T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

Technology for application family creation
based on domain analysis

A. Gudoshnikova <gudoshnikova.anna@gmail.com>
Y. Litvinov <y.litvinov@spbu.ru>
Software Engineering chair,
St.Petersburg State University,
198504, Russia, St.Petersburg, Peterhof, Universitetsky prospekt, 28

Abstract. The theme of code reuse in software development is still important. Sometimes it is
hard to find out what exactly we need to reuse in isolation of context. However, there is an
opportunity to narrow the context problem, if applications in one given domain are considered.
Same features in different applications in one domain have the same context respectively so
the common part must be reused. Hence, the problem of domain analysis arises. On the other
hand, there is metaCASE-techonology that allows to generate code of an application using
diagrams, which describe this application. The main objective of this article is to present the
technology for application family creation which connects the metaCASE-techonology and
results of domain analysis activity. We propose to use some ideas of FODA (feature-oriented
domain analysis) approach for domain analysis and use feature diagrams for describing of
variability in a domain. Then we suggest to generate metamodel of the domain-specific visual
language, based on feature diagram. After that based on generated metamodel domain-specific
visual language editor is generated with the aid of metaCASE-tool. With this language user can
connect and configure existing feature implementations thus producing an application. This
technology supposed to be especially useful for software product lines.

Keywords: domain analysis; metaCASEtechnology; domain-specific language; application
family

DOI: 10.15514/ISPRAS-2016-28(2)-6

For citation: Gudoshnikova A.A., Litvinov Y.V. Technology for application family creation
based on domain analysis. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue. 2, 2016, pp. 97-110
DOI: 10.15514/ISPRAS-2016-28(2)-6

1. Introduction

The term “reuse” in software engineering is closely associated with context. Reuse
objects can be programs, parts of programs, specifications, requirements,
architectures, test plans, etc. Reuse of one object leads to reuse of another object. This
means, there is a need to reuse something more than just code, i.e. there is a call for

97

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

increasing the abstraction level. It is commonly supposed that reuse, as some kind of
activity, can be divided into groups according to what should be reused: components,
process for gaining the product, technology or knowledge. At all accounts any reuse
object cannot be discussed without environment, where the given object exists.
Hence, the context problem still remains. However, if we reuse objects in one domain,
the context issue may be narrowed. The product line implies that there is a common
part, it can be: (1) architecture, (2) components, (3) algorithms, (4) methods, etc. —
and this part exists in the same context. This fact facilitates the reuse problem.
Consequently, the common part must be reused.

Gathering information about the domain is the crucial step in the whole process of
software development. Nowadays applications in one domain are often designed
independently; this approach leads to increase of development time and cost. Usually
such applications have similar functionality, so the reuse problem moves to the
forefront in an attempt to speed up the development and to decrease the cost for
systems in one domain. The reuse process in one domain supposes the necessity of
the domain analysis activity. At present domain analysis in software life cycle is
performed in informal way. There are some domain analysis tools, but such tools are
not integrated with development tools. As the result of the domain analysis activity
some diagrams just are put up on the board, and do not take part in following process
of software design. The risk of incorrect understanding of domain-dependent
knowledge increases. Therefore, many peculiarities of the domain may be missed in
development process because of the factor of human error. This fact may lead to
development of the product, which does not satisfy requirements at all. Hence, there
emerged a need for a tool in which domain analysis activity would play a vital role in
software development process, i.e. based on this activity would be possible to
generate some design model, so developers and other process actors could rely on this
model. At the present day there is no tool that could allow to solve this problem.
One possible solution for this problem is the use of domain analysis tool in model-
driven development, or, more precisely, domain-specific modeling. Domain-specific
approach uses visual languages to specify system under development, but, contrary
to general model-driven approach, which uses general-purpose visual languages like
UML, domain-specific languages are tailored specifically for given domain or a set
of problems. Existing studies [1-4] show that due to closeness to a problem domain
and the ability to generate complete application by visual models domain-specific
languages boost development productivity by 3 to 10 times compared to general-
purpose languages. It is clear that developing a tool for domain-specific language
“from scratch” for each domain will be prohibitively costly, so special systems are
used that allow to declaratively specify syntax of a language and to automatically
generate such tools as visual editor, source code generators, constraints checkers and
so on. Such systems are called DSM platforms, most known of these is MetaEdit+ [5-
71, Eclipse GMP [8, 9], Microsoft Modeling SDK [10].

