper is a report of a study in progress that considers development of a 

framework and environment for modelling hardware memristor-based neural networks. An 

extensive review of the domain has been performed and partly reported in this work. 

Fundamental papers on memristors and memristor related technologies have been given 

attention. Various physical implementations of memristors have mentioned together with 

several mathematical models of the metal-dioxide memristor group. One of the latter has been 

given a closer look in the paper by briefly describing model’s mechanisms and some of the 

important observations. The paper also considers a recently proposed architecture of 

memristor-based neural networks and suggests enhancing it by replacing the utilized memristor 

model with a more accurate one. Based on this review, a number of development requirements 

was derived and formally specified. Ontological and functional models of the domain at hand 

have been proposed to foster understanding of the corresponding field from different points of 

view. Ontological model is supposed to shed light onto the object-oriented structure of 

memristor-based neural network, whereas the functional model exposes the underlying 

behavior of network’s components which is described in terms of mathematical equations. 

Finally, the paper shortly speculates about the development platform for the framework and its 

prospects.  
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1. Introduction  

Until 1970-s the world has been aware of only three passive elements of electrical 

circuitry: resistors, capacitors and inductors. The three stated elements coupled with 
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natural relationships provide five connections for four basic notions of electrical 

circuit theory (voltage, charge, current and flux). Mathematics, however, claims that 

four things can be mutually interconnected in six different ways. Indeed, the relation 

between charge and flux was not present. It wasn’t until 1971 that the discordance 

has been formulated and solved. A new element – memristor - has been proposed by 

Leon Chua in his paper in IEEE Transactions on Circuit Theory completing the 

mathematical symmetry of circuit theory. It took nearly 40 years for memristor to 

transform from a purely theoretic concept into feasible implementation. In 2008 a 

group of scientists from Hewlett-Packard Labs lead by Stan Williams has finally built 

working memristors [1]. 

One of the most promising domains of memristor application, seem to be artificial 

neural networks [2]. These often come in either software or hardware 

implementations, sometimes in a combination of both. While digital neural networks 

simulate the data processing mechanism of biological neural networks, hardware ones 

strive to emulate it. It is worth mentioning that since most of computer architectures 

conform to the von Neumann architecture, neural network simulation becomes a 

challenging task because of the paradigm mismatch. Instead of simulating the ways 

of nature, hardware neural networks try to directly replicate them, creating non-von-

Neumann architectures. In comparison with digitally simulated networks, hardware 

ones can achieve better speed, less power consumption and chip space.  

On the other hand, hardware networks often prove to be far less accurate that their 

software counterparts, due to the nonuniformity of analog components [3]. Another 

disadvantage of modern hardware neural networks, which they actually share with 

the software ones, is the volatile storage of synaptic weights. There are ways to 

achieve the nonvolatile weight storage within hardware networks, but usually such 

weights are either static (cannot be changed once manufactured), quickly digress 

(require frequent updating) or are rather hard to program [4]. The emergence of 

memristor, however, seems to have opened new possibilities in addressing the stated 

problems. Memristors seem to be a perfect match for synapses, making hardware 

implementations of neural networks more reliable and greatly increasing productivity 

of neural computations [5].  

Nevertheless, memristors are still scarcely availably and lack industrial-grade 

production. Being such a new technology, they are often hard and expensive to 

acquire for experimentation, but a large variety of memristor models has already been 

produced, making it possible to model memristor-based devices.  

Thus, considering the domain of artificial intelligence, a need in profound and correct 

model of artificial memristor-based feedforward neural network arises. Such model 

would be of great help in assessing the qualities of modeled system: computation 

performance, time and energy expenses, material costs, etc. Consequently, the goal 

of the research is to develop a framework for modelling artificial memristor-based 

neural networks. 
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2. Theoretical Memristor 

The concept of memristor has been recognized since 1971, when Leon Chua has 

proposed for the first time in a well-organized and mathematically described way [6].  

