Kuppsnues A.C., Credanosa M. A. T'eHepanus TMHAMUYECKUX KIFOYEH U MOAIKMCEH ¢ 3aBUCUMOCTBIO OT BPEMEHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

Dynamic key generation according to the
starting time

A.S. Kiryantsev < reyzor2142@gmail.com>
LA. Stefanova <aistvt@mail.ru>
Volga Region State University of Telecommunications and Informatics,
77 Moskovskoe sh., Samara, Russia

Abstract. The article analyses the problem of data persistence while transmitting the
messages and looks into possible solutions. The central part of the article describes the
algorithm of data encryption and digital signature algorithm according to the starting time of
the session. In the algorithm the session key is symmetrically generated for each pair of
subscribers; further the data are encrypted with this key. In its turn the session key is also
encrypted with a public asymmetric key of a recipient and with an asymmetric encryption
algorithm. Then the decrypted session key with the decrypted message are sent to the
recipient. This client employs the same asymmetric encryption algorithm and his/her secret
decryption key to decrypt the asymmetric session key. The decrypted session key is used for
decryption of the received message. Thus, every time new symmetric keys are generated
according to the starting time of a session, which enables high speed of encryption along with
an open to public temporary encryption keys transmitting. Besides, the article contains
examples of Diffie-Hellman protocol work and the hash-function algorithm MDS5. They are
used for encryption of generated temporary keys and for transmitting common private key to
both clients. According to the suggested algorithm, the prototype of key and signature
generation has been created and probated. The article illustrates the stages of Diffie-Hellman
and MD5 protocol work. The prototype was tested with the help of a computer and two
phones (2013 and 2015 production years).

Keywords: Diffie-Hellman protocol; MDS5-functoin; cryptography; encryption; decryption;
digital protection; digital signature; symmetric and asymmetric cryptosystems.

DOI: 10.15514/ISPRAS-2016-28(3)-4

For citation: Kiryantsev A.S., Stefanova I.A. Dynamic key generation according to the
starting time. Trudy ISP RAN / Proc. ISP RAS, 2016, vol. 28, issue 3, pp. 51-64. DOL:
10.15514/ISPRAS-2016-28(3)-4.

1. Introduction

The necessity of serious approach to information security brings us to the basic
concepts of cryptography: digital protection, digital signature and encryption. As
you know, cryptography is engaged in the search for solutions to such important

51

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

security issues as confidentiality, authentication, integrity and control of participants
in the interaction.

Encryption is the process of converting data into a form, which is not possible to
read the keys. It uses the encryption — decryption keys. The encryption process of
the original message helps to ensure privacy by keeping information secret from
someone it is not addressed. A set of conversion algorithms and keys used by these
algorithms for encryption, key management system, as well as the original and the
encrypted text form a cryptographic system. In turn, cryptosystems ensure the
secrecy of transmitted messages as well as their authenticity and a user’s
authentication. The article offers new ideas for dynamic generation of keys and
signatures depending on the starting time of the interaction between two
subscribers.

2. Approaches to the construction of cryptosystems

There are two methods of cryptographic information processing with the keys —
symmetric and asymmetric [1]. A symmetric (private) method implies that the
sender and receiver use the same key, which they agree before the interaction for
both encryption and decryption. If the key has not been compromised, then decrypt
database automatically authenticates the sender, since it is only the sender who has
the key, which he/she can use to encrypt information, and it is only the recipient
who has the key to decrypt the information.

The symmetric encryption algorithms use keys that are not very long and can
quickly encrypt large amounts of data. Symmetric encryption systems have a
common drawback — that is the complexity of the keys distribution. When an
external party intercepts the key, the system of cryptographic protection will be
compromised. When it is necessary to replace a key, it should be sent confidentially
to the participants of the encryption. Obviously, this method is not suitable when
one needs to establish a secure connection with a large number of Internet
subscribers. The main problem of this method is how to generate and securely
transmit keys to the participants of the interaction. How is it possible to establish a
secure communication channel between the participants of interaction while sending
keys through insecure communication channels? The lack of a secure key exchange
method limits the expansion of symmetric methods of encryption in the Internet.
This problem is resolved in an asymmetric (public) encryption method. In an
asymmetric system, the document is encrypted with one key and decrypted with
another one. Each participant of the information transfer generates two random
numbers (private and public keys). The public key is transferred through public
communication channels to another participant of the encryption, but the private key
is kept in secret. The sender encrypts the message with the public key of the
recipient, and it is only the private key owner who may decrypt the message. This
method is suitable for a wide usage. If each Internet user is assigned to his/her own
pair of keys and the public keys are published as the numbers in the phone book,
almost all users can exchange encrypted messages with each other.