Main idea of domain-specific modeling is to use a number of visual languages in one
tool to develop a complete system. Every language can provide a different point of

98



T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

view on a system. We propose to exploit this idea to automatically produce useful
artifacts from the results of domain analysis thus seamlessly integrating this phase
into development process (such as [11]). For that, we will use specific visual language
to perform domain analysis and to build domain model, language simple enough to
be useful to analysts and domain experts who do not necessarily possess programming
skills. Then, using this domain model, we will generate actual domain-specific
language that will allow to configure various existing pre-built components and
integrate them to generate a working application. As we will see, this language will
also typically be very simple so that non-programmers can use it. The only real coding
in the proposed approach occurs when creating components from which applications
will be built, but for product lines these components will already exist anyway, as
they will in a case when a team develops many applications in one domain for some
time. Not all steps in proposed approach are fully automatic, as a visual language
needs tailoring after generation from domain model — we still need to manually
specify shapes of its elements (to be familiar for domain experts) and configure
properties which depend on existing components and cannot be derived from domain
model. It is also possible that generated application will need tailoring by hand, but
generation can significantly lower the effort needed to create application.

Main contribution of this research-in-progress paper is a novel approach to product
line development and assets reuse. Also an implementation of technology which uses
this approach is presented. Our technology is based on QReal DSM platform [12], an
open source tool developed by Software Engineering chair of St. Petersburg State
University. An evaluation of proposed approach is also presented, but on a rather
simple problem, so a much wider evaluation is needed for this study to be considered
complete, such as the applicability of this approach to complex real-life situations and
determining actual productivity boost on real-life problems.

The rest of this paper is structured as follows: in section 2 most important terminology
for domain analysis is given, also related works are considered. In section 3 we
present our method and its implementation as development platform, in section 4 an
example of application of our approach is given, we will consider a family of Android
gamepads for remote control of various robot models. Section 5 concludes the paper.

2. Domain analysis approaches

There is no any clear and long-standing definition of the term “domain analysis”.
Almost all papers, in which this term is considered, go back to 80s-90s of the
twentieth century. It was then that scientists, taking into account rapidly growing
technologies, were thinking about global reuse. Always projects are developing for
concrete user needs, so then the term “domain” took the definition. Domain is the
field of expertise, problems in which the software intends to solve. According to
Rugaber [13], the domain is described in terms of glossary, some assumptions,
architecture approach and literature.

Then the question arise, how we need to analyze the domain for acquiring the
necessary information. At present, the information gathering into knowledge bases is

99

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

understood under the term “domain analysis”. Although, Prieto-Diaz [14] confirms
that domain analysis is an activity, which is held before system analysis and its output
is used for system analysis to the same degree as system analysis’s output is used for
system design. There are other definitions of the term “domain analysis”. Ferre [15]
has presented definitions, such as: (1) the process of identification, organization and
presenting the relevant information of a given domain, (2) the process, in which the
customer’s knowledge are identified, concretized and systemized. The relevant
information of the domain should be presented in objective, readily available way,
such way is called “domain model”. Mernik [16] specifies that the domain model
includes not only glossary, but also must describe commonalities and variabilities of
terms. Such model should precisely set bounds of the domain, i.e. clear and exact
characterize a range of questions, which are considered in the domain. Term
variabilities allow to define exactly, what information must be specified in concrete
system implementation. Term commonalities are used for defining a set of shared
operations between different applications. Implementing commonalities and adding
the gained model with information, which can be specified in instance of the concrete
system, a set of different systems can be obtained based on one common model. In
such manner, based on one domain model, the set of different systems in given
domain can be implemented. Taking into account definitions above mentioned, we
can conclude that domain analysis is the activity of forward system analysis, which
goal is to provide the domain model.

As stated above, at present in many software companies the term “domain analysis”
is understood as information gathering into some knowledge bases, but it is obvious
that there are disadvantages of this approach. It may lead to incomplete glossary,
absence of agreements about understanding some terms in the domain, so any
misunderstanding of domain can result in an improper product. Therefore, several
dozens of years ago were introduced some formal approaches for domain analysis.
Here will be mentioned some of them. Main objective any domain analysis approach
is to gain the domain model.

