
Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

57

Checking Parameterized PROMELA Models of
Cache Coherence Protocols

1 V.S. Burenkov <burenkov_v@mcst.ru>
2 A.S. Kamkin <kamkin@ispras.ru>

1 JSC MCST,
24 Vavilov str., Moscow, 119334, Russian Federation

2 Institute for System Programming of the Russian Academy of Sciences,
25 Alexander Solzhenitsyn str., Moscow, 109004, Russian Federation

Abstract. This paper introduces a method for scalable verification of cache coherence
protocols described in the PROMELA language. Scalability means that resources spent on
verification (first of all, machine time and memory) do not depend on the number of processors
in the system under verification. The method is comprised of three main steps. First, a PROMELA
model written for a certain configuration of the system is generalized to the model being
parameterized with the number of processors. To do it, some assumptions on the protocol are
used as well as simple induction rules. Second, the parameterized model is abstracted from the
number of processors. It is done by syntactical transformations of the model assignments,
expressions, and communication actions. Finally, the abstract model is verified with the SPIN
model checker in a usual way. The method description is accompanied by the proof of its
correctness. It is stated that the suggested abstraction is conservative in a sense that every
invariant (a property that is true in all reachable states) of the abstract model is an invariant of
the original model (invariant properties are the properties of interest during verification of
cache coherence protocols). The method has been automated by a tool prototype that, given a
PROMELA model, parses the code, builds the abstract syntax tree, transforms it according to the
rules, and maps it back to PROMELA. The tool (and the method in general) has been successfully
applied to verification of the MOSI protocols implemented in the Elbrus computer systems.

Keywords: multicore microprocessors, shared memory multiprocessors, cache coherence
protocols, model checking, SPIN, PROMELA.

DOI: 10.15514/ISPRAS-2016-28(4)-4

For citation: Burenkov V.S, Kamkin A.S. Checking Parameterized PROMELA Models of
Cache Coherence Protocols. Trudy ISP RAN / Proc. ISP RAS], volume 28, issue 4, 2016. pp.
57-76. DOI: 10.15514/ISPRAS-2016-28(4)-4

1. Introduction
Shared memory multiprocessors (SMP) constitute one of the most common classes of
high-performance computer systems. In particular, it includes multicore

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

58

microprocessors, which combine several processors (cores) on a single chip [1].
Nowadays, 8- and 16-core microprocessors are in mass production; hardware vendors
have announced forthcoming 48-, 80-, and even 100-core designs. Multicore
microprocessors and SMP systems are also designed by Russian companies such as
MCST and INEUM, e.g., Elbrus-4C (4 cores, 2014) and Elbrus-8C (8 cores, 2015)
[2].
The main problem arising in the development of SMP systems is ensuring memory
coherency. As each processor contains a local cache, multiple copies of the same data
may exist in the system: one copy is in the main memory, and several copies are in
the processors’ caches. Modification of a copy should cause either the invalidation of
the other copies or their consistent modification. This is supported by so-called cache
controllers, i.e. memory devices connected into a network and cooperating in
accordance with a special protocol, so-called cache coherence protocol (CCP) [3].
Development of cache coherence mechanisms includes two stages: first, design of a
CCP; second, its implementation in hardware. The both stages are error-prone;
accordingly, methods for protocol verification and methods for hardware verification
are in use [4]. Protocol bugs are especially critical and should be revealed before
implementing the hardware. The widely recognized method for protocol verification
is model checking [5]. It is fully automated, but suffers from a principal drawback –
it is not scalable due to the state space explosion problem. Using the traditional
methods for verifying a CCP of a system with four and more processors is impossible
(at least, highly problematic) [6].
To overcome the issue and develop scalable verification technologies, researchers
utilize parameterized model checking [7]. The idea is to construct abstract models
that are independent of the number of processors and may be verified with the existing
tools. Correctness of the abstract model guarantees correctness of the original one
(checking, however, may produce wrong error messages, so-called false positives).
The proposed approach is also of that type. In contrast to the existing ones, it supports
the PROMELA language used in the SPIN model checker [8] and the message passing
primitives. The method was successfully used for verifying the CCPs implemented in
the Elbrus computer systems [2].
The paper is structured as follows. In Section 2, we analyze the existing approaches
to CCP verification. In Section 3, we propose a method for constructing an abstract
model out of a PROMELA protocol model. In Section 4, we describe theoretical
foundations of the suggested method. In Section 5, we provide a case study on using
the method for verifying a MOSI protocol. In Section 6, we summarize our work and
outline directions of further research.

2. Related work
As it has been said, classical model checking is inapplicable to CCPs with an arbitrary
number of processors. There exists an alternative approach, called deductive
verification; however, it is hardly automated due to the need of so-called inductive
invariants [9] and does not provide any diagnostic information if there are errors.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

59

Parameterized model checking seems to be a more promising approach. It is worth
mentioning two directions.
First, verification of a parameterized model (in essence, a family of models) can be
reduced to the verification of a single model of the family. Corresponding methods
are aimed at finding such number ܰ that verification of the model for ܰ components
(processors, cache controllers, etc.) is sufficient for proving correctness in general. In
[7], such kind of method is presented, and it is reported that ܰ ൌ 7 is enough for the
protocols having been examined. However, that value is too big to make the method
applicable to industrial SMP systems [6].
Second, a model (parameterized model) can be abstracted so as to reduce the state
space size (make it independent of the number of components). In [10], a method for
abstracting a model from the exact number of replicated identical components (e.g.,
caches in which the cache line is in a given state) is introduced. The technique
significantly reduces the state space size; however, the use of a modified version of
the Mur tool complicates its real-life application. A similar idea, called ሺ0,1,∞ሻ-
counter abstraction, is employed in [11]-[13]. Though the technique seems to be
powerful, it often leads to overly detailed abstract models, which makes the approach
inapplicable to complex protocols.
In [14], a general method for compositional verification is proposed. The idea is to
replace a subset of identical components with an abstract one, called environment.
Such replacement usually leads to false positives, and considerable efforts are
required to eliminate them. In [15]-[18], the approach has been adapted to CCPs. The
suggested method is based on syntactical transformations of Mur models and
counterexample-guided abstraction refinement (CEGAR). The main drawbacks are
as follows:

 Mur does not support the message passing primitives, which complicates
CCP description;

 restrictions on Mur models of CCPs are not clearly defined;
 the tools are not in open access.

3. Suggested method
The problem to be solved is as follows. Given a PROMELA model of a CCP for some
configuration of an SMP system (i.e. a model with a fixed number ݊ 2 of
processors), it is required to check the CCP correctness for an arbitrary configuration
of the system (i.e. for any ܰ ݊).
Models considered in this paper satisfy the following conditions (obtained from the
verification practice and shown to be sufficient for specifying CCPs). The allowed
statements are ܑܗܜܗ ,ܗ܌ ,, ൌ (assignment), ! (send), and ? (receive). Each guarded
action is placed in an ܋ܑܕܗܜ܉ block and therefore is executed with no interruption;
else alternatives are absent. Assignments’ right-hand sides contain only primary
expressions, i.e. variables and constants; left-hand sides are variables and array
elements (an array index is a primary expression). Atomic logic formulaе are of the

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

60

form ݔ ൌൌ ܿ or ܤሺ݄ܿሻ, where ݔ is a variable (or an array element), ܿ is a constant,
݄ܿ is a channel, and ܤ is a predicate: ܔܔܝ ,ܡܜܘܕ܍, etc.

