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Abstract. Automated test generation is a promising direction in hardware verification research 
area. Functional test generation methods based on models are widespread at the moment. In 
this paper, a functional test generation method based on model checking is proposed and 
compared to existing solutions. Automated model extraction from the hardware design’s source 
code is used. Supported HDLs include VHDL and Verilog. Several kinds of models are used 
at different steps of the test generation method: guarded action decision diagram (GADD), 
high-level decision diagram (HLDD) and extended finite-state machine (EFSM). The high-
level decision diagram model (which is extracted from the GADD model) is used as a 
functional model. The extended finite-state machine model is used as a coverage model. The 
aim of test generation is to cover all the transitions of the extended finite state machine model. 
Such criterion leads to the high HDL source code coverage. Specifications based on transition 
and state constraints of the EFSM are extracted for this purpose. Later, the functional model 
and the specifications are automatically translated into the input format of the nuXmv model 
checking tool.  nuXmv performs model checking and generates counterexamples. These 
counterexamples are translated to functional tests that can be simulated by the HDL simulator. 
The proposed method has been implemented as a part of the HDL Retrascope framework. 
Experiments show that the method can generate shorter tests than the FATE and RETGA 
methods providing the same or better source code coverage. 
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1. Introduction 
Functional verification is an expensive and time-consuming stage of hardware design 
process [1]. Due to hardware designs increasing complexity, automated test 
generation seems to be important and challenging. To avoid design complexity, 
automated verification methods often utilize mathematical abstractions of system 
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properties and behavior, so-called models. Models can be created manually or 
automatically extracted from the system’s source code. Automated verification 
methods based on model extraction from the HDL (Hardware Description Language 
– a collective name for several languages described below) source code are 
considered in this paper. Models can be based on the following formal descriptions: 
finite-state machines, decision diagrams, Petri nets [2], etc. 
Model checking [3] is an approach to set up the correspondence between the model 
of the system and formal conditions (specifications). For every specification a model 
checker tries to produce a counterexample – an input stimuli sequence that leads the 
system into a specification-contradicting state. Counterexample construction is often 
used for functional test generation purposes. 
Proof of equivalence of a model and the corresponding system is an important issue 
when model checking is used for hardware verification. There is no need in such proof 
when the model is automatically extracted from the system’s source code and 
translated into the model checker’s format. 
A method of functional test generation for hardware is proposed in this paper. It is 
based on automatic extraction of High-Level Decision Diagrams (HLDD) [4] from 
the system’s source code. Synthesizable sets of VHDL [5] and Verilog [6] HDLs are 
supported. Extracted models are then automatically translated into SMV (Symbolic 
Model Verifier) language supported by the nuXmv [7] model checker. Extended 
Finite State Machine (EFSM) transition constraints are used as specifications for 
model checking. EFSM model is also extracted from the system’s source code. 
Counterexamples built by the nuXmv model checker are then translated into an HDL 
testbench which can be simulated by an HDL simulator. 
The rest of the paper is organized as follows. Section 2 contains a review of functional 
test generation methods based on model extraction from the HDL source code. In 
Section 3 basic definitions are given. Section 4 contains HLDD construction and test 
generation methods. Section 5 is dedicated to the experimental results. Section 6 
concludes the paper. 