Despite different understanding of the term “domain analysis”, Arango [17] showed
that all formal domain analysis methods follow the general process for obtaining the
domain model. This process includes next stages: (1) domain characterization, (2)
data collection, (3) data analysis, (4) classification and finally (5) evaluation of
domain model. There are following domain analysis approaches: 1) DARE (Domain
Analysis and Reuse Environment) [18]. The crucial idea of this method is to create
the domain book, that will include the universal architecture and library of reusable
components. 2) DSSA (Domain-Specific Software Architectures) [19]. Given
approach allows to create a domain glossary with the aid of use case analysis. 3) ODE
(Ontology-based Domain Engineering) [20]. This approach connects the ontology
idea with object-oriented approach. Ontology includes terms and their connections,
definitions, properties and constraints. Library of objects is built based on mapping
ontology with object-oriented entities. 4) FODA (Feature-Oriented Domain Analysis)
[21]. This method has get popularity among scientists in the research area because of
its simplicity for non-programmers. The main idea of this approach is creating feature
100



T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

model. This model describes functionality, which the future product should possess.
Such model must note what features are compulsory for implement in any instance of
application in a given domain, what features must be implemented but there is some
alternative between them, and present features, which may be implemented but not
compulsory. This model can be easily built by expert in the domain.

Concerning product line creating with the aid of using domain model, Estublier [22]
presented approach, which is based on some aspects and requirements. These entities
were proposed by authors. Such approach based on MDE methodology. Domain
model is considered as metamodel, which is described on MOF or UML. There is an
interpreter, which translates each term in metamodel into Java class, and concrete
models — into instances of these classes. Domain model is accompanied with feature
model, which include some external behavior of the system. Authors use aspect-
oriented techniques for feature implementing and following their mapping with terms
in domain model. Consequently, there is a close interaction between domain
modeling and feature modeling. It seems that such approach is a bit complicated for
non-programmers. In addition, there is no any industrial use of this method, but it is
worth noting that authors describe appliance in this article [23].

3. Proposed approach

In our approach we will use some ideas of Feature- Oriented Domain Analysis
(FODA) method to perform domain analysis and to create feature models. For this
we will use visual editor that implements feature diagrams and is easy enough for
domain experts. Then, when feature models are ready, each feature is implemented
as reusable and configurable component on selected implementation language (C#,
C++, Java and so on) and feature library is formed as a collection of such components.
This process requires qualified programmers and requires more effort than to simply
create one application, but it allows to reuse features from feature library to create as
many applications as needed. Also, this process is scalable, so we may add new
features into feature library later, thus allowing to create more complex applications.
At this stage of development domain experts shall work with programmers, and they
shall use feature diagrams as an input for creation of feature library to simplify
matching between features and components in feature library.

Next step is to create domain-specific language that allows to combine and configure
features from feature library to implement applications in given domain. This is where
our approach differs from common reuse strategies. Naive approach would be to
generate an application directly from feature diagram, somehow marking features that
shall be included into application, and it actually works fine when domain variability
is low [24]. But more common is the situation when features themselves have
properties that allow to configure them, those properties can have different types.
Also, components may be related to each other in different ways, be used in
configuration of one another, or some of their properties may be meaningless in
absence or presence of other feature. Those rules may be implemented implicitly in

101

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

application generator and require that programmers will always observe them, but we
propose that these rules will be captured explicitly by

dedicated domain-specific language. Such language may make models that do not
observe those rules syntactically incorrect, and it will greatly reduce the possibility of
human error and reduce knowledge required to efficiently use programming system.

By using DSM platforms one can relatively quickly create domain-specific language
that will capture domain knowledge, but we already have feature diagram, so we
actually can generate the language using it. Generator takes feature diagram as input
and produces metamodel of a language. Metamodel is a visual model of a language
syntax, that can be opened and edited in yet another visual editor that is part of DSM
platform, this editor is called metaeditor. Features from feature diagram become
entities in metamodel, this metamodel is then edited to provide shape and a list of
properties for each entity. Any vector image can play the role of shape, so the best
practice is to select shape that is similar to a feature it depicts. For example, if an
application can have buttons, “button” becomes entity in domain-specific language
and looks like a button on a diagram. The same happens with properties — for each
feature they are added in metaeditor to corresponding language entity with respect to
feature library that actually implements this feature and uses the property to configure
it. Properties have name, type and default value. On this step it is also possible to
define some constraints on a metamodel that will be checked when model will be
edited. If some constraints are violated, user will immediately receive warning, which
makes errors in a target application even less likely to occur.