3.1 Model parameterization
From the conceptual point of view, a CCP model consists of an unbounded number
of replicated identical processes, so-called basic processes, and a fixed number of
auxiliary processes. Without loss of generality we will assume that there is only one
auxiliary process. All processes are enumerated from 0 to ܰ, where ܰ is a parameter:
0 is the identifier of the auxiliary process, while 1,… ,ܰ are the identifiers of the basic
processes. All arrays used in the model (arrays of variables and arrays of channels)
are of length ܰ and indexed with the identifiers of the basic processes.

To generalize the original model to a parameterized one, the following induction rules
are used:

 each condition containing an array is either a conjunction or a disjunction of
similar conditions on all array elements:

o ߮ሼ݅/1ሽ ∧ …∧ ߮ሼ݅/݊ሽ is interpreted as ∀݅ ∈ ሼ1,… ,ܰሽ: ߮;
o ߮ሼ݅/1ሽ ∨ …∨ ߮ሼ݅/݊ሽ is interpreted as ∃݅ ∈ ሼ1,… ,ܰሽ: ߮;

 each sequence of statements ߙሼ݅/1ሽ;… ; ሼ݅/݊ሽ is interpreted as a loopߙ
:ሺ݅	ܚܗ 1	. . ܰሻ	ሼߙሽ.

Here, ߮ (α) is a formula (statement) containing an index ݅ as a free variable, and
߮ሼ݅/ݐሽ (ߙሼ݅/ݐሽ) denotes the result of substitution of ݐ for all occurrences of ݅ in ߮ (α).

3.2 Assumptions
Let us consider a CCP where request processing is coordinated by a system
commutator of the home processor (the processor that owns the requested data).
Accordingly, the PROMELA model contains two process types: ܿݎ is a cache
controller (a basic process), and ݄݁݉ is a home processor’s commutator (an
auxiliary process). As usual, the CCP model deals with a single cache line.
Broadly speaking, the CCP works as follows. Each ܿݎ instance may initiate an
operation on the cache line by sending a primary request to the ݄݁݉ process. Upon
its reception and analysis, ݄݁݉ sends snoop requests to all processes except for the
sender. After snoop reception, a ܿݎ sends a response to the sender (data or an
acknowledgement that it has completed an action on the cache line). Having collected
all of the answers, the sender informs ݄݁݉ on the completion of the operation. As
soon as the completion message is received, ݄݁݉ can accept the next primary
request (see Fig. 1).

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

61

Fig. 1. Generalized scheme of a CCP

It is worth emphasizing that at most one primary request is being processed at each
moment of time. It is assumed that values of global variables (e.g., a current sender
identifier) are set by ݄݁݉ upon reception of a primary request and do not change
during its processing.
Each channel can be read by a single process; however, multiple processes are
allowed to write into it. A channel is called simple if there is only one sender;
otherwise, it is called multiplexed. Let ܥௌ→ be the set of channels with the reader ݎ
and senders from the set ܵ. Channels are divided into three groups (hereinafter,
singletons are written without brackets, e.g., 0 → ݆ stands for ሼ0ሽ → ݆):

 ܥ∗ ൌ ⋃ ሼଵ,…,ேሽ→ேܥ
ୀ is the set of multiplexed channels of capacity ܰ used by

 to receive messages from the basic processes (e.g., a channel ܿݎ and ݄݁݉
over which ݄݁݉ receives primary requests, and channels over which
processes receive responses);

 ܥ→ ൌ ⋃ →ேܥ
ୀଵ is the set of simple channels of positive capacity (which

is defined by the CCP, but independent of ܰ) used by the basic processes to
receive messages from ݄݁݉ (e.g., channels over which ݄݁݉ transmits
snoop requests);

 ܥ→ ൌ ⋃ →ேܥ
ୀଵ is the set of simple channels of capacity 1 used by ݄݁݉

to receive messages from the basic processes (e.g., channels over which a
sender informs ݄݁݉ on operation completion).

Messages transmitted via channels are ordered pairs of the form ሺܿ, ݅ሻ, where ܿ
is an operation code, and ݅ is an identifier of the message sender.
A verified CCP property looks as follows:

۵൛∀݇, ݈ ∈ ሼ1, …ܰሽ: ሺ݇ ് ݈ሻ → ߮ሼ݅/݇, ݆/݈ሽൟ,

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

62

where ۵ is an operator that requires its argument to be true in all reachable states of
the model [5]; ߮ is a formula with two free indices (݅ and ݆) that characterizes cache
coherency in the corresponding caches. For MOSI protocols [3], ߮ is as follows:

൜
ሺ݄ܿܽܿ݁ሾ݅ሿ ൌ ܯ ∧ ݄ܿܽܿ݁ሾ݆ሿ ് ;ሻܫ

ሺ݄ܿܽܿ݁ሾ݅ሿ ൌ ܱ ∧ ݄ܿܽܿ݁ሾ݆ሿ ൌ ܱሻ;

where ݄ܿܽܿ݁ is an array that stores the cache line states.

3.3 Informal description
The core of the proposed method is syntactical transformation of PROMELA code. The
transformations change the process types and retain four processes of ܰ 1: a
modified ݄݁݉ process (݄݁݉௦), two modified ܿݎ processes (ܿݎ௦), and an
environment process representing the rest of the processes (ܿݎ௩). Accordingly,
the initialization process of the abstract model is as follows (ܵܤܣ is a constant distinct
from 0, 1, and 2):

init {
 atomic {
 run homeabs(0);
 run procabs(1);
 run procabs(2);
 run procenv(ABS);
 }
}

The length of all arrays is changed from ܰ to 2 (recall that arrays are indexed with
the identifiers of the ܿݎ processes). Each array access is supplied with the guard
݅ 2, where ݅ is the index of the element being accessed.

 On read (in a condition), the atomic formula containing the array access, is
replaced with ݂݁݀݊ݑ (an undefined value) if the index is rejected by the
guard:

,ሾ݅ሿݔሺܤ … ሻ ⟹ ሺ݅ 2 → ,ሾ݅ሿݔሺܤ … ሻ ∶ .ሻ݂݁݀݊ݑ
In PROMELA, a formula of the kind ሺܤ → ଵݐ ∶ ଶሻ corresponds to theݐ
conditional construct ܑ	ܤ	ܖ܍ܐܜ	ݐଵ	܍ܛܔ܍	ݐଶ	ܑ.

 On write (in an assignment), the assignment to the array is placed inside the
selection statement:

ሾ݅ሿݔ ൌ ݐ ⟹ 	ܑ ∷ ሼ݅	܋ܕܗܜ܉ 2		ݔሾ݅ሿ ൌ ሽݐ ∷ .ܑ	܍ܛܔ܍
Assignments to the global variables as well as conditions on the global
variables remain unchanged.

Channels of the set ܥ→ are represented as an array (let us denote it as ݄ܿ). Similarly
to other arrays, it is truncated to length 2. Each atomic formula over ݄ܿሾ݅ሿ, where ݅
2, is replaced with ݂݁݀݊ݑ, while each operation on such a channel is removed.
Channels of the sets ܥ∗ and ܥ→ are represented by individual variables, not arrays.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

63

Send statements are either unchanged or removed. A statement ݄ܿ!݉ in a process
type ܲ is removed only in the following cases:

 ݄ܿ ∈ ܲ → andܥ ൌ →ܥ ௦, where݄݁݉ ൌ ⋃ →ேܥ
ୀଷ ;

e.g., ݄݁݉௦ does not send snoop requests to ܿݎ௩;
 ݄ܿ ∈ ܲ и ∗ܥ ൌ ;௩ܿݎ

e.g., ܿݎ௩ does not send primary requests / snoop responses.
Receive statements may be left unchanged, modified, or removed. A statement ܿ ݄?݉
in a process type ܲ is removed only in the following case:

 ݄ܿ ∈ ܲ → andܥ ൌ ;௩ܿݎ
e.g., ܿݎ௩ does not receive snoop requests.