2. Related works 
The idea of model extraction from the HDL source code and following test generation 
is not new. A prototype of CV tool for VHDL description model checking is presented 
in [8]. The tool’s execution process consists of five stages. On the first stage, a VHDL 
description is parsed and an internal representation is constructed. A Binary Decision 
Diagram (BDD) based model is built on the second stage. On the third stage a CTL-
based specification is parsed. The specification language syntax is described in the 
paper. On the fourth stage the specification parsing result and the BDD-based model 
are passed to the CBMC [9] model checker. On the final stage, the model checker 
output is translated into tests that can be executed by the HDL simulator. It is stated 
that BDD-based model size plays the key role in the model checking process. Model 
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size reduction heuristics usage is suggested to avoid state space explosion but no 
heuristics are offered in the paper. 
In [10], extraction of the EFSM model and generation of tests that cover all the model 
transitions are described (so-called FATE method). This method assumes that the user 
provides additional information for the tool about signal semantics (for example, 
which of the signals encodes state). The EFSM extraction process contains several 
stages of transition structure simplification (embedded conditions elimination, 
compatible transitions union, dataflow dependency analysis). The test generation 
method is based on the state graph traversal through random walk and backjumping 
techniques. 
In [11] an improved modification of method [10] is proposed. Optimizations 
described concern path reachability (weakest precondition [12] is used instead of the 
approximate approach) and test filtering tasks. A new functional test generation 
method called RETGA is also proposed in [11]. This method is based on the algorithm 
[13] for automated EFSM model extraction from HDL descriptions. The algorithm 
does not require additional information about signals\variables semantics; for state 
and clock-like variable detection it uses heuristics based on dataflow dependencies. 
Experiments have shown that RETGA method produces shorter tests with higher 
HDL code coverage than FATE and even improved FATE do. 
It should be noted, that state graph traversal techniques (that FATE and RETGA 
methods use) do not guarantee coverage of all the EFSM model transitions. One of 
the problems concerns counter [11] variables that are defined in transition loops and 
used in transition guards, so an EFSM simulation engine needs to recognize at which 
value of the counter it is going to finish the loop execution. 

3. Basic definitions 

Suppose that all models described below run in discrete time that implies clock 
presence. Clock C is a set of events {c1,…,ck} where an event c = {signal, edge} is a 
pair, consisting of a one-bit signal (so-called clock pulse) and a type of registration 
called edge (i.e. positive edge when signal changes its value from 0 to 1 and negative 
edge otherwise). 
Let V be a set of variables. A valuation is a function that associates a variable v  V 
with a value [v] from the corresponding domain. Let DomV be a set of all valuations 
of V. A guard is a Boolean function defined on valuations (DomV → {true, false}). 
An action is a transform of valuations (DomV → DomV). A pair γ → δ, where γ is a 
guard and δ is an action, is called a guarded action (GA). It is implied that there is a 
description of every function in some HDL-like language (thus, we can reason about 
not only semantics, but syntax). 
Let guarded actions be synchronized [14], if each GA is associated with a clock. A 
system {C(i), (i)   (i)}i=1,l of synchronized guarded actions can be represented by 
an oriented acyclic graph G = (N, E, C) called Guarded Actions Decision Diagram 
(GADD). Here N is a set of graph nodes, E is a set of graph edges, and C is a clock. 
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N contains two non-intersecting subsets: a set Ns of non-terminal nodes ns that are 
marked by expressions γ(ns); a set Nt of terminal nodes nt  that are marked by actions 
δ(nt). Graph edges can start from non-terminal nodes only and finish either in terminal 
or in non-terminal nodes. Edges e  E are marked by sets Val(e, n) of accepted values 
γ(n) (here edge e is an outgoing edge for the node n, e  Out(n)). The node n  Ns 
can have no more than one ed  Out(n) that is marked by default keyword – it means 
that for this path in G an expression γ(n) equals to a value that does not belong to any 
marking sets of the other edges outgoing from the node n. Supposing that the GADD 
contains exactly one root node nroot (the node without incoming edges, In(nroot) = ), 
a set of paths from the root node to all the terminal nodes produces a system of 
synchronized guarded actions. For example, the ith path, including n1

(i),…nm
(i) nodes 

and e1
(i),…, em-1

(i) edges (n1
(i)  nroot, nm

(i)  Nt, ek
(i)  Out(nu

(i))  In(nu+1
(i)), 

u = 1,…,m-1), defines a guarded action with p1
(i)…pm-1

(i) (pr
(i) = AND(γ(nr) == q), 

r = 1,…,m-1, q  Val(er, nr)) conjunction as a guard and δ(nm
(i)) as an action. The 