The 1971 Chua’s paper in IEEE Transactions on Circuit Theory is considered to be 

the pioneer work in the corresponding field of research. Although, the concept of 

memristor-like devices has been suggested earlier in 1960 by Bernard Widrow, Leon 

Chua was the first one not only to provide a feasible foundation for memristor’s 

existence, but also to estimate and mathematically describe its’ supposed behavior 

and properties. 

Memristor fulfills the mathematical symmetry of relationships between major circuit 

notions. The relationship created by a memristor, according to Chua, is expressed as 

follows: 

, 

where M(q(t)) is the memristance defined as 

 

The definition of memristance may be represented in a more convenient form by 

substituting flux and charge with their integral definitions: 
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The similarity of memristor to the remainder of classical circuit elements can be better 

reflected by expressing their definitions via differential equations as it is done in 

fable 1. 

Table 1. Differential equations of basic circuit elements 

Device Electronic Symbol Unit Differential equation 

Resistor 
 

R, ohm R = 

�

�  

Capacitor 
 

C, farad C = 

�

� 

Inductor  L, 
��
�  or henry L = 


�

�  

Memristor 
 

M, 
��
�  or ohm M = 


�

�  
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The first important property of memristors, which commonly is referred to as 

memristance and stands for the ability to change its resistance gradually via a 

controlled mechanism (e.g. memory of device’s history of charge). 

The second significant attribute of memristors, figured out by Chua, is the non-

volatility property, which stands for the absence of internal power supply. In other 

words, Chua proposed that memristor is able to store the value of own resistance 

without the need to be connected to a power source. 

In 1976, Leon Chua and his fellow colleague Sung Kang proceeded exploring the 

mathematical and physical properties of the memristor [7].  

They had come to an understanding, that since memristor is a dynamic device, one 

equation is not enough to describe it, henceforth memristor’s behavior is represented 

by following equations for current-controlled memristor 

� � ���,  , �� 

! � "��,  , ��  
and for voltage-controlled one 

� � ���, !, ��	
! � "��, !, �� 	

 
Fig. 1. Pinched hysteresis loop in the i-v curve 
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where v and i denote the input voltage and current respectively and x stands for the 

internal state of the device. In their paper, Chua and Kang also provided a more 

generalized concept of memristive systems with no specific reference to particular 

physical variables.   

One noteworthy peculiarity derived from these equations is that regardless of the state 

x (which implements the memory effect), the output voltage is equal to zero whenever 

input voltage or current are equal to zero as well. This zero-crossing property, Chua 

and Kang write, manifests itself vividly in the form of a Lissajous figure, which 

always passes through the origin. Thus, they extended the definition of memristor that 

is now to encompass any system able to demonstrate a Lissajous figure (later called 

pinched hysteresis loop by Chua) in the i-v  curve, which is presented on fig. 1. 

3. Memristor Models 

However, the true interest has been sparked by the notable work of Richard Stanley 

Williams’ group of researchers at Hewlett-Packard laboratories. Despite this fact, the 

idea of memristors not being a purely theoretical concept has captivated minds of 

many researchers around the world, resulting in more than 120 publications about 

memristors and memristive systems by 2011. [8]. 

After the concept of memristor was brought back to the public’s sight, several 

implementations of memristors and memristive systems have been proposed. 

Different implementations of memristor rely on various physical and chemical 

reactions that give rise to both memristance and nonvolatility, properties essentially 

constituting the definition of memristor. There have been reported polymeric [9,10], 

spintronic [11], ferroelectric [12] and layered [13] implementations of memristor, but 

titanium dioxide memristors remain the most well studied group. During this research 

four models were closely considered, namely linear ion drift model[1], nonlinear ion 

drift model[14], Simmons tunnel barrier mode[15], and threshold adaptive memristor 

model (TEAM)[16]. Unfortunately, due to the paper size considerations only the last 

one of them will be reported. This model, however, was decided to be further utilized 

throughout the work.  