52

Kupbsnues A.C., Credanosa U.A. I'enepanus JHHAMAYECKUX KITFOUCH M MOANUCEH ¢ 3aBUCHMOCTBIO OT BPEMECHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

All asymmetric cryptosystems are the object of direct attacks through the direct key
enumeration, and, therefore, they must use much longer keys than those used in
symmetric cryptosystems to provide an equivalent level of protection. This
immediately affects the calculation resources required for encryption.

There is the necessity to verify that there is no distortion into the information in an
e-document. Digital signature is used for this sake. Digital signature in a
cryptosystem protects a document from changes or substitution and, thereby,
guarantees its validity. It is a line, where the attributes of the document (for
example, checksum of a file, etc.) and its contents are encoded, so that any change
in the file even with the unchanged signature may be detected. When a document is
protected by a digital signature, it verifies the document itself along with the private
key of the sender, and the recipient's public key. The owner of a private key is the
only one who can sign the document correctly. To verify the digital signature of the
document, the recipient uses the sender's public key. No other key pair is suitable
for verification. Thus, unlike an ordinary signature, digital signature depends on the
document and the sender's public key. Therefore, it is several times safer than an
ordinary signature and a seal.

Despite the fact that digital signature certifies the authenticity of the document, it
does not protect it from unauthorized reading. Both symmetric and asymmetric
encryption systems have their advantages and disadvantages. The shortcomings of
symmetric encryption are in the complexity of replacing a compromised key, and
the disadvantages of asymmetric encryption are in a relatively low speed of work.
These problems are addressed to the encryption systems that use the combined
algorithm, which enables high-speed encryption and sending of the encryption keys
through the public channels. In order to avoid low-speed of asymmetric encryption
algorithms, a temporary symmetric key is generated for each message. The message
is encrypted with a temporary symmetric session key. Then this session key is
encrypted with a public asymmetric key of a recipient and an asymmetric
encryption algorithm. Due to the fact that a session key is much shorter than a
message itself, the time of encryption will be relatively short. After that this
encrypted session key is transferred to the recipient along with the encrypted
message. The recipient uses the same asymmetric encryption algorithm and his/her
private key to decrypt the session key and the received session key is used to
decrypt the message.

The mentioned above makes it obvious that combined encryption algorithms
currently have a promising line of development in modern cryptosystems.

3. Algorithm description

It is time to consider the operation principle of the suggested method to data
encryption with the session symmetric key, generated at the moment of interaction
between the two subscribers. The session key is encrypted with the exposed
asymmetric key of the recipient and Diffie-Hellman’s algorithm [2]. The algorithm
allows two sides to get common private key, using the channel that is unprotected

53

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

from discreet listening, but protected from the channel substitution. The received
key can be used for message exchange through symmetric encryption.
Diffie-Hellman’s algorithm uses one-sided function F(X) with two attributes:

e there is a polynomial algorithm of values F(X),

e there is not a polynomial algorithm of inverted function F(X).
To put simply, this function doesn’t include decryption of the encrypted text.
The function with a secret is the function Fk; it depends on & and has the following
properties: there is a polynomial algorithm of calculation Fk(X) value for any k£ and
X, and there is not a polynomial algorithm of the inverted Fk for unknown k; but
there is a polynomial algorithm of inverted Fk for the known k parameter.
Fig. 1 presents encryption’s block diagram according to the Diffie-Hellman’s

algorithm.
(Start)
I

Random number generation of
a(orb)

Open parameters setting
p and q

Key computation A, B
A= g*modp B= g’modp

Public keys exchange
Aand B

Private key computation K =
APmod p = g**mod p

D

Fig. 1. Block diagram of Diffie-Hellman algorithm.