On a next step we use editor generator of the DSM platform to create visual editor for
our newly created language. This step if fully automated, and when an editor is
generated and loaded into DSM platform, we can use it to create diagrams that specify
target applications.

The next thing we need is to generate actual code on target textual language that will
call feature library and glue features together. For this we shall return to metamodel
level and define generation rules for metamodel. This step is performed only once for
a given domain after the feature library and metamodel are finished, and then the same
generator is used for each application created by using of the technology.
Recommendations for development of domain-specific generator are well-known in
DSM literature (for example, [7]): it is the best to write first application by hand, then
draw a model that is supposed to be generated into this application, then find the
places in handwritten application that shall be parameterised by information from
model and let the generator replace such handwritten parts with data from model. This
process is continued until handwritten application becomes a template that is filled
by generator with information taken from model. Handwritten application and,
consequently, a generator shall extensively use feature library to minimize the amount
of code that is generated directly, in ideal case generator shall produce merely a glue
code that binds components from feature library together.

After all steps above are finished we have feature library, visual editor for simple
domain-specific language that allows to describe how features are combined and
configured in a concrete application, and a generator that automatically produces
102



T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

complete application by a model in domain-specific language using feature library as
domain-specific runtime [7]. Now we may create as many applications as we wish by
just drawing models and automatically generate complete executable code.
Theoretically. Of course, in practice there will always be a need to modify feature
diagram, to extend feature library and, consequently, domain-specific language
metamodel, modify generator and even to make some changes in generated code,
there is no silver bullet. But we believe that our approach can provide better separation
of concerns, provides better utilization of domain experts knowledge and expertise
among a team. Summary of a process described above and relation between various
tools and roles of developers is provided on fig. 1.

This approach was implemented in a technology based on QReal DSM platform.
QReal became an enabler technology because it provides easy and effective way to
create visual editor for domain-specific languages that allows to create fully
functional editor in less than an hour. It has visual metaeditor, visual constraints
definition tool, visual shape editor and a C++ library that allows to quickly specify
generation rules. Feature diagram editor and generator that creates metamodel by
feature diagrams were both implemented as plugins to QReal core. Note that feature
diagram language is itself domain-specific language for the domain of domain
analysis, so it was implemented using QReal metaeditor. The same metaeditor
(including shape editor and constraints editor) is then used to tailor the generated
metamodel of domain-specific language. Then metaeditor generator is used to
generate yet another plugin to QReal that provides visual editor for created language.
Then the generator is implemented by hand on C++ with Qt library using generator
creation library included in QReal. Then it is possible to create special distribution of
QReal (using Qt Installer framework) that includes only QReal core, editors for
feature diagrams (at this point they are needed only as reference) and
domain-specific language, generator and feature library, thus forming a complete
technology that can be used to generate target applications.

103

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

t -Draws_ = lFeature Modelf<t - - - - = - - - - - - - - o - ___ -

[}
Gene fates

Domain Expert \

Generates
I
|

|
1
DSL Editor | f i
rites

1
| in- i Supports
Prcvlldes | Domain Speﬂﬁc Generator |J
T

1
\ - — — _ Tool
- = Programmer
- bravs. =T application Model X
1
1

Gene fates
Application | Generates

Programmer . =—o oo 1

Fig. 1. Relations between artifacts and roles in proposed approach to domain components
reuse.

4. Evaluation

For demonstration of the efficiency of proposed above approach there was
implemented a model application for remote control of various robot models —
“Joystick”. The main substantiation for implementing such application is that
controlling different robot models requires different control elements. For example,
one model can be controlled with only two pads, but another — with one pad and two
buttons. Such application was implemented in C# for Windows Phone platform.
Screenshots of this simple application are presented on fig.2.

001 012 060 266 002 008
17 Gamepad

settings

Fig. 2. Screenshots of “Joystick” application.