guarded action clock is a subset of the GADD clock. 
In [4] a definition of a high-level decision diagram (HLDD) is given and is shown 
that every variable of an HDL description can be represented by a function 
v = f(v1,…,vn) = f(V) in terms of HLDD Hv. Let Z(v) be a finite set of all possible 
values of a variable v  V. A High-Level Decision Diagram for v is an oriented 
acyclic graph Hv = (M, , V) where M is a set of nodes, and  is a mapping M → 2M. 
Let (m) be a set of subsequent nodes of the node m  M and  -1(m) be a set of 
preceding nodes of the node m. A node m0 of the graph Hv is said to be initial if the 
set of its preceding nodes is empty: Γ	‐1(m0) = . M consists of two non-intersecting 
subsets: Mn for non-terminal nodes and Mt for terminal nodes. All the non-terminal 
nodes mc  Mn are marked by variables v(mc)  V and meet the following condition: 
2 ≤ |Γ(mc)| ≤ |Z(v(mc))|. This means that mc has at least two subsequent nodes but not 
more than the number of possible values of v(mc). All the terminal nodes mk  Mt are 
marked by functions v(mk) = fk(Vk), fk(Vk)  F (Vk  V). Usually some of these 
functions are trivial and equal either to variables vk  V or to constants. All the edges 
are marked by sets of accepted values of variables in the same manner as in the GADD 
definition; the semantics of the default edges is also similar.  
On every tick of the clock, the HLDD Hv assigns a value to the target variable v 
through an activation procedure. Starting from the initial node m0 it calculates values 
of the variables which mark non-terminal nodes. For a value e of the variable v(mc), 
e  Z(v(mc)), the corresponding edge from the node mc  M to the subsequent node 
me  Γ(mc) is activated. A vector Vt of variable values activates the path l(m0, mk) 
from m0 to the terminal node mk marked by the function fk(Vk) that determines the 
value of the target variable v. 

4. HLDD model construction and test generation method 
The proposed test generation method consists of the following steps: 
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 HDL (VHDL/Verilog) description parsing and GADD model construction. 
 HLDD model construction using the GADD model. 
 HLDD model and specification translation into the nuXmv model checker 

input language (SMV model) [16]. 
 SMV model checking by the nuXmv model checker and translation of 

counterexamples into HDL tests. 

The first step has been implemented in [13] so we will start from the second step. 
Note that all the actions, which mark the terminal nodes of the GADD model, are 
represented in the static single assignment (SSA) [15] form. 

4.1. HLDD model construction 
GADD and HLDD models preserve the module structure of the original HDL 
description. Every HDL description process is represented by a single GADD. The 
GADD G = (N, E, C) is used as a basis for HLDD construction for every non-input 
variable of the process. HLDD construction algorithm pseudo code is listed below: 

proto = new; 
for node  N do 
  hldd_node = transform_node(node); 
  proto.add(hldd_node); 
end 
copy_edges(E, proto); 
for (v : non_input_variables(G)) do 
  hldd = proto.keep_assigns(v); 
  hldd.add_missing_terminals(); 
  hldd.transform_identical_assigns(); 
end 

At the first step the HLDD prototype proto is created. GADD nodes are transformed 
into HLDD nodes with the help of the transform_node method and added to the 
prototype. Terminal GADD nodes nt  Nt are transformed into terminal HLDD nodes 
mk  Mt. Every terminal node nt marked by multiple assignment action δ(nt) is 
transformed into a sequence of nodes. Every node in this sequence is marked by a 
corresponding single assignment ak. Every terminal HLDD node is marked by a target 
variable vk (which is the left-hand side of ak) and a function fk(Vk) (which is the right-
hand side of ak). 
Non-terminal GADD nodes ns  Ns are transformed into non-terminal HLDD nodes 
mc  Mn. Guard γ which marks the node ns is replaced by a new variable guard(mc) 
which marks the node mc. The new HLDD that contains a single terminal node 
marked by γ is created for this variable (create_variable_from_switch method). 
GADD edges are transformed into HLDD edges by the copy_edges method. The 
corresponding values are not changed. 
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Then for every non-input variable v the HLDD hldd is created which is actually a 
modified copy of proto. The keep_assigns method removes from Mt the terminal 
nodes which are not marked by v. After that the add_missing_terminals method adds 
new terminal nodes marked by f(v) = v to the edges which lack the subsequent 
terminal nodes. This means that the value of v does not change if any path to such 
node is activated. The transform_identical_assigns method searches for such non-
terminal nodes mc whose reachable terminal nodes are marked by the same function 
fk(vk), and replaces mc and its reachable subgraph with the only terminal node marked 
by fk(vk). 
Consider an example of the HLDD model construction for a simple VHDL 
description. This description contains a single module and a single process. The 
module interface consists of input variables clk, rst, x, y and an output variable res 
(all of 1-bit size). The process contains two internal variables: a 1-bit size vector cnt 
and an integer state (that can be assigned either 0 or 1). The source code of the process 
is listed below: 