Modification of ݄ܿ?݉ takes place solely in the following case:
 ݄ܿ ∈ ܲ and ∗ܥ ∈ ሼ݄݁݉௦, .௦ሽܿݎ

The corresponding transformation replaces a guarded action of the kind
ܤሼ	܋ܑܕܗܜ܉ → ݄ܿ?݉ሽ with the following selection statement:

if
:: atomic {B ch?m}
:: atomic {m.opc = opc1; m.i = ABS}
...
:: atomic {m.opc = opck; m.i = ABS}
fi

where ܤ′ is the result of ܤ transformation, and ܿଵ,… , are all possibleܿ
operation codes that may be sent along the channel ݄ܿ.

Fig. 2. Abstraction of a CCP model

Fig. 2 provides a simplified view on CCP model abstraction. All processes except for
 ሺ2ሻ are merged into the environment processܿݎ ሺ1ሻ, andܿݎ ,ሺ0ሻ݄݁݉

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

64

 .ሻ. Solid arrows represent the unmodified send / receive statementsܵܤܣ௩ሺܿݎ
Dashed arrows correspond to the removed sends / modified receives.
Having performed the above transformations, all logical formulae containing ݂݁݀݊ݑ
(in essence, formulae of Kleene’s strong three-valued logic) are transformed into
classic logic formulae such that ݂݁݀݊ݑ in the outer scope is interpreted as ݁ݑݎݐ. This
is achieved by the obvious transformation ܨ:

 ܨሺ߮ሻ ⟹ ,ሺ߮ܩ ;ሻ݁ݑݎݐ
 ܩሺ݂݁݀݊ݑ, ܶሻ ⟹ ܶ;
 ܩሺܤ, ܶሻ ⟹ ;݂݁݀݊ݑ is an atom distinct from ܤ where ,ܤ
 ܩሺ߮, ܶሻ ⟹ ܩሺ߮,ܶሻ;
 ܩሺ߮ ∘ ߰, ܶሻ ⟹ ,ሺ߮ܩ ܶሻ ∘ ,ሺ߰ܩ ܶሻ, where ∘	∈ ሼ∧,∨ሽ.

When transforming the PROMELA model, the following optimizations are applied:
 constant propagation and folding;
 dead code elimination.

Here are some simple examples:
 ሺ݅ 2ሻ ⟹ ;௦ܿݎ ௦ and݄݁݉ in ݁ݑݎݐ
 ሺ݁ݑݎݐ ∧ ሻܤ ⟹ ݁ݏand ሺ݂݈ܽ ܤ ∧ ሻܤ ⟹ ;݁ݏ݈݂ܽ
 ܋ܑܕܗܜ܉	ሼ݁ݑݎݐ → ሽߙ ⟹ .ߙ

It should be said that in general case the abstraction procedure transforms ܰ 1
processes to the ݇ 2 ones, where ݇ ∈ ሼ2,…ܰ െ 1ሽ: ܿݎ௦ (in the number ݇),
 .௩ܿݎ ௦, and݄݁݉

4. Theoretical foundations

4.1 Basic definitions
Let ܸܽݎ be a set of variables and ݄݊ܽܥ be a set of channels. ܽݐܽܦ ൌ ݎܸܽ ∪ is ݄݊ܽܥ
referred to as the set of data. For each ܿ ∈ |ܿ| a value ,݄݊ܽܥ 0, called capacity, is
defined. A data state (or state for short) is a valuation of data, i.e. a mapping ݏ that
maps each variable ݒ to the value ݏሺݒሻ ∈ Գ and each channel ܿ to the sequence of
messages ݏሺܿሻ ∈ ॸ∗ such that |ݏሺܿሻ| |ܿ|. The set of all states is denoted by ܵ. A
designated state ݏ ∈ ܵ is called initial.
Let us assume that there is a language over the data that includes logic formulae and
statements, such as ݔ ൌ .?݉ (read)	and ܿ ,(send) ݉!	ܿ ,(assignment) ݐ
A guard is a formula; an action is a sequence of statements; a guarded action is a pair
ߛ → ݁ݑݎݐ is an action. The guarded action ߙ is a guard, and ߛ where ,ߙ → ߳, where
߳ is the empty sequence of statements, is called empty and designated as ߝ. The set of
all guarded actions is denoted by ݐܿܣ. A guarded action ߛ → is called executable ߙ
in ݏ ∈ ܵ iff (if and only if) ݏ ⊨ .ߛ
A process graph (or process for short) is a triple 〈ܸ, ,ݒ ܸ where ,〈ܧ is a set of vertices,
ݒ ∈ ܸ is an initial vertex, and ܧ ⊆ ܸ ൈ ݐܿܣ ൈ ܸ is a set of edges.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

65

Process structure is defined by the control statements: ܑ (selection), ܗ܌ (repetition),
and ܗܜܗ (jump). Correspondence between code and processes is straightforward and
not described here.
A system is a set of processes, i.e. ൛〈 ܸ, ,ݒ 〉ൟୀܧ

ே
. Hereinafter, ܲ is considered to be

a shortcut for 〈 ܸ, ,ݒ 〉. A configuration of ሼܧ ܲሽୀே is a pair 〈݈, where ,〈ݏ
݈: ሼ0, … , ܰሽ → ⋃ ܸ

ே
ୀ such that ݈ሺ݅ሻ ∈ ܸ for all ݅ ∈ ሼ0,… ,ܰሽ, so-called the control

state, and ݏ ∈ ܵ. The configuration 〈݈, 〉, where ݈ሺ݅ሻݏ ൌ ݅ for allݒ ∈ ሼ0, … ,ܰሽ, is
called initial.
The state space of a system ሼ ܲሽୀே is a triple 〈ܥ, ܿ, ܶ〉, where ܥ is the set of all
configurations of the system, ܿ is the initial configuration, and ܶ ⊆ ܥ ൈ
ቀሼ0,… ,ܰሽ ൈ ሺ⋃ ேܧ

ୀ ሻቁ ൈ is a transition relation such that the following property ܥ
holds: ൫〈݈, ,〈ݏ ൫݅, ሺݒ, ߛ → ,ߙ ,ᇱሻ൯ݒ 〈݈ᇱ, ᇱ〉൯ݏ ∈ ܶ iff:

 ݈ሺ݅ሻ ൌ ;ݒ
 ሺݒ, ߛ → ,ߙ ᇱሻݒ ∈ ;ܧ
 ݏ ⊨ ;ߛ
 ݈ᇱ ൌ ሺ݈ ∖ ሼ݅ ↦ ሽሻݒ ∪ ሼ݅ ↦ ;ሽ′ݒ
 ݏᇱ ൌ :ۥߙۤ ሻ, whereݏሺۥߙۤ ܵ → ܵ is the semantics of ߙ (actions are assumed

to be deterministic).
It is worth mentioning that the restrictions on the transition relation conform to the
notion of asynchronous parallelism.
A configuration ܿ is called reachable in a state space 〈ܥ, ܶ, ܿ〉 iff there is a path in ܶ
from ܿ to ܿ. A state ݏ is called reachable iff a configuration 〈݈, for some ݈, is ,〈ݏ
reachable.