The algorithm operation is presented in the following example. Andrew defines
variables g and p which are large numbers. And he also conceives his private
number a and calculates the value 4 using the formula

54

Kupbsnues A.C., Credanosa U.A. I'enepanus JHHAMAYECKUX KITFOUCH M MOANUCEH ¢ 3aBUCHMOCTBIO OT BPEMECHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

A= g“modp (1)

Then he transmits it to Natasha along with the conceived values of g and p. Natasha
conceives her private number b. Through the same formula as Andrew does, she
calculates her public number

B = g’modp)
and sends to Andrew. It is possible that the malicious user can get both values, but
he will not modify them, as he is unable to interfere in broadcasting process.

At the second stage Natasha calculates the value of K having number B and the
received number 4:

K = Amodp = g**modp, 3)

That is the key for encryption. Then, Andrew calculates his key using number B
received from Natasha and his calculated number 4

K = B%modp = g*’mod p. 4)

You can see in examples (3) and (4) that Andrew gets the same number k, as
Natasha. As a result, there is a root key that will be used in generating temporary
key and message’s signature in the future.

If the root key is used as a private key, a malefactor will be forced to meet with a
practically undecidable (for a reasonable period of time) problem of calculating the
number g*’mod p having numbers A = g*mod p and B = gPmod p, intercepted
in the public channel if p, a and b are large enough numbers.

Now it is time to explain the process of temporary key generation. It follows the
same HMAC (hash-based message authentication code) algorithm [3] and its
standard RFC2104. According to them, information integrity is verified with
private key. This standard allows to ensure that transmittable or stored at unreliable
environment data were not change by unknown persons.

The HMAC algorithm contains the standard, describing the process of data
exchange, the process of data integrity verification with the help of private key and
hash-function. Depending on the hash-function, we can distinguish HMAC-MDS5,
HMDC-SHI etc.

In the article, the hash-function is generated from the root key by the suggested
algorithm, for example: md5 (rootKey + Time). The function md5 is a modification
of hash-function MDS5. At the generation of hash-function, the time, particularly its
second value, will be rounded. As it is known, time is presented in the format
HH:MM:SS and rounding happens in the last format’s unit. If there are more than
30 sec. in the value of starting time SS, then they round upward, if there are less
than 30 sec., then they round downward. The message will be encrypted exactly
with this key, and also through this algorithm one can generate digital signature of
message to verify the message. As a result, we get a resistant system of dynamic
keys for messages encryption and signature, where participants do not need to
exchange some data for generation and root key generally.

55

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

A generalized algorithm of messages encryption in cryptosystem with the key and
signature generation is presented on fig. 2.

 sm D

Password generation with
Diffie-Hellman protocol

Generating
md5 hash

Generating
digital signature

Sending the encrypted
message

|
C bw D)

Fig 2. Block diagram of encryption by the key and signature generation algorithm.

4. Working prototype

Web technologies and JavaScript language were chosen for prototype realization.
Due to it, the program will become a cross-platform and can be loaded everywhere,
when there is a support of JavaScript specification (EcmaScript 5) and HTML 4
support. The JavaScript language was not chosen by chance, as at this moment it is
the only “native” language for browser and it is supported by all browsers on
default.

Below we can consider fragments of prototype code as an example.

Mass Math.random is used for generation of a large number p by Diffie-Hellman
algorithm.

This approach is justified by the fact that the JavaScript language cannot work with
large numbers (Biglnt), as the algorithm requires it.

56

Kupbsnues A.C., Credanosa U.A. I'enepanus JHHAMAYECKUX KITFOUCH M MOANUCEH ¢ 3aBUCHMOCTBIO OT BPEMECHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

The code generation example of a large number in JavaScript language looks as
this:

random(1000000000,9999999999) + " + random(1000000000,9999999999) + "
+ random(1000000000,9999999999) + " + random(1000000000,9999999999) + "
+ random(1000000000,9999999999) + " + random(1000000000,9999999999) + "
+ random(1000000000,9999999999) + " + random(10000000,99999999);
Then the code of message’s generation to JavaScript language seems:

$scope.getSign = function()

return md5($scope.msg + S$scope.username + bigInt2str(a_sec,
10).toString() + datetime);

Function md5(arg) returns the hash line from argument arg. Function bigInt2str is a
function that allows to work with large numbers in JavaScript. $scope.username
allows to insert a username. In this way we get a unique signature for each user.
There is a screenshot of text values’ substitution and the result of the performed
program:

Iney time
md5S (frexcrfg1r31q12f2:2324.11.15])

rext

5c733932c8910c2cbecb1432d1eb6f117

The time test script execution was conducted through the prototype. In this test the
following e-devices were used:

1. The computer — INTRL i5 (Windows 10/chrome)
2. The phone — Nexus 5 (android 6.0.1/ chrome)
3. The phone — Samsung galaxy ace (android 4.2.2/ browser).