TEAM model, proposed by Kvatinsky et al., incorporates advantages of ion drift 

models’ explicitness and Simmons tunnel barrier accuracy, yet manages to preserve 

relatively high computational performance and generalizability. TEAM model is 

based on the same physical behavior as Simmons tunnel barrier model. But it manages 

to convey it with simpler mathematical functions. The model introduces several 

assumptions for the sake of analytical simplicity: state variable does not change below 

a certain threshold and exponential dependence is replaced with a polynomial one. 

Detailed mathematical foundation of the model may be found in the corresponding 

paper. 

A major advantage of such a relation is the explicitness of current and voltage 

relationship as opposed to the Simmons tunnel barrier model. Nevertheless, 

Kvatinsky et al. were able to perform a fitting procedure forcing TEAM model to 

match the latter with reasonable and sufficient accuracy. In their paper, authors of 
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TEAM model also report the results of comparison between the fitted TEAM and 

Simmons tunnel barrier model. The feasible preciseness of TEAM model was proved 

by the average discrepancy between models’ state variable difference of only 0.2%. 

The maximum difference of this value constituted 12.77%, however the run time of 

the model was nearly halfed (47.5%) Kvatinsky et al. had been also able to fit the 

model with different types of physical memristor models, namely STT-MRAM and 

Spintronic memristors. 

4. Memristor Bridge Neural Network 

This paper considers the neural network architecture proposed by Adhikari et al. in 

2012 [4]. The architecture is based on the memristor-bridge synapse [17] and aims to 

solve the issue of nonvolatile synaptic weight storage and implement a newly 

proposed hardware learning method. 

4.1 Memristor Bridge Synapse 

Memristor bridge synapse architecture was first proposed in [17], it is a Wheatstone-

bridge-like circuit that consists of four identical memristors of opposite polarities. 

When positive or negative strong pulse vin (t) is applied at the input, the memristance 

of each memristor is increased or decreased depending upon its polarity. 

Kim et al. write, that if input pulse voltage is equal to vin, voltages at memristors can 

be calculated according to “voltage-divider formula”. Then given memristances M1, 

M2, M3, and M4 stand for the corresponding memristors at time t, the output voltage 

is reported to be equal to the voltage difference between terminals A and B: 

!#$ � !� − !& � ' �(
�) + �(

− �+
�, + �+

- !�. . 

4.2 Memristor Bridge Neuron 

In artificial neural networks neurons are required to sum a set of input postsynaptic 

signal and, according to the activation function, propagate (or not propagate) the 

signal further on to the next layer of the network. The neuron is then required to sum 

the input postsynaptic signals. Kim et al. point out, that the signal summing operation 

is easier to be performed in current mode: postsynaptic signals should be connected 

to a single node, so that the following neuron would receive the sum of currents via 

Kirchhoff’s current law. In order to achieve current summation, the memristor bridge 

synapse has to be modified because it provides voltage output. Kim et al. suggest 

combining the memristor bridge with differential amplifier. The latter converts post-

bridge negative and positive voltage into corresponding currents. Hence, for a set of 

synapses there exist two nodes: one for positive postsynaptic current and one for 

negative postsynaptic current. These nodes sum the output currents of each individual 

synapse in the set. Neuron itself is then comprised of the summation nodes, but also 

of the active load circuit that implements the activation function as in fig. 2. The sum 
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of all postsynaptic currents is converted back to voltage (presynaptic signal for next 

layer of neural network) by the active load circuit according to the activation function.  

In their paper, Adhikari et al. also provide rigorous mathematical explanation of the 

suggested architecture behavior. 

4.3 Neural Network Training 

A composition of an arbitrary number of neurons connected via memristor-bridge 

synapses therefore constitutes the artificial network. Adhikari et al. intend to use 

Chip-in-the-Loop technique for training the network of proposed architecture. They, 

however, suggest modifying this technique slightly in order to take into account 

peculiar properties of memristor-based circuits. This technique is a viable choice 

since it provides a way to deal with memristor bridge non-idealities without explicitly 

modelling these nonidealities. According to this technique, the circuit performs the 

forward computation of the network, whereas back-propagation and weight update is 

done on the software side.  