process (clk, rst, x, y) 
  variable cnt: std_logic; 
  variable state: integer range 0 to 1; 
begin 
if (rst = ‘1’) then 
  cnt := ‘0’; 
  state := 0; 
elsif (clk = ‘1’) then 
  if (state = 1) then 
    cnt := x or y; 
    state := 0; 
  elsif (state = 0) then 
    cnt := x and y; 
    state := 1; 
  end if; 
  res <= cnt; 
end if; 
end process; 

0 shows the GADD model of the process. Non-terminal nodes of the GADD are 
shown as diamonds and correspond to branch expressions. Terminal nodes are shown 
as rectangles and correspond to basic blocks. Outgoing edges from the non-terminal 
nodes are marked by possible values of the branch expressions. Note that the default 
edge on 0 is unreachable because the state variable can only take the value of 0 or 1. 
The clock of the GADD is formed by events of clk, rst, x and y signals. 
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Fig. 1. GADD model. 

0 shows the HLDD prototype. Expressions, which mark the non-terminal nodes, are 
replaced by guard0, guard1, guard2 variables. 

 
Fig.2. HLDD prototype. 

Consider the HLDD construction for the cnt variable. Terminal nodes marked by cnt 
are highlighted in grey on 0. Terminal nodes, which are not marked by this variable, 
are removed. New terminal nodes marked by cnt are added to the free non-terminal 
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node edges (this means that the value of cnt does not change on these paths). The final 
HLDD is represented on 0. Similar diagrams are constructed for the other non-input 
variables of the HDL description (in our example those are: state and res). 

 
Fig. 3. HLDD of a cnt variable. 

4.2. SMV model construction and checking 
The constructed HLDD model is translated into an SMV language description. 
Hardware design module structure is preserved. Any variable constraints (like the 
range of possible values that is specified for the state variable) and their initial values 
described in the HDL description are added to the SMV model. 
Specification construction is based on the EFSM model extracted from the same HDL 
description. Formal definition of the EFSM model and its extraction algorithm from 
an HDL description are presented in [13]. Here we provide only the informal 
definition. Extended finite-state machine is a special case of an ordinary finite-state 
machine (FSM). It contains sets of inputs, outputs and internal variables. EFSM 
transitions are marked by guard expressions, which depend on input and internal 
variable values, and by actions that can change internal and output variable values. A 
transition can be enabled only if its guard becomes true. When a transition is enabled, 
its action is executed. Specifications used by the proposed method are represented as 
negations of the EFSM transition guards. Negation is used to make the model checker 
build a counterexample – a sequence of data states and input stimuli that contradicts 
the specification (and thus satisfies the corresponding guard). 
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The nuXmv model checker checks the SMV model along with the specifications. 
Output counterexamples are translated into a test set aimed at covering reachable 
EFSM transitions. 
Below you can see the HLDD-to-SMV translation result for the cnt and guard0 
variables. NuXmv-compatible SMV language format is used. The description 
consists of the variable declaration section (VAR) and the assignment section 
(ASSIGN). The init construct defines the initial value of a variable. The next construct 
defines the value of a variable in the next model state. The assignment (“:=”) defines 
the value of a variable in the current model state. Numeric values in the example are 
of bit vector type and are represented by “0<type><size>_<value>” construct. 

VAR 
  cnt : word[1]; 
  guard0 : boolean; 
… 
ASSIGN 
  init(cnt) := 0d1_0; 
… 
ASSIGN 
  next(cnt) :=  
    case 
      (guard0 = TRUE) : 0d1_0; 
      (guard0 = FALSE) :  
        case 
          (guard1 = TRUE) :  
            case 
              (guard2 = 0sd32_1) : (x | y); 
              (guard2 = 0sd32_0) : (x & y); 
              TRUE : cnt; 
            esac; 
          (guard1 = FALSE) : cnt; 
        esac; 
      esac; 
… 
guard0 := (rst = 0d1_1); 
guard1 := (clk = 0d1_1); 
guard2 := state 
 

The example of an SMV specification is listed next: 