In table 1 the results of the algorithm individual steps are provided. The steps are
applied in different application. In fig. 3 there is a diagram that visualizes
experiment results. From the table analysis it is obvious that the algorithm works
very fast on the mobile phones.

Hash-function algorithm MDS5 is not selected occasionally, it is the fastest, the most
common one. It has the simplest hashing algorithm that may be used for signature
generation. Besides MDS5 possesses a very interesting property. For instance, if at
least one byte in a line is changed, the view of the resulting hash line will change
dramatically.

57

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

Table 1. Time of algorithm application in different devices at different stages (msec).

devices Intel i5 Nexus 5 (android | Samsung galaxy

algorithm (Windows/chrome) 6.0.1/ chrome) ace (android
4.2.2/ browser)

Diffie-Hellman 20,915 166,706 220,53
generation
MDS5 generation 0,81 3,315 6,21
Sign generation 0,27 0,48 0,72
Total time 22,883 170,89 229,416

EXECUTION TIME TEST

- INTT (Windows/chrome) ® Mewus 5 [anddmld B0 1 chrome ¥ Samsung galkay ace (android 4,22/ brovesr)

Execution tine (ms)

Diffie- Hellman generation MDS generation Sign generation Total time

Fig 3. Histogram of algorithm performance time by different e-devices.

The logic of the encryption algorithm can be considered in five steps. After the data
are received there is the process of preparing the data flow to the calculations.

Step 1. First, the flow line requires alignment for hashing. At the end of the stream
one on-bit and the necessary number of off bits are registered. After the input data
alignment, the length of the stream should be equal to 512 - N + 448.

Step 2. At the end of the message, one should add 64-bit result for alignment. There
are 4 low-order bits that are put first, then high-order bits follow. If the stream
length exceeds 2% 1, only low-order bits are written down. After that, the stream
length becomes 512-fold. The calculations are made with data flow presented as an
array of 512-bit words.

Step 3. Then it is necessary to initialize 4 32-bit variables (A, B, C, D) and to set
their initial values with hex numbers: "low-order byte comes first". For example,

A=01 23 45 67; //67452301h
58

Kupbsnues A.C., Credanosa U.A. I'enepanus JHHAMAYECKUX KITFOUCH M MOANUCEH ¢ 3aBUCHMOCTBIO OT BPEMECHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

B =89 AB CD EF; //EFCDABg&%h
C=FEDCBA98; //98BADCFEh
D=76 54 32 10. //10325476h

The results of intermediate calculations will be stored in these variables. Then it is
time to initialize constants and functions required in further calculations.

Four laps will require 4 functions with the logical operators XOR (&), AND (A), OR
(v), NOT (=):
FunF(X,Y,Z) = X AY) v (=X A Z),
FunG(X,Y,Z) = (X AZ) v (=Z AY),
FunHX,Y,Z) =(X®Y® Z),
Funl(X,Y,Z2) =Y ® (=Z v X).
The 64-element table of invariables is structured as follows:
T[n] = int(23% - |sin(n)|)
Each 512-bit block of the flow passes through 4 stages of calculation, 16 laps each.
For this the block is presented as an array X of 16 32- bit words. All the laps are of

the same type, but they differ in the rotate shift by s bits of a 32-bit argument. The
number s is defined for each lap.

Step 4. Steps in loop calculations. Base n element into the block from an array of
512-bit blocks. The values A, B, C, D, remain after operations with the previous
blocks (or their values in case the array goes first).

AA=A
BB =B
cC=C
DD=D
Sum the values with the result of the previous loop:
A=AA+A
B=BB+B
CcC=CC+C
D=DD+d

After the loop ends, check if there are any blocks for calculations left. If there are
some, go to the next array element (n+1) and the loop repeats.

Step 5. The result of the hash-function calculation is formed in ABCD buffer. If the
result starts with the low-order byte A, one gets MD-5 hash.

Fig. 4 presents a screenshot of md5 hash function working prototype in the
CRYP2CHAT app [4]. It resorts to a modified MDS5 hash function.