The hardware circuit network is reproduced by a software clone, which is used to 

process the training data. After the computer network has processed all the training 

data, synaptic weights of each individual synapse circuit are programmed by direct 

application of strong voltage pulses in order to match with the weights from computer 

network’s weight matrix. Hence, the whole of the hardware network is treated as it 

consists of a set of simple single-layer networks. Each one of those single layer 

networks is trained separately, according to the weight matrix. Because of the nature 

of memristor bridge synapses, the need in additional circuitry is eliminated. 

 
Fig. 2. Memristor Neural Network Circuit Fragment [4] 
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5. Framework Concept 

As one can see, plenty of research has been carried out in the field of memristors and 

memristor-based neural networks. Multiple approaches to both creating and 

modelling memristors have been mentioned in previous sections.  

It is needed to create a reliable framework for simulating memristor-based neural 

networks. So far, rather abundant overview of the domain has been presented. Despite 

the vast variety of works mentioned, the domain at hand lacks general integrity and 

is not formalized enough to start composing the framework at least in its basic form. 

Hence, the domain must be formalized to a certain extent. In order to derive this 

degree of formalization, the requirements for the stated framework are to be 

determined. This will enable framework to be designed properly and will ensure it 

complies with the needs and wants of its users. Requirements are decided to include 

four major points: accuracy, performance, flexibility, and explicitness. Accuracy 

stands for reliability of framework and if its output data can be trusted. Performance 

reflects how quick does the simulation proceed. Flexibility corresponds to how easy 

it is to swap components and models within framework. Finally, explicitness is 

determined by the overall convenience of the framework and how well does it 

represent results of the simulation. Insights into these requirements can be better 

revealed according to the SMART criteria (a project management technique for 

elaborating objectives), which is done in Table 2. 

The requirements described above help determine what is to be expected from the 

framework, what kind of formalization for the domain is required, and set guidelines 

for further process of design and development. The domain may be formalized by 

representing it as a graphical scheme, henceforward called ontological model. The 

reason for such naming is that this model encompasses relevant entities of the domain 

under discourse, as well as reflects their major properties and interrelations, which in 

turn roughly corresponds to the definition of ontology. This model will limit the 

complexity of the field of memristor-based neural networks and expose the intrinsic 

connections between the notions at hand. 

First, let us derive a set of entities to be found within this model. At the very core of 

every network there are neurons and synapses. These three notions (neural network, 

synapse and neuron) constitute the heart of designed model as well.  

Multilayer network usually distinguishes between input layer neurons, output layer 

neurons and hidden layer neurons, which may slightly differ. Input neurons should be 

able to receive input signals, which may not necessarily coincide with how the signals 

are conveyed within the network. Similarly, output neurons must provide output 

signals. Consequently, input and output program modules should be introduced, in 

order to convert electrical output signals into human-comprehensible format and vice 

versa for the input signals.  
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Table 2. Framework requirements according to SMART 

Criterion Accuracy Performance Flexibility Explicitness 

Specificity 

Results of 

simulation within 

framework must 
coincide with 

corresponding 

experimental data. 

Simulation 

processing must 

be performed in a 
reasonable time. 

Frameworks 

components must 

be easy to change 
and replace, due 

to the domain’s 

novelty. 

Simulation results 

should be clear 

and easy to 
observe. 

Measurability 

Given the same 

input data the 

framework must 
produce the same 

output data as in 

either 
experimental data 

or in verified 

models. Thus, the 
discrepancy 

between these 

results may be 
used to measure 

accuracy of the 

framework. 

Time taken to 

perform the 

simulation and 
calculate the 

results reflects 

how well does the 
framework 

perform in terms 

of performance. 