4.2 System abstraction
A process transformation (or transformation for short) is a function that maps one
process to another.
Let ܽݐܽܦௌ ൌ ሺܸܽݎௌ ∪ ௌሻ݄݊ܽܥ ⊆ are ′ݏ and ݏ be a set of significant data. States ܽݐܽܦ
called equivalent (it is designated as ݏ	~	ݏ′) iff ݏ|௧ೄ ൌ .௧ೄ|′ݏ
A guarded action ߛᇱ → ߛ is referred to as an abstraction of a guarded action ′ߙ → ߙ
in ݏ ∈ ܵ iff:

 the truth of ߛ′ is determined only by the significant data: for all ݏᇱ ∈ ܵ such
that ݏᇱ	~	ݏ ,ݏ′ ⊨ ݏ iff ′ߛ ⊨ ;′ߛ

 the effect of ߙ′ is determined only by the significant data: for all ݏᇱ ∈ ܵ such
that ݏᇱ	~	ݏ, there holds ۤߙᇱۥሺݏᇱሻ	~	ۤߙᇱۥሺݏሻ;

 ߛ′ is weaker than ݏ :ߛ ⊨ ߛ → ;′ߛ
 ߙ′ acts similar to ߙۤ :ߙᇱۥሺݏሻ	~	ۤۥߙሺݏሻ.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

66

A set of guarded actions ሼߛᇱ → ᇱሽୀଵߙ is referred to as an abstraction of a guarded
action ߛ → ݏ in ߙ ∈ ܵ iff there exists ݅ ∈ ሼ1,… ,݉ሽ such that ߛᇱ → ᇱ is an abstractionߙ
of ߛ → .ݏ in ߙ
A guarded action ߛᇱ → ᇱߛa set ሼ) ′ߙ → ᇱሽୀଵߙ) is referred to as an abstraction of ߛ →
ᇱߛ iff ߙ → ᇱߛሼ) ′ߙ → ᇱሽୀଵߙ) is an abstraction of ߛ → .in all states ߙ
An abstraction function is a mapping ݂: ݐܿܣ → 2௧ such that for all ߛ → ߙ ∈ ,ݐܿܣ
݂ሺߛ → ߛ ሻ is an abstraction ofߙ → ߛሺܫ The abstraction function .ߙ → ሻߙ ≡ ሼߛ → ሽߙ
is called trivial.
It should be emphasized that this view to abstraction is a bit simplified. An abstraction
function should take into account context of a guarded action (the process edge, the
process, and the model). Thus, it is assumed that each guarded action contains the
context information.
Let ܲ ൌ 〈ܸ, ,ݒ be a process, ݂ be an abstraction function, ܸ′ be some set, and 〈ܧ
ܴ: ܸ → ܸ′ be a mapping. An abstraction of ܲ induced by ݂ and ܴ is the process
݂ሺܲ, ܴሻ ൌ 〈ܸᇱ, ܴሺݒሻ, :ᇱ is defined as followsܧ ᇱ〉, whereܧ

 if ሺݒ, ߛ → ,ߙ ሻݑ ∈ ߛand ݂ሺ ܧ → ሻߙ ൌ ሼߛᇱ → ᇱሽୀଵߙ , then ሼሺܴሺݒሻ, ᇱߛ →
,ᇱߙ ܴሺݑሻሻሽୀଵ ⊆ ;′ܧ

 no other edges belong to ܧ′.
An abstraction ݂ ሺܲ, ܴሻ, where ܴ is a bijection, is referred to as a bijective abstraction.
Besides transforming individual processes, there are of interest transformations that
merges several processes into one. Let us consider a particular kind of such
transformations, where processes to be merged are identical.
Given a system ሼ ܲሽୀே , the following denotations can be introduced (݅ ∈ ሼ0,… ,ܰሽ):

 ܷ݁ݏ is the set of variables read by ܲ;
 ݁ܦ ݂ is the set of variables assigned by ܲ;
 ܸܽݎ ൌ ݁ݏܷ ∪ ݁ܦ ݂ is the set of variables of ܲ;
 ܸܽݎ is the set of local variables of ܲ (we do not define the set ܸܽݎ

assuming that it is provided);
 ܸܽீݎ ൌ ݎܸܽ ∖ ሺ⋃ ݎܸܽ

ே
ୀ ሻ is the set of global variables.

Similarly, the following sets of channels (including the sets of local channels and the
set of global channels) can be defined: ݊ܫ, ܱݐݑ, ݄݊ܽܥ, ݄݊ܽܥ, and ீ݄݊ܽܥ. In
addition,

 ܽݐܽܦ ൌ ݎܸܽ ∪ ; is the set of data of ݄ܲ݊ܽܥ
 ܽݐܽܦ ൌ ݎܸܽ ∪ ; is the set of local data of ݄ܲ݊ܽܥ
 ீܽݐܽܦ ൌ ݎீܸܽ ∪ .is the set of global data ீ݄݊ܽܥ

Processes are called identical if they can be transformed one another by renaming
their local data. More formally, processes ܲ and ܲ are called identical if there are a
bijection ܴ: ܸ → ܸ and a bijection ݎ: ܽݐܽܦ → ൯ݒೕ such that ܴ൫ܽݐܽܦ ൌ ೕ andݒ

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

67

ሺݒ, ߛ → ,ߙ ሻݑ ∈ ,ሻݒ iff ൫ܴሺ	ܧ ߛሺݎ → ,ሻߙ ܴሺݑሻ൯ ∈ ߛሺݎ , whereܧ → ሻ is the result ofߙ
renaming the local data in ߛ → .ݎ in accordance with ߙ
Let ሼ ܲሽୀభ

మ be a system of identical processes, ܽݐܽܦௌ ∩ ൫⋃ ܽݐܽܦ
మ
ୀభ ൯ ൌ ∅ (the

processes’ local data are insignificant), ݃ be an abstraction function, ܸ′ be some set,
and ܴ: ܸభ → ܸ′ be a mapping. The process ݃൫ ܲభ, … , ܲమ; ܴ൯ ൌ ݃൫ ܲభ, ܴ൯ is called
a unifying abstraction of ሼ ܲሽୀଵ induced by ݃ and ܴ.
The definition needs to be clarified. Provided that the processes ሼ ܲሽୀభ

మ operate
simultaneously, there are control states that cannot be represented by a single vertex
of the abstraction ݃൫ ܲభ, … , ܲమ; ܴ൯. Thus, a unifying abstraction may appear to be
inadequate. Let us assume that each process can be either active or passive, and it is
prohibited two or more processes to be active simultaneously. Besides, the passive
mode is organized as the following loop:

 a request is received;
 the local data are updated;
 a response is sent;
 the control is returned to the initial vertex.

