
Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

7

Information Retrieval and Analysis for a
Modern Organization

Artyom Topchyan <a.topchyan@reply.de>
Yerevan State University,

Alek Manukyan 1, Yerevan, 0025, Armenia

Abstract. With the growing volume and demand for data a major concern for an Organization
is to discover what data there actually is, what it contains and how it is being used and by who.
The amount of data and the disparate systems used to handle this data increase in their number
and complexity every year and unifying these systems becomes more and more complex. In
this work we describe an Intelligent search engine system, specifically designed to tackle the
problem of information retrieval and sharing in a large multifaceted organization, that already
has many systems in place for each Department, which is an integral part of a joint Operational
Data Platform(ODP) for data exploration and processing.

Keywords: data-driven projects; information retrieval; streaming processing; mesos; kafka

DOI: 10.15514/ISPRAS-2016-28(4)-1

For citation: Topchyan A.R. Information Retrieval and Analysis for a Modern Organization.
Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 7-28. DOI: 10.15514/ISPRAS-2016-
28(4)-1

1. Introduction
With the growing volume and demand for data a major concern for an Organization
is to discover what data there actually is, what it contains and how it is being used
and by whom. The amount of data and the disparate systems used to handle this data
increase in their number and complexity every year. This trend is driven by business
and technical demand, which especially stems from the need for more Data-Driven
projects [1][2][3]. Data-Driven projects aim at increasing the quality, speed and/or
quantity of information gained from Data collected by the Organization. But it is very
challenging to move ahead with such projects without access to a defined model to
handle data exploration and processing. This leads to most of the project time being
spent on actually finding out information about the existing data, finding people
involved, data owners and where the data lies, as opposed to actual analysis. As
described in our previous work this can be quite costly time and resource and each
stage of a Data-Driven project is impacted by this. There is currently no single

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

8

accepted approach for tackling such problems, so we described and implemented a
joint Operational Data Platform(ODP) for data exploration and processing, which
aims to be an end-to-end platform for solving the issue of managing large amounts of
data and information about this data by means of scalable automation and information
extraction [1]. This platform has been successfully implemented and is actively used
by large organizations to implement Data-Driven projects. A high level overview of
the entire solution as presented in our previous work is outlined in Fig.1. One of the
main components of the platform was the Information Marketplace, which is an
intelligent search engine system, specifically designed to tackle the problem of
information retrieval and sharing in a large multifaceted organization, that already has
many systems in place for each Department. As outlined above, we believe this to be
the key challenge when exploring possible use cases for Data Scientists. In this work
we outline, the problem definition and technical implementation, in more detail. We
will first outline why we believe such a solution is required and how it fits into an
existing, ever changing landscape of an organization. Then we will outline in detail
what data is used and what and how information is extracted from it in order to build
a search index over all project information and data, that an organization has and
continuously develops in the future. We will specifically concentrate on the
architectural and algorithmic scalability challenges of extracting information from
large and varied datasets using existing methods.

Fig. 1. Operational Data Platform

2. Information Retrieval and Sharing
One of the biggest challenges faced by an Organization when exploring possible use
cases for Data Scientists is in experience knowledge sharing and transfer. Large
Organizations have a large number of Departments, which vary widely based on their
size, project they take on and the way these projects are completed and documented.

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

9

This leads a large variety of data sources, column names and documentation being
created on the same subject by a large number of stakeholders from different
Departments some of whom might not be part of the Organization anymore. This
leads to challenges for Data Scientists and the IT Department, which have to identify
the relevant information and people or documents describing the data, especially
when the project involves more than one data source. The most important
consideration here is time spent on actually finding out if data is available and similar
issues as opposed to more productive data analysis.
To bridge this issue, there are large undertakings for an organization wide change
management process, which pushes for standardization. On a technical level this
changes translate to the centralization and standardization of project related
documentation as well as rigid data views in a central database. Due to the complexity
of the data and the Organization itself an Enterprise Data Warehouses or a Wiki-
System cannot directly solve this issue, while satisfying all the requirements on
structure and intelligence. This leads to the creation of Organization wide specialty
tools, data/knowledge repositories and integration layers providing each Department
with access and management capabilities, in order to adapt to the specific
requirements of the Organization.
Essentially what this entails are a full organizational restructure to create solution for
data and information management. In reality, this is a vast and complex process and
can cost a large amount of money and resources from the side of the Organization and
in some cases might decrease productivity. Each individual Department has an
approach of managing projects and in most cases such a monolithic system allows for
less flexibility for individual Departments. This may lead to decreased productivity.
It is often unrealistic to expect full and informed cooperation from each Department
and its staff in order for each project to be documented, every data column described,
every project contributor to be listed and all the interconnections between documents
and data of multiple Departments being identified and documented. This is further
complicated by the fact, that there is always more data and information each year, so
all of the created documentation should be retroactively update periodically. The
learning period for a complete change and standardization of such processes and the
time required to update all of this information, can bring an entire Department to a
halt for an extended period of time.
There are also a large number of technical considerations, such as file format support,
performance of the search and indexing. Data Scientists and the Business Department
would like to see changes to any information as fast as possible.
To summarize, lets pose a list of requirements we accumulated based on our
experience working with teams of Data Scientists at large organizations:

1. Index decentralized documentation repositories. Each Department
should be able to retain their knowledge repositories with little to no
functional changes. Data should be acquired from these repositories with as
little effort as possible from the Departments side.