Framework’s 

flexibility can 

measured in 
regard with how 

many approaches 

to memristor 
modelling and 

network training 

and architecture 
does it 

implement. 

Explicitness is the 

most subjective of 

all requirements 
and should be 

estimated by  

direct responses of 
framework’s 

users. 

Achievability 

Accuracy is 
achieved through 

testing the 
framework and 

tuning it match 

with known data. 

Performance is 
achieved through 

optimization of 
frameworks 

algorithms and 

architecture. 

If designed 
correctly the 

architecture 
(structure) of the 

framework should 

provide sufficient 
flexibility. 

Various 
parameters of 

framework’s 
components must 

be accessible and 

visualization 
methods (graphs, 

visual models, 

etc.) should be 
provided. 

Relevance 

Accuracy is 

arguably the most 

important 
requirement, 

without sufficient 

accuracy, the 
purpose of the 

framework is 

defeated. 

Performance is 

quite relevant 

since long runtime 
may hinder the 

research progress 

when using 
framework. 

Because the 

domain is so new, 

it is extremely 
important to make 

the framework 

able to adapt to 
possible changes. 

Visual 

representation of 

simulation results 
is very important 

for the end user. 

Timeliness 

Accuracy may be 

achieved after 

tuning the initial 
version of 

framework. 

Performance 

should be taken 

into account 
during the 

development, but 

can be also 
improved by later 

optimization. 

Flexibility must 

be ensured from 

the very 
beginning of the 

development. 

Visualization may 

be introduced 

after the basis of 
the framework is 

complete. 

Both neurons and synapses of hardware neural networks are implemented through 

Both neurons and synapses of hardware neural networks are implemented through 
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circuits. Circuit design may vary from one implementation to another, therefore, the 

general concept of neurons and synapses should be decoupled from its’ particular 

hardware implementation to ensure flexibility. This will enable the framework to 

safely switch between specific circuit implementations of neurons and synapses, but 

will also ensure framework’s operability. The framework must as well be able to 

switch between different realizations of memristor, namely, memristor models. 

Hence, the latter should be considered a separate entity, which is contently used as a 

component in synapse circuitry. For the time being only the metal dioxide class of 

memristors is considered to limit already reasonable complexity of the framework. 

Finally, the network must should be able to employ different learning techniques. 

Despite the fact that this work considers only chip-in-the-loop method, the framework 

should be designed being able to implement various ways of network training. Here 

it is necessary to take into account not only the learning algorithm, but also how this 

algorithm is applied to hardware circuit components of the network. 

The ontological model is depicted on fig. 3. Solid border circles correspond to the 

entities of the domain; dashed border circles stand for the properties (attributes) of 

certain entities; filled arrows represent association relation between entities; empty 

arrows reflect inheritance (or, possibly, interface implementation); finally, dashed 

lines reflect attribution connections. 

It must be noticed, that the ontological model is likely to be changed in the following 

works and presented version is not final. Some of the anticipated issues include 

particular implementations of learning techniques, for instance, chip-in-the-loop does 

not require auxiliary circuitry, whereas spike timing-dependent plasticity usually 

does. Another bottleneck to be expected relates to the circuit implementations of 

neurons and synapses. The latter may consist of multiple circuits that should be 

represented as separate entities in order to preserve flexibility of the system, yet 

should conform to the same interface for the sake of integrity. 

In this way we shed light onto the structural peculiarities of the future framework. 

This model is to help composing the classes to be implemented as well as their 

interrelations. Let us now consider the other side of the developed system, namely, 

its functional requirements. In this paper, the latter refer to a certain number of 

capabilities expected by users from the framework.  