LTLSPEC ! F ((state = 0sd32_0) & (clk = 0d1_1) & !(rst = 0d1_1)); 
EFSM transition reachability condition consists of the state variable constraint (which 
determines the source state of the transition) and the guard condition depending on 
the clk and rst variables. 
The nuXmv model checker generates the following counterexample for this 
specification: 
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Trace Type: Counterexample  
  -> State: 1.1 <- 
    SAMPLE.process.state = 0sd32_0 
    SAMPLE.process.cnt = 0ud1_0 
    SAMPLE.process.guard2 = 0sd32_0 
    SAMPLE.process.guard1 = FALSE 
    SAMPLE.process.guard0 = FALSE 
    SAMPLE.process.res = 0ud1_0 
    clk = 0ud1_0 
    y = 0ud1_0 
    x = 0ud1_0 
    rst = 0ud1_0 
  -> State: 1.2 <- 
    SAMPLE.process.guard1 = TRUE 
    clk = 0ud1_1 

 

The first state shows the initial values assigned to the variables. The second state 
shows only the values that have changed. We can see that the second state contradicts 
the given SMV specification: clk is equal to 1, while the rst and state variables are 
equal to 0. 

5. Experimental results 
The proposed test generation method was implemented as a part of the HDL 
Retrascope 0.2.1 software tool [17]. Java language was used for development along 
with the Fortress formulae manipulation library [18]. Some HDL descriptions from 
the ITC’99 benchmark [19] were used for testing of the proposed approach. 
The nuXmv model checker supports both symbolic model checking and bounded 
model checking [21] methods. In some cases, symbolic model checking needed too 
much time and computer resources because of the state explosion (for example, B04, 
B10 and B11 designs). Bounded model checking could manage this problem by 
exploring the model state space only up to some bound. However, bound value affects 
the model checking results (not all the counterexamples may be obtained at the 
specified bound). Therefore, in some cases the bound size was iteratively increased 
in order to get all possible counterexamples. 
Generated tests were simulated by the QuestaSim HDL simulator [20]. Test properties 
(length and source code coverage) were compared to existing test generation methods 
like FATE [10], RETGA [11] (these methods are based on EFSM model extraction 
from the HDL descriptions and are targeted at covering the EFSM model transitions) 
and random test generation. 
0contains information about the ITC’99 designs that were used for test generation: 
their source code size and the corresponding SMV model size (without 
specifications). Size is given in lines of code. 
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Table 1. HDL description and SMV model size 

Design HDL SMV 
B01 102 207 
B02 70 143 
B03 134 637 
B04 101 809 
B06 127 442 
B07 92 370 
B08 88 315 
B09 100 263 
B10 167 755 
B11 118 368 

 

0contains the test length information. Test length is given in clock cycles. The length 
of tests generated by the random generation method corresponds to the point when 
the test coverage growth stops (maximum length was chosen as 1000000 clock 
cycles). The sign “-” means that the corresponding method failed to generate tests for 
the corresponding HDL design. 

Table 2. Test length 

Design FATE RETGA SMV Random 
B01 115 49 69 300 
B02 62 33 47 80 
B03 - - 504 2000 
B04 104 36 67 200 
B06 198 76 88 700 
B07 246 166 249 1000 
B08 31 52 31 1000000 
B09 19 231 84 1000000 
B10 173 135 134 650000 
B11 101 721 194 1000000 

 

In 5 of 10 cases tests generated by the proposed method are shorter than tests 
generated by the FATE method and longer that RETGA tests. Either the rest tests are 
of comparable length with the leader (RETGA), or tests generated by the FATE 
method provide lower coverage. Definitive conclusion about the advantages or 
disadvantages of the proposed method in comparison with the RETGA method cannot 
be made using the selected HDL description set. 
Notice that unlike the FATE and RETGA methods the proposed method is not based 
on EFSM traversal. So it was able to generate the test for B03 design in contrast to 
those methods (EFSM extracted from this design is too complex for traversal). 
0shows the HDL source code statement coverage in comparison to the FATE, 
RETGA and random generation methods. 
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Table 3. Source code statement coverage 

Design FATE RETGA SMV Random 
B01 97,14% 100% 100% 100%  
B02 100% 100% 100% 100%  
B03 - - 100% 100% 
B04 100% 100% 100% 100% 
B06 100% 100% 100% 100% 
B07 93,93% 93,93% 93,93% 84,85% 
B08 81,81% 100% 100% 90,91% 
B09 35,29% 100% 100% 61,77%  
B10 95,94% 100% 100% 97,29% 
B11 69,23% 94,87% 94,87% 87,18% 

 

0shows the HDL source code branch coverage in comparison to the FATE, RETGA 
and random generation methods. 