59

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

i = -~ |- | InF | —

1 [lonb3osarensill . O X
Hosas Brnaaka . [Key Generation with Time
c file///D:/GitHub/dyn_time_keygen/index.html iy =
%
g=2
p=876773697784470986301726411245328098997345670636138871034554734220857291703641
USER 1

a=3648194620787070561274250187467169886414535350610189547305632332502622

| A=300601724356203532907718251639722420658376895919895808185702966868715784608865
a_sec =
268715283597117128548026348937893438795070121192480696260852680559541342340053

USER 2

b=1239270907516357438217418218331220520367901844777533188361953814354733

B =276680689177406367187095588229032746737560994987149790679584682768250507626589
b sec=
268715283597117128548026348937893438795070121192480696260852680559541342340053

MD5 (a_sec OR b_sec + TIME) = ENCRYPTION KEY

MDS5 (268715283597117128548026348937893438795070121192480696260852680559541342340053
+ Sun Mar 20 2016 09:57) = 41e0433e4dc590d45¢325291814bb398

Test message sing ;)|
Sign for this message = 59d3bade1863139fec8e8fef4fe5b365

n

b

Fig 4. Prototype of Application work.

5. Evaluation of algorithm effectiveness
The cryptographic strength of the proposed algorithm for key and signatures
generation depends on the encryption method that combines the algorithms of
symmetric and asymmetric encryption.
The cryptographic strength is a quantitative characteristic of encryption algorithms
— intrusion into a particular algorithm requires a certain number of resources. This is
the amount of information and time required to perform the attack, as well as the
memory required to store information used in the attack.
An attacking encryption algorithm typically aims at solving the following tasks:

e to get public text version from the encrypted one,

e to calculate the encryption key.
The second task is usually more challenging than the first one. However, having the
encryption key the cryptanalyst can later decrypt all the data encrypted with a key.
The algorithm is considered to be secure, if a successful attack at it requires from an
attacker unattainable calculating resources in practice, or open intercepted and
encrypted messages, or if decryption is so time-consuming that currently protected
information would lose its relevance. In most cases, the cryptographic strength

60

Kuppsnues A.C., Credanosa M. A. T'eHepanus TMHAMUYECKUX KIFOYEH U MOAIKMCEH ¢ 3aBUCUMOCTBIO OT BPEMEHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

cannot be mathematically proven, you can only prove the vulnerability of the
algorithm or to calculate the time required to find the key. For this sake, one should
take into consideration the difficulty of a given mathematical problem that serves as
the basis for the encryption algorithm.
To estimate the time of the password configuration to gain an unauthorized access
to the channel of two subscribers, we have the equation [5]:
NO+N1+NZ+NE
t=—"7""" ®)
v
It estimates time in the worst case. Here ¢ is the time required for the guaranteed
password configuration, 7 is the number of combinations per second in brute
search, N is the number of characters in the configurated password, L is the length
of the password.
In case with the md5 algorithm, the number of characters is 36. This number
includes the 26 symbols-letters in the Latin alphabet (a...z) and 10 symbols of
Arabic numerals (0..9). The number of symbols in the secure key for encryption or
signing is 32. To calculate speed of the brute symbol search, we'll take an Intel 17
and a video card Radeon HD5850 1024 MB. Their power equals to 65 000
passwords per second, calculated empirically.
As a result of substitution of values in (5) the estimated time will be:
36° + 36! +36% + 3632

— 44
t= €500 = 9.745x10**c.

Converting the seconds into a larger value, we get the result 3.09 X 1037 years.
Conclusion: this algorithm can be considered secure from attack and the encryption
key calculation, as the time for the key search outweighs the actual time of work
with data.

In sources [5, 6] an algorythm of dynamic key generation is offered. It is presented
as a self-authenticated method with timestamp. In the patent the author employs
asymmetric encryption-decryption algorithm. In contrast in this article the described
algorithm is symmetric. This helps exclude sending and receiving any key, which
increases security of data transmission. Moreover, Google team uses slightly similar
algorithm of key generation. However, its development group employs another hash
function that is not connected with encryption. Additionally, password
configuration is a part of the algorithm that we provide.

6. Conclusion

The algorithm for temporary keys and signatures generation can be used to teach
students the basics of cryptography, and used in real projects. Coupled with a VPN
or TOR networks it becomes more secure due to the new encryption level [7].

61

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

References

[1]. Mikhail Adamenko. The basics of classical cryptology. The secrets of ciphers and codes.
DMK Press [DMK Publishing], 256 p., 2014 (in Russian).