Let ܸሺܧ′ሻ be the set of all vertices of the edges from ܧ′.
A process ܲ ൌ 〈ܸ, ,ݒ ܧ ∪ 〉 is referred to as a bimodal process with the set ofܧ
active edges ܧ and the set of passive edges ܧ iff ܧ ∩ ܧ ൌ ∅ and the graph
〈ܸሺܧሻ, .〉 is strongly connectedܧ
Given a bimodal process ܲ ൌ 〈ܸ, ,ݒ ܧ ∪ 〉, the following denotation can beܧ
introduced: ܸ ൌ ܸሺܧሻ and ܸ ൌ ܸሺܧሻ (generally speaking, ܸ ∩ ܸ ് ∅).
The process ݃ ሺܲ, ܴሻ ൌ 〈ܸᇱ, ᇱݒ , ݃ ᇱ〉, whereܧ is an abstraction function, and ܴ : ܸ → ܸ′
is a mapping, is called a serializing abstraction of ܲ iff ܴ satisfies the following
properties:

 ܴሺݒሻ ൌ ᇱݒ for all ݒ ∈ ܸ ∖ ܸ;
 ܴ: ܸ → ܸ′ is a bijection;

and ܧᇱ is defined as follows:
 if ሺݒ, ߛ → ,ߙ ሻݑ ∈ ߛ and ݃ሺܧ → ሻߙ ൌ ሼߛᇱ → ᇱሽୀଵߙ , then ሼሺܴሺݒሻ, ᇱߛ →

,ᇱߙ ܴሺݑሻሻሽୀଵ ⊆ ;′ܧ
 ሺݒᇱ , ,ߝ ᇱݒ ሻ ∈ ;(self loop-ߝ so-called) ′ܧ
 no other edges belong to ܧ′;

and for every ሺݒ, ߛ → ,ߙ ሻݑ ∈ ߛ is an abstraction of ߝ , the empty guarded actionܧ →
 .depends on and affects solely insignificant data ߙ .i.e ,ߙ
The nature of serializing abstraction is removing all passive edges and replacing them
with the ߝ-self loop ሺݒᇱ , ,ߝ ᇱݒ ሻ. Being applied to identical bimodal processes, such
abstraction makes them unimodal and serializable (at most one process is operating,
i.e. being in a non-initial state, at each moment of time) and allows constructing an
adequate unifying abstraction.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

68

Let ܯ ൌ ሼ ܲሽୀே be a system where all processes, except maybe ሼ ܲሽୀ , for some ݇ ∈
ሼ0,… ,ܰሽ, are identical and bimodal; ܽݐܽܦௌ be significant data; ܸ

ᇱ, where ݅ ∈
ሼ0, … , ݇ 1ሽ, be some sets; ܴ: ܸ → ܸ

ᇱ be some mappings; ݂, where ݅ ∈ ሼ0, … , ݇ሽ,
and ݃ be abstraction functions; at that, ݂ሺ ܲ , ܴሻ are bijective abstractions, while
݃ሺ ܲାଵ, … , ேܲ; ܴାଵሻ is a serializing abstraction. Then, the system

ᇱܯ ൌ ሼ ݂ሺ ܲ, ܴሻሽୀ ∪ ሼ݃ሺ ܲାଵ, … , ேܲ; ܴାଵሻሽ
is called an abstraction of ܯ. A process ݂ሺ ܲ; ܴሻ, where ݅ ∈ ሼ0, … , ݇ሽ, is called an
abstraction of the process ܲ. The process ݃ሺ ܲାଵ, … , ேܲ; ܴାଵሻ is called an
abstraction of the environment.
Statement. Let ܯ ൌ ሼ ܲሽୀே and ܯ′ ൌ ሼ ܲ

ᇱሽୀାଵ be, respectively, a system and its
abstraction. Given an arbitrary state ݏ, if ݏ is reachable in the state space of ܯ, then
there is a state ݏ′ reachable in the state space of ܯ′ such that ݏᇱ	~	ݏ.
Proof. Let ܵܤܣ ൌ ݇ 1. This denotation is introduced to emphasize that the
abstraction of the environment, the process ܲௌ

ᇱ ൌ ܲାଵ
ᇱ , generalizes not only the

process ܲାଵ, but also the processes ܲାଶ, … , ேܲ.
A configuration 〈݈ᇱ, ,݈〉 is said to conform to a configuration ′ܯ ᇱ〉 ofݏ iff the ܯ of 〈ݏ
following conditions are satisfied:

 ݈′ሺ݅ሻ ൌ ܴ൫݈ሺ݅ሻ൯ for all ݅ ∈ ሼ0, … , ݇ሽ;
 if ݈ᇱሺܵܤܣሻ ൌ ܴௌሺݒಲಳೄሻ, then ݈ሺ݅ሻ ൌ ݅ for allݒ ∈ ሼ݇ 1,… ,ܰሽ;
 if ݈ᇱሺܵܤܣሻ ് ܴௌሺݒಲಳೄሻ, then there is only one index ݅ ∈ ሼ݇ 1,… ,ܰሽ

such that ݈ᇱሺܵܤܣሻ ൌ ܴ൫݈ሺ݅ሻ൯;
 ݏᇱ	~	ݏ.

Let us consider a path in the state space of ܯ starting with 〈݈, :〈ݏ

ߨ ൌ ቄቀ〈 ݈, ,〈ݏ ቀ ݅, ൫ݒ, ߛ → ,ߙ ାଵ൯ቁݒ , 〈 ݈ାଵ, ାଵ〉ቁቅݏ
ୀ

ିଵ
.	

Here, ݅ ∈ ሼ0, … ,ܰሽ is a process index; ݒ ൌ ݈൫ ݅൯ ∈ ܸೕ and ݒାଵ ൌ ݈ାଵ൫ ݅൯ ∈ ܸೕ are
the process’s vertices connected with the edge labelled by ߛ → ݏ ;ߙ ⊨ ାଵݏ andߛ ൌ
൳ߙ൷ሺݏሻ for all ݆ ∈ ሼ0,… ,݉ െ 1ሽ.
Our goal is to show that, in the state space of ܯ′, there is a path ߨᇱ of the same length
as ߨ such that each configuration of ߨᇱ conforms to the corresponding configuration
of ߨ:

ᇱߨ ൌ ൛൫〈 ݈ᇱ, ,〈ᇱݏ ሺ ݅ᇱ, ሺݒᇱ, ᇱߛ → ,ᇱߙ ାଵᇱݒ ሻሻ, 〈 ݈ାଵᇱ , ାଵᇱݏ 〉൯ൟ
ୀ

ିଵ.

Obviously, existence of such a path implies that there is a state ݏᇱ reachable in the
state space of ܯ′ such that ݏᇱ .ᇱߨ . Let us consider how to constructݏ	~	
Induction basis. The initial configuration 〈݈ᇱ , ᇱݏ 〉 certainly conforms to 〈݈, ݒ :〈ݏ

ᇱ ൌ
݈ᇱሺ݅ሻ ൌ ܴ൫݈ሺ݅ሻ൯ ൌ ܴሺݒሻ for all ݅ ∈ ሼ0, … ,ܰሽ.

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

69

Inductive step. Given an arbitrary index ݍ ∈ ሼ0,… ,݉ െ 1ሽ, we will show that if the
configuration 〈݈ᇱ , ᇱݏ 〉 conforms to 〈݈, let us denote) ′ܯ 〉, then there are a process ofݏ
its index as ݅ᇱ) and an edge ൫ݒᇱ , ᇱߛ → ᇱߙ , ାଵᇱݒ ൯ of that process such that
〈݈ାଵᇱ , ାଵᇱݏ 〉 ൌ 〈൫݈ᇱ ∖ ሼ݅ᇱ ↦ ᇱݒ ൟ൯ ∪ ൛݅ᇱ ↦ ାଵᇱݒ ൟ, ᇱݏሺۥᇱߙۤ ሻ〉 (see the definition of the
state space) conforms to 〈݈ାଵ, :ାଵ〉. There are two casesݏ

 ݅ ∈ ሼ0,… , ݇ሽ;
 ݅ ∈ ሼ݇ 1, . . . , ܰሽ.