104



T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

As mentioned above, it was used QReal as DSM tool. A visual language was
implemented there for describing feature models. Appropriate feature model for
“Joystick” application family is proposed on fig.3. This feature model presents
explicit features, which are labeled as green, and some unite feature groups, which
are labeled as blue. Type of arrow shows which feature is compulsory (shown as solid
line with arrow on the end), which compulsory but there is some alternative between
them (shown as dash line with an arrow on the end), and optional features,

which may be implemented but not compulsory (shown as dash line with a circle on
the end).

Joystick conirol ‘
\
) N

‘* a L G

Connection to Pad's existence

Best control
robot

v 4 4

Videa control Button's Existence of
existence accelerometer

Fig. 3. Feature model for “Joystick” application family.
Based on this feature model a metamodel for future visual language was generated,
which is required for building different models for different configurations.
Generated metamodel is presented on fig. 4. As it can be seen, metamodel is very
simple. At this stage we can propose that entities, such as “buttons” and “pads”, may
have a property “Quantity”. In addition, we can specify images for these entities,
which will be shown in visual language.

- -
~ Joystick

Diagram Buttons

Quantity

Pads

Quantity

Fig. 4. Metamodel of visual language for “Joystick” application family.

105

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

Then with the aid of QReal tool a visual language was generated. Example of
generated visual language is demonstrated on Fig. 5. It can be seen that in visual
language editor can be specified property “Quantity”, explicitly noting the concrete
number of pads. As can be seen, example is quite simple for demonstrating extensive
possibilities of the approach proposed above. At present there is no rigorous
evaluation of the proposed process. Also, cohesive and consistent technology for
creating application family based on domain analysis is not implemented yet, here we
have described a conceptproof prototype. Therefore, this work requires more detailed
explorations.

5. Conclusion

The problem of not using domain analysis result for further generation of some
entities for software development process was stated. There were considered some
formal domain analysis approaches and we concluded that creation of feature
diagrams is the most elegant decision for domain analysis that can be conducted by
domain expert, i.e. non-programmer, maybe in collaboration with system analysts.
Moreover, there was discussed one of the possible solutions, which is presented by
Estublier, we specify some problems of such method. We suggested our own
approach for creation of application family in one domain based on domain analysis.
Thus, some target applications can be implemented even by non-programmers using
domain-specific language with configuring features from library. Also, there was
some evaluation of this approach, where we pointed out that this example remains
many questions because of its simplicity.

References

[1]. Tolvanen J.-p., Kelly S. Model-Driven Development Challenges and Solutions //
Modelsward, 2016, pp. 711-719.

[2]. Baker P., Loh S., Weil F. Model-driven engineering in a large industrial context —
Motorola case study // MoDELS’05: Proceedings of the 8th international conference on
Model Driven Engineering Languages and Systems. Berlin: Springer, 2005, pp. 476-491.

[3]. A software engineering experiment in software component generation / R. Kieburtz, L.
McKinney, J. Bell et al. // Proceedings of the 18th international conference on Software
engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp. 542-552.

[4]. Kelly S., Tolvanen J.-P. Visual domain-specific modeling: Benefits and experiences of
using metaCASE tools // International Workshop on Model Engineering, at ECOOP.
2000. URL: http://dsmforum.org/papers/Visual domain-specific_modelling.pdf.

[5]. Tolvanen J.-P., Pohjonen R., Kelly S. Advanced tooling for domain-specific modeling:
MetaEdit+ // Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07). 2007. URL:http://www.dsmforum.org/events/DSMO7/papers/tolvanen.pdf.

[6]. Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using integrated domain-specific
modeling languages // Proceedings of the 24th ACM SIGPLAN conference companion

106



T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

[7].
[8].
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].
[18].

[19].

[20].

[21].
[22].

[23].

[24].

on Object oriented programming systems languages and applications / ACM. New York,
NY, USA: ACM, 2009, pp. 819-820.

Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling full code generation.
Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press, 2008, p. 444.
Gronback R. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Stoughton, Massachusetts, USA: Addison-Wesley, 2009, p. 736.

Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid development of DSM graphical
editor // IEEE 18th International Conference on Intelligent Engineering Systems INES
2014. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 233-238.
Domain-specific development with Visual Studio DSL Tools/ S. Cook, G. Jones, S. Kent
et al. Crawfordsville, Indiana, USA: Addison-Wesley, 2007, p. 576.

Koznov D. Process Model of DSM Solution Development and Evolution for Small and
Medium-Sized Software Companies // Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2011 15th IEEE International / IEEE. 2011, pp. 85—
92.