Table 4. Source code branch coverage 

Design FATE RETGA SMV Random 
B01 96,15% 100% 100% 100% 
B02 100% 100% 100% 100% 
B03 - - 100% 100% 
B04 100% 100% 100% 100% 
B06 100% 100% 100% 100% 
B07 94,73% 94,73% 94,73% 73,69% 
B08 76,92% 100% 100% 84,62% 
B09 35,71% 100% 100% 57,15% 
B10 90,47% 100% 100% 97,61% 
B11 71,87% 96,87% 96,87% 90,63% 

 

The proposed method achieved the same code coverage as the RETGA method at the 
specified set of HDL descriptions. B07 and B11 HDL description coverage is less 
than 100% because of the unreachable code in these designs. 

6. Conclusion and future work 
The functional test generation method based on automated HLDD model extraction 
and checking with nuXmv is presented in this paper. The main advantage of this 
method is its flexibility in choosing a test target (through using different kinds of 
specifications). EFSM transition coverage is presented for comparison to the other 
test generation methods (FATE, RETGA). Any other specifications can be formulated 
and checked in order to get a test aimed at covering the corresponding property of a 
model. The presented implementation of the proposed approach does not produce 
shorter tests than existing approaches on the chosen hardware design set. Simple 
optimizations (like test filtering) can be helpful and are going to be implemented in 
the nearest future. 



Лебедев М.С., Смолов С.А. Генерация функциональных тестов для HDL-описаний на основе проверки моделей. 
Труды ИСП РАН, том 28, вып. 4, 2016, стр. 41-56 

53 

Future work is focused on applying the method to more complex hardware designs 
(including Verilog-based). In this case complexity is defined by the number of 
execution paths in processes and the number of processes and modules in an HDL 
description. Process decomposition using dataflow analysis methods and predicate 
abstraction [22] test generation methods are under research now. 
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Аннотация. Разработка методов автоматической генерации тестов составляет 
перспективное направление в области верификации цифровой аппаратуры. На текущий 
момент большое распространение имеют методы генерации функциональных тестов на 
основе моделей. В данной работе представлен метод генерации функциональных тестов 
на основе проверки моделей и результаты его сравнения с существующими решениями. 
В методе используется автоматическое извлечение моделей из исходного кода HDL-
описания аппаратуры. Поддерживаются языки VHDL и Verilog. Метод генерации тестов 
включает автоматическое построение моделей следующих типов: решающие 
диаграммы системы охраняемых действий (Guarded Action Decision Diagram,GADD), 
высокоуровневые решающие диаграммы (High-Level Decision Diagrams, HLDD) и 
расширенные конечные автоматы (Extended Finite-State Machines, EFSM). HLDD-модель 
используется в качестве функциональной модели. Модель EFSM используется в 
качестве модели покрытия. Целью тестирования является покрытие всех переходов 
расширенного конечного автомата. Выбор такого критерия позволяет получить высокое 
покрытие исходного кода HDL-описания. Из EFSM-модели извлекаются спецификации, 
основанные на ограничениях на переходы и состояния. Затем спецификации и 
функциональная модель автоматически транслируются во входной формат инструмента 
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проверки моделей nuXmv. Инструмент выполняет проверку модели и строит 
контрпримеры. Контрпримеры транслируются в функциональные тесты, которые могут 
быть исполнены с помощью HDL-симулятора. Предлагаемый метод был реализован 
программно в инструменте HDL Rertrascope. Результаты экспериментов показывают, 
что метод генерирует более короткие тесты, чем методы FATE и RETGA, при 
обеспечении такого же или лучшего покрытия исходного кода. 

Ключевые слова: цифровая аппаратура; функциональная верификация; статический 
анализ; генерация тестов; охраняемое действие; высокоуровневая решающая диаграмма; 
расширенный конечный автомат; проверка модели. 
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