Case 1. If ݅ ∈ ሼ0, . . . , ݇ሽ, let ݅ᇱ ൌ ݅: the transition is executed by the process ܲ
ᇱ ൌ

݂ሺ ܲ, ܴሻ.
The edge ൫ݒ, ߛ → ,ߙ ାଵ൯ of the process ܲ is abstracted to the set of edgesݒ

ቄቀܴሺݒሻ, ߛ
ሺሻ → ߙ

ሺሻ, ܴሺݒାଵሻቁቅୀଵ
௧

, where ݂൫ߛ → ൯ߙ ൌ ቄߛ
ሺሻ → ߙ

ሺሻቅ
ୀଵ

௧
.

Among them, there is selected an edge whose label, ߛᇱ → ᇱߙ , is an abstraction of
ߛ → . Such an edge always exists (see the definition of the processݏ inߙ
abstraction). We need to proof that the chosen edge belongs to the state space of ܯ′
and the configuration 〈݈ାଵᇱ , ାଵᇱݏ 〉 conforms to 〈݈ାଵ, ାଵ〉. It is sufficient to proofݏ
the following statements:

 ݏᇱ ⊨ ;ᇱߛ

 ۤߙᇱۥ൫ݏᇱ ൯	~	ۤۥߙሺݏሻ.
The first of them can be deduced from the facts that ݏ ⊨ (otherwise, the stateߛ
space of ܯ would not include the transition under consideration), ߛᇱ → ᇱߙ is an
abstraction of ߛ → ᇱݏ , andݏ inߙ ݏ , (the induction assumption). Obviouslyݏ	~	 ⊨
ݏ andߛ ⊨ ߛ → ᇱߛ lead to ݏ ⊨ ᇱߛ , which, in couple with ݏᇱ ᇱݏ , leads toݏ	~	 ⊨ .ᇱߛ
The second statement is an implication of the facts that ߛᇱ → ᇱߙ is an abstraction of
ߛ → ᇱݏ andݏ inߙ .ݏ	~	
Case 2. If ݅ ∈ ሼ݇ 1, . . . , ܰሽ, let ݅ᇱ ൌ the transition is executed by the process :ܵܤܣ
ܲௌ
ᇱ ൌ ݃ሺ ܲାଵ, … , ேܲ; ܴௌሻ. There are two subcases:
 the edge ൫ݒ, ߛ → ,ߙ ;ାଵ൯ is activeݒ
 the edge ൫ݒ, ߛ → ,ߙ .ାଵ൯ is passiveݒ

Subcase 2.1. If the edge is active, then, by definition of configuration conformance,
݈ᇱሺܵܤܣሻ ൌ ܴሺݒሻ. In ܲ ௌ

ᇱ , there is selected an edge between ܴ ሺݒሻ and ܴ ሺݒାଵሻ
whose label is an abstraction of ߛ → . Such an edge always exists (activeݏ inߙ
edges are abstracted in a usual way). The further proof is similar to that in Case 1.
Subcase 2.2. If the edge is passive, then ܴ൫ݒ൯ ൌ ܴ൫ݒାଵ൯ ൌ ܴ ቀݒቁ ൌ ಲಳೄݒ

ᇱ .
In ܲௌ

ᇱ , there is selected an edge (ݒಲಳೄ
ᇱ , ,ߝ ಲಳೄݒ

ᇱ). Conformance of the configuration
follows from the facts that passive edges do not depend on sufficient data and do not
affect them.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

70

Conclusion. Given an arbitrary path ߨ in the state space of ܯ, there is a path ߨᇱ in the
state space of ܯ′ such that the ending state of ߨᇱ is equivalent to the ending state of
 .ߨ
Q.E.D.
Corollary. Let ܯ ൌ ሼ ܲሽୀே and ܯ′ ൌ ሼ ܲ

ᇱሽୀାଵ be, respectively, a system and its
abstraction. Given an arbitrary formula ߮ over significant data, if ߮ is true (false) in
all states reachable in the state space of ܯ′, then ߮ is true (false) in all states reachable
in the state space of ܯ.

4.3 Model transformation
This section defines abstraction functions used for protocol model transformation.
The description is not quite formal: rigorous definition requires, first, formalization
of the PROMELA semantics and, seconds, usage of formalisms for describing code
transformations. Nevertheless, we believe that the explanations below are sufficient
for formalizing and automating the abstraction procedure.
Let ܯ ൌ ሼ ܲሽୀே and ܯ′ ൌ ሼ ܲ

ᇱሽୀାଵ be, respectively, a system (referred to as an
original model) and its abstraction (referred to as an abstract model).
Let us recall that each message circulating in the model includes the sender’s
identifier. A state of a channel being written by ሼ ܲሽୀାଵே , as well as messages being
read from the channel may contain identifiers from the set ሼ݇ 1,… ,ܰሽ. In the
abstract model, there are no such identifiers: they are mapped to ܵܤܣ (usually, ܵܤܣ ൌ
݇ 1). The definition of state equivalence should be modified so as not to distinguish
between ݅ and ܵܤܣ if ݅ ∈ ሼ݇ 1,… ,ܰሽ.
Another issue is as follows. State of a channel’s buffer is not of importance until a
message is read. The idea is to ignore some messages (in particular, messages written
by ሼ ܲሽୀାଵே). In this case, a send statement can be replaced with ߝ. To preserve the
abstraction properties, each read from the channel should be supplied (as alternative
behavior) with the assignments of all possible values that could be sent via the
channel by the removed statement to the message variable.
To be more precise, the definition of state equivalence should take into account the
following considerations:

 given a channel ܿ ∈ ݏ is (quasi) equivalent to a state ′ݏ an abstract state ,∗ܥ
(state is a sequence of messages) iff ݏ′ is produced from ݏ by removing all
messages with identifiers from ሼ݇ 1,… ,ܰሽ;

 the channels from ܥ→ ൌ ⋃ →ேܥ
ୀାଵ are insignificant (every two states of

a channel are equivalent);
 an abstract state ݏ′ of the channels ܥ→ ൌ ⋃ →ேܥ

ୀାଵ (as a whole) is
equivalent to a state ݏ iff there is ݅ ∈ ሼ݇ 1,… ,ܰሽ such that for each ܿ ∈
 ᇱሺܿ′ሻ, where ܿᇱ is a channel that corresponds to ܿ in ܲௌ, isݏ →, the stateܥ
produced from ݏሺܿሻ by replacing ݅ with ܵܤܣ while the remaining channels

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

71

are empty in both states.
The suggested approach implies the following restrictions on the input model:

 ܽݐܽܦௌ ൌ ܽݐܽܦ ∖ ൫⋃ ܽݐܽܦ
ே
ୀାଵ ൯;

 for each ݅ ∈ ሼ1, … ,ܰሽ, there holds ݄݊ܽܥ ൌ ݄݊ܽܥ ∪ , where݄݊ܽܥ
 are the sets of channels used, respectively, in the active݄݊ܽܥ and݄݊ܽܥ
and passive modes, and:

o ݄݊ܽܥ ∩ ݄݊ܽܥ ൌ ∅;
o ݄݊ܽܥ ⊆ ݄݊ܽܥ) ீ݄݊ܽܥ ൌ ሼଵ,…,ேሽ→ܥ ∪ ;(→ܥ
o ݄݊ܽܥ ⊆ ݄݊ܽܥ) ݄݊ܽܥ ൌ →ܥ ∪ ൫⋃ ሼଵ,…,ேሽ→ேܥ