[2]. Diffie, W. and Hellman, M. E. New directions in cryptography. IEEE Transactions on
Information Theory, vol. 22, issue 6, 1976, pp. 644-654.

[3]. Maurer U.M, Wolf S. The Diffie-Hellman Protocol. Retrieved. Designs, Codes and
Cryptography. Special Issue: Public Key Cryptography, Ne 19, 2000, pp.147-171.

[4]. The construction of the password generator. Retrieved from
www.scritub.com/limba/rusa/194620205.php, 2013-08-02 (accessed February, 2016) (in
Russian).

[S]. Self-authenticated method with timestamp. Patent US 20140325225 Al. Retrieved from
http://www. google.com/patents/US20140325225 (accessed Oct. 30, 2014).

[6]. SELF-AUTHENTICATED METHOD WITH TIMESTAMP - DIAGRAM,
SCHEMATIC, AND IMAGE. Retrieved from http://www.fags.org/patents/imgfull/
20140325225 06 (accessed Oct. 30, 2014 Sheet 5 of 5).

[7]. Kiryantsev A.C., Stefanova I.A. Constructing Private Service with CRYP2CHAT
application. Trudy ISP RAN / Proc. ISP RAS], vol. 27, issue 3, 2015, pp. 279-290. DOI:
10.15514/ISPRAS-2015-27(3)-19

FeHepame AWHAMUYECKUX KNoYen n

noanucen ¢ 3aBUCUMOCTbLIO OT BpeMeHU

A.C. Kupvanyes < reyzor2l42@gmail.com>
U A. Cmeghanosa <aistvt@mail.ru>
Tlosonicckuil 20cyO0apcmeennblil yHusepcumem meaeKoMMYHUKayuil u
ungpopmamuxu, Camapa, Mockosckoe wocce, 77

AnHoTamms. B cratbe paccMoTpeHa mpoGiieMa COXPaHHOCTH HEPENHCKH NpH Nepenade u
MyTH pemeHust 3Toil mpoOnemsl. LleHTpanbHYI0 4YacTh CTaTbH COCTABIAET ONUCAHHE
aNropuTMa TeHEepalMu Hapoieil aid mMpPOBaHHUSA JAHHBIX M TEHEpalMd MOANMCEH s
cooOIIeHNH € 3aBHCUMOCTBIO OT BpPEMEHHM Haudana B3aUMOJAEHCTBHS ABYyX aboHeHTOB. B
npepIaraeMoM KOMOWHHMPOBAHHOM alTOPUTME HCIONb3yeTcs TeHepalusi BPEeMEHHOTO
CHMMETPHUYHOTO CEaHCOBOTO KIIOYa JUIl KakKAOW mapbl abOHEHTOB C MOCIEIYIONINM
1 poBaHUEM STHM KIIOYOM IIepeilaBaeMoro coolmmeHns. B cBoro ouepenb caM ceaHCOBBIH
KII0Y ~ MUQPYeTcs] ¢ IOMOIIBIO OTKPBITOTO AaCHMMETPHUYHOTO KIIOYa IIOydaressi Mo
ACHMMETPHYHOTO airopurMa mmdpoBanus. [lamee 3ammdpoBaHHBIA CEAHCOBBIA KIIOY
BMeECTE C 3aIIH(POBAHHBIM COOOLIEHUEM NTEPENACTCS OIYYaTelI0, KOTOPBIH HCIOJIb3YeT TOT
JKe CaMblii aCHMMETPUYHBI anropuT™M IIU(GPOBAHUS U CBOM CEKPETHBIH KIIOY JUIs
pacuMppOBKM CHMMETPHYHOTO CEaHCOBOTO KJIIOYa, a IOJY4YCHHBI CEaHCOBBIH K04
UCTIONIB3YETCSl A paclM(poBKM €aMOTro HPHUHATOro coodbuieHus. Takum oOpasoMm,
CHMMETpPUYHbIE KIIIOUM T€HEPUPYIOTCS KaKIbI pa3 HOBBIE, B 3aBUCHMOCTH OT BPEMEHU
YCTaHOBKM CBSI3M MEXIy Mapoil aOOHEHTOB, YTO IO3BOJSIET IPH BBICOKOH CKOPOCTH
m(ppPOBaHHS UCIIOIB30BATh OTKPBITYIO NEPECHUIKY BPEMEHHBIX KIIOUeH mugpoBaHus. A
JUISL IX COXPAHHOCTH YK€ UCIIOIb30BaTh aCHMMETPUYHBIe MeTOoAb! udpoBanust. Kpome Toro
B CTaTh€ PacCMOTPEHBI MpUMepbl padoTel mpoTokona Aud¢u-Xemamana v anropurMma