Framework under development strives to model memristor-based neural network 

suggested by Adhikari et al., which is described in the previous section. It is also 

expected to make possible modeling with better level of preciseness by enabling 

swappable memristor models. For instance, employing TEAM memristor model may 

significantly raise the relevance of proposed hardware neural network model through 

fostering the accuracy of memristor’s physical model.  
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The functional scope of the framework may be represented as a set of intertwined 

mathematical equations that describe various parts of the network model. Each entity 

of the framework can be characterized with equations that have adjustable parameters, 

which are usually derived by the authors of corresponding models from experimental 

data analysis.  These equations are extracted from relevant models and are bound in 

such way, that one equation’s output usually corresponds to input of the other 

equation. This set of equations is depicted on fig. 4.  

 
 

Fig. 3. Domain’s Ontological Model 
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Fig. 4. Functional Structure 

Each separate square on the scheme reflects an entity of the framework, while arrows 

denote the input-output connections between equations. One may notice that relations 

of equations form a cycle, where one iteration of this cycle corresponds to one layer 

of hardware memristor network. This figure depicts what set of functions is expected 

to be provided by the future framework. 
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6. Conclusion and Prospects 

In this paper, a range of memristor models has been reviewed together with some of 

the fundamental papers on memristor-related technologies. Based on this review, a 

concept of framework for modeling memristor-based hardware neural networks has 

been proposed. This framework represents an implementation of neural network 

architecture considered in the paper, but implies ability to swap memristor models in 

order to increase the overall flexibility and, possibly, relevance of models generated 

with the help of proposed framework. The ability to switch between model is also 

expected to help comparing suggested implementations. In the process of framework 

structure discovery a set of criteria has been formulated to assess the future software 

product, domain of memristor-based neural networks has been formalized to a certain 

extent, and, finally, the framework has been given a functional structure strictly 

defining its’ capabilities. 

Specific platform for framework implementation is yet to be chosen. As of current 

state of affairs, Unity engine is expected to be the most favorable candidate. Its 

architecture perfectly fits the nature of soft simulation (which the framework 

ultimately represents), providing some software patterns that greatly alleviate the 

development. Considered engine is also able to realize extensive visualization of 

models as well as equip them with user-friendly interface to further enhance model 

explicitness and facilitate employment of the future framework for academic 

purposes. Finally, implementing a circuit simulation framework in Unity also pursues 

an exploration goal, since such attempts have not been previously well studied. 
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Обзор предметной области и концепция фреймворка 
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Аннотация. В данной работе представлены предварительные результаты текущего 

исследования по разработке среды моделирования аппаратных мемристорных 

нейронных сетей. Проведен анализ релевантных трудов, описаны фундаментальные 

работы по мемристорам и мемристорным технологиям, рассмотрены различные 

физические реализации мемристоров, а также несколько математических моделей 

мемристоров из металло-диоксидной группы. Одна из таких моделей более подробно 

представлена в работе, описаны ее основные механизмы и наиболее интересные 

свойства. В работе также рассматривается недавно предложенная архитектура 

мемристорной нейронной сети, описывается методика обучения подобной аппаратной 
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нейронной сети, реализация еу компонент: нейронов и синапсов на основе 

мемристорных мостов. В данной работе также выдвинуто предложение по улучшению 

этой архитектуры путем использования более точной модели мемристора в рамках сети. 

Основываясь на проведенном анализе предметной области, составлены и формально 

описаны требования к разработке среды моделирования мемристорных нейронных 

сетей. Кроме того, для лучшего понимания рассматриваемой предметной области 

составлены онтологическая и функциональная модели. Первая модель необходима для 

формализации объектной структуры предметной области, в то время как вторая модель 

используется для явного представления математических формул, описывающих 

физическое поведение соответствующих объектов. В совокупности обе модели 

позволяют составить полное, формализованное и многостороннее описание предметной 

области мемристорных нейронных сетей и перейти к процессу проектирования и 

разработки программного продукта. В конце работы кратко представлены дальнейшие 

перспективы разработки среды моделирования мемристорных нейронных сетей. 

Ключевые слова: мемристор; модель мемристора; аппаратная нейронная сеть; 

мемристорная нейронная сеть. 
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