QReal DSM platform-An Environment for Creation of Specific Visual IDEs / A.
Kuzenkova, A. Deripaska, T. Bryksin et al. / ENASE 2013—Proceedings of the 8th
International Conference on Evaluation of Novel Approaches to Software Engineering.
Setubal, Portugal: SciTePress, 2013, pp. 205-211.

Rugaber S. Domain analysis and reverse engineering // White Paper, January. 1994.
Prieto-Diaz R. Domain analysis for reusability // Software reuse: emerging technology /
IEEE Computer Society Press. 1988, pp. 347-353.

Ferre X., Vegas S. An evaluation of domain analysis methods // 4th CASE/IFIP8
International Workshop in Evaluation of Modeling in System Analysis and Design /
Citeseer. 1999, pp. 2-6.

Mernik M., Heering J., Sloane A. M. When and how to develop domain-specific
languages // ACM computing surveys (CSUR). 2005. Vol. 37, no. 4. P. 316-344.
Arango G. Domain analysis methods // Software Reusability. 1994, pp. 17-49.

DARE: Domain analysis and reuse environment / W. Frakes, R. Prieto, C. Fox et al. //
Annals of Software Engineering. 1998, Vol. 5, no. 1, pp. 125-141.

Taylor R. N., Tracz W., Coglianese L. Software development using domain-specific
software architectures // ACM SIGSOFT Software Engineering Notes. 1995, vol. 20, no.
S, pp. 27-38.

Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological approach to domain engineering
/I Proceedings of the 14" international conference on Software engineering and
knowledge engineering / ACM. 2002, pp. 351-358.

Feature-oriented domain analysis (FODA): Tech. Rep.: / K. C. Kang, S. G. Cohen, J. A.
Hess et al.: DTIC Document, 1990.

Estublier J., Vega G. Reuse and variability in large software applications / ACM
SIGSOFT Software Engineering Notes. 2005, vol. 30, no. 5, pp. 316-325.

An approach and framework for extensible process support system / J. Estublier, J.
Villalobos, L. Anh-Tuyet et al. // Software Process Technology. Springer, 2003, pp. 46—
61.

The Variability Model of the Linux Kernel / S. She, R. Lotufo, T. Berger et al. // VaMoS.
2010, vol. 10, pp. 45-51.

107

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

TexHonorus co3gaHus ceMencTBa NPUITOXKEHUN Ha OCHOBe
aHanusa npegmMeTHoOM obnacTtum

A.A.I'yoownuxosa <gudoshnikova.anna@gmail.com>
IO.B. Jlumeunos <y.litvinov@spbu.ru>
Kagheopa cucmemmnozo npoepammuposanus,
Canxm-Ilemepbypeckuil 20cyoapcmeenHblil YHUsepcumem,
198504, Poccus, Cankm-Ilemepoype, Cmapuuii Ilemepeog, Ynueepcumemckuii
npocnexkm, 0. 28