62

Kupbsnues A.C., Credanosa U.A. I'enepanus JHHAMAYECKUX KITFOUCH M MOANUCEH ¢ 3aBUCHMOCTBIO OT BPEMECHH.
Tpyast UCIT PAH, 2016, Tom 28, Bbim. 3, c. 51-64.

xemmpoanust MDS5, nucronb3yemsle Ayt MUAQPOBAaHUS TeHEPUPYEMBIX BPEMEHHBIX KITI0UeH 1
TIO3BOJISIONIHME JABYM CTOPOHAM ITOJMYYUTH OOIIMH cekpeTHhIH Kimod. [To mpemuioxeHHOMY
aJITOPUTMY OBUI CO3aH MPOTOTHII C peanu3aluii TeHepalyy Tapois U TeHepaluy MOIINCH,
KOTOPBI HarysIIHO MOKa3bIBaeT 3rtambl padotsl npotokona Juddu-Xemimana u MDS. C
MOMOIIBIO MPOTOTHIIA OBUIO TMPOBEIEHO TECTHPOBAHHE HA MPEAMET BPEMEHH HCIIOIHEHUS
aNropuTMa Ha TpEX yCTpPOMCTBaX: Ha OJHOM CTallMOHAPHOM KOMIIBIOTEPE C BHJEOKApTOH U
nByx tenedonax (2013 u 2015 ronos BeImycka).

KaroueBbie cioBa: Ilporokon [uddu-Xemmana; MDS ¢dynknms; kpunrtorpadus;

mmdpoBanune; aemmdposanue; nudposas 3amura; HUGPOBas MOAMNKNCH, CAMMETPUYHBIE U
ACHMMETPHYHBIC KPHIITOCHCTEMBL.

DOI: 10.15514/ISPRAS-2016-28(3)-4

Jsa uurtupoBanus: Kupesaues A.C., Credanosa U.A. I'enepanust AMHAMAYECKHX KITIOUeit
u noanucel ¢ 3aBucuMocTbo oT BpemeHu. Tpyast UCII PAH, Tom 28, Bbmm. 3, 2016 r. ctp.
51-64 (na anrmuiickom). DOI: 10.15514/ISPRAS-2016-28(3)-3.

Cnucok nutepartypbl

[1]. Muxann Anamenko. OcHOBBI Kiaccudeckor kpunrosorud. Cekpersl IU(POB U KOJIOB,
WznarensctBo IMK 2014 - 256 c.

[2]. Diffie, W. and Hellman, M. E. New directions in cryptography. IEEE Transactions on
Information Theory, vol. 22, issue 6, 1976, pp. 644-654).

[3]. Maurer U.M, Wolf S. The Diffie-Hellman Protocol. Retrieved. Designs, Codes and
Cryptography, Special Issue: Public Key Cryptography, Ne 19, 2000, p.147-171.

[4]. Kak ycTpoeH reHeparop mapoiieit?: www.scritub.com/limba/rusa/194620205.php, 2013-
08-02 (moctym despans, 2016).

[S]. Self-authenticated method with timestamp. Patent US 20140325225 Al. Retrieved from
http://www. google.com/patents/US20140325225 (accessed Oct. 30, 2014)

[6]. Self-authenticated method with timestamp - diagram, schematic, and image 06.
Retrieved from http://www.fags.org/patents/imgfull/20140325225 06 (accessed Oct.
30, 2014 Sheet 5 of 5)

[7]. Kiryantsev A.C., Stefanova I.A. Constructing Private Service with CRYP2CHAT
application. Trudy ISP RAN / Proc. ISP RAS], vol. 27, issue 3, 2015, pp. 279-290. DOI:
10.15514/ISPRAS-2015-27(3)-19.

63

A.S. Kyryantsev, I.A.Stefanova. Dynamic key generation according to the starting time. Trudy ISP RAN / Proc. ISP
RAS], 2016, vol. 28, no 3, pp. 51-64.

64