ୀଵ ൯);
 the only channel predicate in use is ܡܜܘܕ܍ (behavior does not depend on

the number of messages in the channels’ buffers);
 there are no dependencies via variables between the processes ሼ ܲሽୀଵே (all

dependencies are via messages);
 each guarded action is closed under data dependencies via variables;
 there are no data dependencies from the local data (control dependencies

from the local data are allowed).
ᇱܯ ൌ ሼ ܲ

ᇱሽୀାଵ ൌ ሼ ݂ሺ ܲ, ܴሻሽୀ ∪ ሼ݃ሺ ܲାଵ, … , ேܲ; ܴାଵሻሽ, the abstract model, is
constructed as follows (the description below can be viewed as a definition of the
mappings ܴ and the abstraction functions ݂ and ݃). Initially, each process ܲ

ᇱ, where
݅ ∈ ሼ0,… , ݇ 1ሽ, is isomorphic to ܲ: ܲ

ᇱ ൌ ൫ܫ ܲ, ܴ൯, where ܫ is the trivial
abstraction function, while ܴ: ܸ → ܸ

ᇱ is a bijection. Then, the following
transformations are applied to ܲௌ

ᇱ ൌ ܲାଵ
ᇱ and the rest of the processes:

 all passive edges of ܲௌ
ᇱ are removed and replaced with the ߝ-self loops;

 when removing a passive edge whose action contains a read from some
channel ܿ (a write to some channel ܿሻ:

o in ሼ ܲ
ᇱሽୀ , for all ݆ ∈ ሼ݇ 1,… ,ܰሽ, all writes to ܿ (all reads from

ܿ), where ܿ is a channel of ܲ that corresponds to ܿ (the processes
are identical), are removed;

o when removing a read of a message ݉:
 in the guards dependent on ݉, the minimal subformulae

dependent on ݉ are replaced with ݂݁݀݊ݑ;
 the active edges of ܲௌ

ᇱ are processed as follows:
o all assignments to the local variables are removed;
o when removing an assignment to a local variable ݔ:

 in the guards dependent on ݔ, the minimal subformulae
dependent on ݔ are replaced with ݂݁݀݊ݑ;

o each read from a global channel ܿ is not modified:
 in ሼ ܲ

ᇱሽୀ , writes to ܿ are not modified;

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

72

o each write to a global channel ܿ is removed:
 in ሼ ܲ

ᇱሽୀ , each read ܿ	?݉ is supplemented with the
alternatives ൛݉ ൌ ൟୀଵݒ

௧
, where ൛ݒൟୀଵ

௧
 contains all

possible values that ܲௌ
ᇱ can send via ܿ.

Statement. The processes ሼ ݂ሺ ܲ , ܴሻሽୀ (constructed as it is described above) are
bijective abstractions, while the process ݃ሺ ܲାଵ, … , ேܲ; ܴାଵሻ is a serializing
abstraction. Thus, ܯᇱ is an abstraction of ܯ.
As the description is informal, the statement is given without a proof. It should be
noticed that the abovementioned method has been implemented in a tool prototype.
Given a PROMELA model, the tool parses the code, builds the abstract syntax tree,
transforms it according to the rules, and maps it back to PROMELA.

5. Case study
The tool and the underlying method were used to verify the MOSI family CCPs
implemented in the Elbrus computer systems. The developed PROMELA model
supports memory accesses of the types Write Back, Write Through, and Write
Combined. The experiments were performed on Intel Core i7-4771 with a clock rate
of 3.5 GHz. The verified properties are as follows:

 ۵ሼሺ݄ܿܽܿ݁ሾ1ሿ ൌ ܯ ∧ ݄ܿܽܿ݁ሾ2ሿ ൌ ;ሻሽܯ
 ۵ሼሺ݄ܿܽܿ݁ሾ1ሿ ൌ ܱ ∧ ݄ܿܽܿ݁ሾ2ሿ ൌ ܱሻሽ;
 ۵ሼሺ݄ܿܽܿ݁ሾ1ሿ ൌ ܯ ∧ ݄ܿܽܿ݁ሾ2ሿ ∈ ሼܱ, ܵሽሻሽ.

Table 1 and Table 2 show time and memory resources consumed for checking the
property (1), respectively, on the original model (݊ ൌ 3) and on the abstract one. Note
that in the case ݊ ൌ 3 abstraction preserves the number of processes: ݄݁݉ሺ0ሻ,
 ሺ2ሻ are replaced with their abstract counterparts, while proc(3) isܿݎ ሺ1ሻ, andܿݎ
replaced with ܿݎ௩ሺܵܤܣሻ.

Table 1. Resources required for checking the original model

SPIN
optimization

State space
size

Memory
consumption

Verification
time

 106 682 Mb 9 s 5.1 ݐ݊݁ݏܾܣ
 106 328 Mb 15 s 5.1 ܧܵܲܣܮܮܱܥ

Table 2. Resources required for checking the abstract model

SPIN
optimization

State space
size

Memory
consumption

Verification
time

 106 256 Mb 3.7 s 2.2 ݐ݊݁ݏܾܣ
 106 108 Mb 6.2 s 2.2 ܧܵܲܣܮܮܱܥ

The tables show that even for ݊ ൌ 3 there is a gain in state space size and memory
consumption. Meanwhile, correctness of the abstract model implies correctness of the

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

73

original one for any ݊ 3. It is shown that the suggested approach reduces
verification of the parameterized CCP model to visiting and testing ~10 states,
which requires ~100	Mb of memory.

6. Conclusion
SMP computer systems utilize complicated caching mechanisms. To ensure that
multiple copies of the same data are kept up-to-date, CCPs are employed. Errors in
the CCPs and their implementations may cause data corruption and system hanging.
This explains why CCP verification methods are of high value and importance.
The main problem arising in CCP verification is state explosion. In this paper, we
have proposed an approach to overcome the issue and make verification scalable. The
method having been described is aimed at transforming a CCP PROMELA model so as
the result is independent of the number of processors and can be verified by the SPIN
model checker on a regular basis. The approach was successfully applied to the MOSI
family CCPs implemented in the Elbrus computer systems.
In the future, we are planning to extend the method with CEGAR, to develop an open-
source tool for syntactical transformations of PROMELA models (a prototype is already
available), and to create a unified model-based technology for checking CCPs and
verifying memory management units.

References
[1]. Patterson D.A., Hennessy J.L. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p.
[2]. Kim A.K., Perekatov V.I., Ermakov S.G. Microprocessors and computer systems of the
Elbrus familty. SPb.: Piter, 2013. 272 p. (in Russian).
[3]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011. 195 p.
[4]. Kamkin A.S., Petrochenkov M.V. A system to support formal methods-based
verification of coherence protocol implementations. Voprosy radioehlektroniki. Ser. EVT.
[Issues of radio electronics], 2014, issue 3, pp. 27-38 (in Russian).
[5]. Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999. 314 p.
[6]. Burenkov V.S. An analysis of the SPIN model checker applicability to cache coherence
protocols verification. Voprosy radioehlektroniki. Ser. EVT [Issues of radio electronics], 2014,
issue 3, pp. 126-134 (in Russian).
[7]. Emerson E.A., Kahlon V. Exact and Efficient Verification of Parameterized Cache
Coherence Protocols. Correct Hardware Design and Verification Methods, IFIP WG 10.5
Advanced Research Working Conference, 2003, pp. 247-262.
[8]. Holzmann, G.J. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003, 608 p.
[9]. Park S., Dill D.L. Verification of FLASH Cache Coherence Protocol by Aggregation of
Distributed Transactions. Annual ACM Symposium on Parallel Algorithms and Architectures,
1996, pp. 288-296.
[10]. Ip C.N., Dill D.L. Verifying Systems with Replicated Components in Murphi.
International Conference on Computer Aided Verification, 1996, pp. 147-158.
[11]. Pnueli A., Xu J., Zuck L. Liveness with (0, 1,)-Counter Abstraction. International
Conference on Computer Aided Verification, 2002, pp. 107-122.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