AHHoTanms. TeMa nepencrnob30BaHus KOJa NMpU pa3paboTKe MPOrpaMMHOT0O oOecreyeH s
JI0 CUX TOp aKTyalbHa. MIHOT1a TpyIHO MOHSTH, YTO HY>KHO MIEPENUCTIONb30BATh B U3OJISLIUH OT
KOHTEKCTa, B YacCTHOCTHM TMEPEUCIIONb30BaHHE OJHOTO O0O0BeKkTa BiledeT 3a coboit
NIePEHCIIONb30BaHue Apyroro. OMHAKO €CTh BO3MOKHOCTh CY3UTh IIPOOIEMy KOHTEKCTa, €CIIH
paccMaTpuBaTh NPHIOXKEHHS B OJHON mpenMeTHol obsacti. OTHM U Te K€ XapaKTEePUCTUKH
B Pa3HBIX NIPUIOKEHHAX, HO KOTOPBIE OTHOCSATCS K OJJHOM NPEIMETHOH 001aCTH, IMCIOT OAUH
U TOT € KOHTEKCT, II09TOMY Ba)KHO U HY)KHO IEPEHCIIONB30BaTh Ty OOLIyI0 4acTh. Takum
o0Opa3oMm, Ha MEpBBIH IUIAH BBIXOAWT 3a7ada aHauu3a NpeaMeTHoil obmactu. C apyroi
CTOPOHBI, B HAacTOsIlee BpeMs akTHBHO pa3BuBaroTcs metaCASE-TexHomoruu, KOTOpble
MO3BOJISIIOT CTEHEPUPOBATh KOJ IIENEBOTO IPUIIOKEHHS, OCHOBBIBASCh HA JHAarpaMmax,
OTIUCBIBAIOLINE ITO MpUIIokKeHHe. [ TaBHOM 1IebI0 TAaHHOH CTaThbu SIBISIETCS MPENCTaBICHUE
TEXHOJIOTHH UISL CO3JIaHUs CeMEHCTB MPUIIOXKEHUH B OJHOHM HpeIMeTHOH 00JacTH, KoTopas
COCIMHSCT ACATECIBHOCTH 10 aHaIH3y mpeameTHoi obnactu 1 metaCASE-texHoMorno. Mbt
HCTIONb3YeM HEKOTOpBIE MAEH MEeToJa Ul aHanm3a npeamerHoit obmactu FODA (ot aHri.
“Feature-Oriented Domain Analysis”), a IMEHHO cO37jaeM AWarpaMMy XapaKTepPHCTHK UL
ONHCaHUS TPEeAMETHOH o6macTH. 3aTeM Ha OCHOBE TaKOW JHarpaMMbl MpejiaracM
TeHEpHPOBATh METAMOIEIb IPEMETHO-OPUEHTHPOBAHHOTO BU3yaJIbHOTO si3bIKa. [Tocie sToro
cpeactBamu metaCASE-uHCTpyMeHTa reHepupyeM peJakTop NpeAMETHO-OPHEHTUPOBAHHOTO
BU3YyallbHOTO s13bIka. C TIOMOIIBIO TaKOTO S3bIKA IOJb30BATENb MOXKET COCAMHATH U
KOH(UTYpHPOBaTh CYIIECTBYIOIIHE 3apaHEe pEaTN30BAaHHBIC XapaKTEPUCTUKH, TaKHM
o0pa3oM co3faBas neneBoe nprioxxenne. [lomaraercs, 4To Takas TeXHOIOTHS Oy/eT I0JIe3Ha
TIPU CO3JIaHUH JINHEIKH IIPOTYKTOB.

KuawueBble cioBa: aHam3 npeaMmetHod oOmactu; metaCASE-texHONOrHs; mpenMeTHO-
OPUEHTHPOBAHHBIN SA3BIK; CEMENCTBO MPUIIOKEHUH.

DOI: 10.15514/ISPRAS-2016-28(2)-6

Jas nutupoBanus: ['ynomnukosa A.A., JIutBuHoB }0.B. Texnonorus co3nanus cemeiictsa
MPUIOKEHUH HAa OCHOBE aHanu3a npeamerHoit obnactu. Tpynet UCII PAH, Tom 28, BbIm. 2,
2016 r., ctp. 97-110 (na anrmuiickom). DOI: 10.15514/ISPRAS-2016-28(2)-6

Cnucok nutepatypbl

[1]. Tolvanen J.-p., Kelly S. Model-Driven Development Challenges and Solutions //
Modelsward, 2016, pp. 711-719.

108



T'ynomnukosa A.A., Jluteunos 10.B. TexHonorus co3ianus ceMeicTsa NPUIOKCHUH Ha OCHOBE aHaIM3a MPEeIMETHOH
obmactu. Tpyowt UCII PAH, 2016, Tom 28, BeITycK 2, ¢. 97-110.

(2]

[3].

[4].

[5].

[6].

[71.

[8].
[9].

[10].

[11].

[12].

[13].
[14].

[15].

[16].

[17].
[18].

[19].

Baker P., Loh S., Weil F. Model-driven engineering in a large industrial context —
Motorola case study // MoDELS’05: Proceedings of the 8th international conference on
Model Driven Engineering Languages and Systems. Berlin: Springer, 2005, pp. 476-491.
A software engineering experiment in software component generation / R. Kieburtz, L.
McKinney, J. Bell et al. // Proceedings of the 18th international conference on Software
engineering. Washington, DC, USA: IEEE Computer Society, 1996, pp. 542-552.

Kelly S., Tolvanen J.-P. Visual domain-specific modeling: Benefits and experiences of
using metaCASE tools // International Workshop on Model Engineering, at ECOOP.
2000. URL: http://dsmforum.org/papers/Visual domain-specific_modelling.pdf.
Tolvanen J.-P., Pohjonen R., Kelly S. Advanced tooling for domain-specific modeling:
MetaEdit+ // Proceedings of the 7th OOPSLA Workshop on Domain-Specific Modeling
(DSM’07). 2007. URL:http://www.dsmforum.org/events/DSMO07/papers/tolvanen.pdf.
Tolvanen J.-P.and Kelly S. MetaEdit+: defining and using integrated domain-specific
modeling languages // Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications / ACM. New York,
NY, USA: ACM, 2009, pp. 819-820.

Kelly S., Tolvanen J.-P. Domain-specific modeling: enabling full code generation.
Hoboken, New Jersey, USA: Wiley-IEEE Computer Society Press, 2008, p. 444.
Gronback R. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
Stoughton, Massachusetts, USA: Addison-Wesley, 2009, p. 736.

Viyovic V., Maksimovic M., Perisic B. Sirius: A rapid development of DSM graphical
editor // IEEE 18th International Conference on Intelligent Engineering Systems INES
2014. Los Alamitos, CA, USA: IEEE Computer Society, 2014, pp. 233-238.
Domain-specific development with Visual Studio DSL Tools/ S. Cook, G. Jones, S. Kent
et al. Crawfordsville, Indiana, USA: Addison-Wesley, 2007, p. 576.

Koznov D. Process Model of DSM Solution Development and Evolution for Small and
Medium-Sized Software Companies // Enterprise Distributed Object Computing
Conference Workshops (EDOCW), 2011 15th IEEE International / IEEE. 2011, pp. 85—
92.

QReal DSM platform-An Environment for Creation of Specific Visual IDEs / A.
Kuzenkova, A. Deripaska, T. Bryksin et al. // ENASE 2013—Proceedings of the 8th
International Conference on Evaluation of Novel Approaches to Software Engineering.
Setubal, Portugal: SciTePress, 2013, pp. 205-211.

Rugaber S. Domain analysis and reverse engineering // White Paper, January. 1994.
Prieto-Diaz R. Domain analysis for reusability // Software reuse: emerging technology /
IEEE Computer Society Press. 1988, pp. 347-353.

Ferre X., Vegas S. An evaluation of domain analysis methods // 4th CASE/IFIP8
International Workshop in Evaluation of Modeling in System Analysis and Design /
Citeseer. 1999, pp. 2—-6.

Mernik M., Heering J., Sloane A. M. When and how to develop domain-specific
languages // ACM computing surveys (CSUR). 2005. Vol. 37, no. 4. P. 316-344.
Arango G. Domain analysis methods // Software Reusability. 1994, pp. 17-49.

DARE: Domain analysis and reuse environment / W. Frakes, R. Prieto, C. Fox et al. //
Annals of Software Engineering. 1998, Vol. 5, no. 1, pp. 125-141.

Taylor R. N., Tracz W., Coglianese L. Software development using domain-specific
software architectures // ACM SIGSOFT Software Engineering Notes. 1995, vol. 20, no.
S, pp. 27-38.

109

Gudoshnikova A., Litvinov Y. Technology for application family creation based on domain analysis. Trudy ISP RAN
/Proc. ISP RAS, 2016, vol. 28, no 2, pp. 97-110.

[20].

[21].
[22].

[23].

[24].

110

Falbo R. d. A., Guizzardi G., Duarte K. C. An ontological approach to domain engineering
/I Proceedings of the 14" international conference on Software engineering and
knowledge engineering / ACM. 2002, pp. 351-358.

Feature-oriented domain analysis (FODA): Tech. Rep.: / K. C. Kang, S. G. Cohen, J. A.
Hess et al.: DTIC Document, 1990.

Estublier J., Vega G. Reuse and variability in large software applications / ACM
SIGSOFT Software Engineering Notes. 2005, vol. 30, no. 5, pp. 316-325.

An approach and framework for extensible process support system / J. Estublier, J.
Villalobos, L. Anh-Tuyet et al. / Software Process Technology. Springer, 2003, pp. 46—
61.

The Variability Model of the Linux Kernel / S. She, R. Lotufo, T. Berger et al. / VaMoS.
2010, vol. 10, pp. 45-51.