74

[12]. Clarke E., Talupur M., Veith H. Environment Abstraction for Parameterized Verification.
Verification, Model Checking, and Abstract Interpretation, 2006. LNCS, vol. 3855, pp. 126-
141.
[13]. Clarke E., Talupur M., Veith H. Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008, pp. 33-47.
[14]. McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. Conference on Correct Hardware Design and Verification
Methods, 2001, pp. 179-195.
[15]. Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS,
vol. 3312, pp. 382-398.
[16]. Krstic S. Parameterized System Verification with Guard Strengthening and Parameter
Abstraction. International Workshop on Automated Verification of Infinite-State Systems,
2005.
[17]. Talupur M., Tuttle M.R. Going with the Flow: , pp. 1-8.
[18]. O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial
Experience. Formal Methods in Computer-Aided Design, 2009, pp. 172-179.

Проверка параметризованных PROMELA-
моделей протоколов когерентности

памяти
1 В.C. Буренков <burenkov_v@mcst.ru>

2 А.C. Камкин <kamkin@ispras.ru>
1 АО «МЦСТ»

119334, Россия, г. Москва, ул. Вавилова, 24.
2 Институт системного программирования РАН,
109004, Россия, г. Москва, ул. А. Солженицына, 25

Аннотация. В статье представлен метод масштабируемой верификации PROMELA-
моделей протоколов обеспечения когерентности памяти. Под масштабируемостью
понимается независимость затрат на верификацию (прежде всего, машинного времени
и памяти) от числа процессоров в системе. Метод состоит из трех основных шагов. На
первом шаге в модель протокола, созданную для определенной конфигурации системы
(для конкретного числа процессоров), вводится параметр, представляющий число
процессоров в системе. Для этого используются простые индуктивные правила, что
возможно только при определенных допущениях на вид протокола. На втором шаге
построенная параметризованная модель абстрагируется от числа процессоров. Для этого
над присваиваниями, выражениями и коммуникационными действиями модели
совершается ряд синтаксических преобразований. На третьем шаге полученная
абстрактная модель верифицируется с помощью инструмента SPIN обычным образом.
Помимо описания метода, в статье приводится доказательство его корректности:

Буренков В.С., Камкин А.С. Проверка параметризованных PROMELA-моделей протоколов когерентности памяти.
Труды ИСП РАН, том 28, вып. 4, 2016, cтр. 57-76

75

утверждается, что предложенная схема абстракции является консервативной в том
смысле, что любой инвариант (свойство истинное во всех достижимых состояниях)
абстрактной модели является инвариантом исходной модели (свойства-инварианты —
это именно те свойства, которые представляют интерес при верификации протоколов
обеспечения когерентности памяти). Предложенный метод был воплощен в прототипе
инструмента, который разбирает код на языке PROMELA, строит дерево абстрактного
синтаксиса, преобразует его по заданным правилам и отображает обратно в PROMELA
код. Инструмент (и метод в целом) был успешно использован при верификации
протоколов семейства MOSI, разработанных в АО «МЦСТ» и реализованных в
вычислительных комплексах «Эльбрус».

Ключевые слова: многоядерные микропроцессоры, мультипроцессоры с разделяемой
памятью, протоколы когерентности памяти, проверка моделей, SPIN, PROMELA.

DOI: 10.15514/ISPRAS-2016-28(4)-4

Для цитирования: Буренков В.С., Камкин А.С. Проверка параметризованных
PROMELA-моделей протоколов когерентности памяти. Труды ИСП РАН, том 28, вып. 4,
2016 г. стр. 57-76 (на английском). DOI: 10.15514/ISPRAS-2016-28(4)-4

Список литературы
[1]. Patterson D.A., Hennessy J.L. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 2013. 800 p.
[2]. Ким A.K., Перекатов В.И., Ермаков С.Г. Микропроцессоры и вычислительные
комплексы семейства «Эльбрус». Спб.: Питер, 2013. 272 с.
[3]. Sorin D.J., Hill M.D., Wood D.A. A Primer on Memory Consistency and Cache
Coherence. Morgan and Claypool, 2011, 195 p.
[4]. Камкин А.С., Петроченков М.В. Система поддержки верификации реализаций
протоколов когерентности с использованием формальных методов. Вопросы
радиоэлектроники. Серия ЭВТ, 2014, вып. 3, стр. 27-38.
[5]. Clarke E.M., Grumberg O., Peled D.A. Model Checking. MIT Press, 1999, 314 p.
[6]. Буренков В.С. Анализ применимости инструмента SPIN к верификации протоколов
когерентности памяти. Вопросы радиоэлектроники. Серия ЭВТ, 2014. вып. 3, стр. 126-
134.
[7]. Emerson E.A., Kahlon V. Exact and Efficient Verification of Parameterized Cache
Coherence Protocols. Correct Hardware Design and Verification Methods, IFIP WG 10.5
Advanced Research Working Conference, 2003, pp. 247-262.
[8]. Holzmann, G.J. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003, 608 p.
[9]. Park S., Dill D.L. Verification of FLASH Cache Coherence Protocol by Aggregation of
Distributed Transactions. Annual ACM Symposium on Parallel Algorithms and Architectures,
1996, pp. 288-296.
[10]. Ip C.N., Dill D.L. Verifying Systems with Replicated Components in Murphi.
International Conference on Computer Aided Verification, 1996, pp. 147-158.
[11]. Pnueli A., Xu J., Zuck L. Liveness with (0, 1,)-Counter Abstraction. International
Conference on Computer Aided Verification, 2002, pp. 107-122.

Burenkov V.S., Kamkin A.S. Checking Parameterized PROMELA Models of Cache Coherence Protocols. Trudy ISP RAN
/ Proc ISP RAS, vol. 28, issue 4, 2016, pp. 57-76

76

[12]. Clarke E., Talupur M., Veith H. Environment Abstraction for Parameterized Verification.
Verification, Model Checking, and Abstract Interpretation, 2006. LNCS, vol. 3855, pp. 126-
141.
[13]. Clarke E., Talupur M., Veith H. Proving Ptolemy Right: The Environment Abstraction
Framework for Model Checking Concurrent Systems. International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, 2008, pp. 33-47.
[14]. McMillan K. Parameterized Verification of the FLASH Cache Coherence Protocol by
Compositional Model Checking. Conference on Correct Hardware Design and Verification
Methods, 2001, pp. 179-195.
[15]. Chou C.-T., Mannava P.K., Park S. A Simple Method for Parameterized Verification of
Cache Coherence Protocols. Formal Methods in Computer-Aided Design, 2004. LNCS,
vol. 3312, pp. 382-398.
[16]. Krstic S. Parameterized System Verification with Guard Strengthening and Parameter
Abstraction. International Workshop on Automated Verification of Infinite-State Systems,
2005.
[17]. Talupur M., Tuttle M.R. Going with the Flow: , pp. 1-8.
[18]. O'Leary J., Talupur M., Tuttle M.R. Protocol Verification Using Flows: An Industrial
Experience. Formal Methods in Computer-Aided Design, 2009, pp. 172-179.