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

10

2. Support a large number of formats. Each Department should be able to
use any binary file format for their project documentation.

3. Document Metadata has to be preserved. Such properties as authors,
auditors, names, comments should all be extracted and preserved and be
uniquely identifiable.

4. Low Latency Indexing. Changes to or new documents should be reflected
as fast as possible.

5. Content Indexing. As a minimum all textual content has to be searchable,
there has to be a possibility to later extend this to non-textual content, such
as audio and image files.

6. Author extraction. Each document must be tagged automatically with the
authors of that document. This can be extracted depending on the metadata
or by analysis of the document or related documents.

7. Document summarization. A short summary of the Document would be
very beneficial when exploring a large collection. Giving context knowledge
about document can often be use full to understand the content at a glance.
This could be implemented by extracting important sentences or keywords.

8. Context search. Each document describes a specific context or project in
relation to the organization or the Department. This representation of the
document if very valuable specifically for finding similar projects, but which
are not specifically referring to specific data sources, projects or
Departments.

9. Cluster by Department context. It is often useful to look at groups of
documents referring to specific contexts as opposed to exploring them one
by one. This is specifically interesting to see if documents of one Department
refer to a context usually associated with another Department.

10. Data source search. It should be possible to search for specific data sources
referred to in the documents. Meaning every document should point to
specific data sources it mentions. Used with the document clustering
approach, documents that have no mention of any document can also be
tagged.

11. Data source summarization. It is very important to present an outline of
the data, that is actually available in connection to a Data source a document
refers to.

12. Flexible faceting. All of this extracted information should be made available
as facet views, available when using the tool to explore the organizational
information.

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

11

13. Decoupling of functionality. As we described above, the landscape of the
organizational data and systems is always changing and there should be no
hard dependencies between specific Departments or types of analysis. If a
Department stops producing documentation in a specific format or at all or
author information should no longer be stored, the systems should not
require a substantial rewrite to remove these functions.

14. Flexibility for extensions. Similar to the previous requirement the system
should be easily extensible if further analysis is required, such as for example
support for extracting information from image data. This should also not
invalidate the previous requirement and require a substantial modification to
the system. New attributes or indices should be handled transparently.

15. Performance. This tool will be used by Data Scientist and the Business
Department in their day to day work, this means it should allow for a
responsive experience and support many hundreds of concurrent users.

16. Scalability. The entire solution entails fairly complex computation as there
are potentially tens of gigabytes of documentation (from many Departments)
and data meta information (data schemas) as well as terabytes of data that
has to be analysed. This means the solution should be scalable in order to
provide the similar levels of performance independent of new
documentation or data source.

17. Fault tolerance. This is more of an exploratory tool and as such full end-to-
end correctness is not necessarily required. By correct we mean, that no
documents are processed more than once and all results are always consistent
throughout the solution. Nevertheless, we need to provide a certain level of
fault tolerance thought the system so little to no supervision is required to
ring the system to a consistent state. In this case we are looking more at the
system being eventually consistent [12].

This is not an exhaustive list, but it outlines the base requirements a system for
information retrieval and sharing should fulfill. It is list of complex functional
requirements which we need to map to a technical problem definition and
implementation.
In the next section we will explore this definition and the architecture as well as the
algorithmic implementation of this tool, which we called the Organizational
Information Marketplace.

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

12

Fig. 2. (a) Data-flow requirements in the context of stream processing. (b) Data-flow

requirements in the context of batch processing.

3. Architecture
There are significant architectural and algorithmic considerations when mapping the
requirement set outlined in the previous chapter to a technical implementation. To
achieve all the requirements for performance this has to be distributed application
running on multiple machines, which introduce a large set of benefits and problems.
First let’s consider the architectural side of the problem, before outlining how the
required information is extracted and modelled. To outline the architecture, we first
need to define, what input we have and what required output has to be produced.
Input. Our input is a collections of documents for each Department/data source the
organization has. These collections are unbounded and may increase and decrease as
well as change over time and so can the data sources. Currently a single collection of
documents can be larger than ten gigabytes with documents containing hundreds of
words. Additionally, such a system should be ready to process raw organizational data
as well. This would be important to analyze the actual data content as opposed to
definitions. This can become extremely large with terabytes of data coming every
month.
Output. As the output we require the document with additional extracted or
calculated metadata information, such as the summary of the document, the
semantic/contextual representation of the document, similar documents and others.
This information should be exposed through an interface, that supports a rich set of
text based queries. As the entire content of the document has to be indexed with all
the additional extracted information, we are looking at indexes tens of gigabytes in
size per Departments.
Based on the requirements we need to find a way to get from the input to the output
as fast as possible, whilst applying a non-fixed number of potentially process

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

13

intensive transformation functions in sequence on an unbounded collection of
documents. Additionally, the latency of processing, should not be affected by the
number of documents in a collection at any point in time, meaning there should be a
defined way of scaling each step independent of the others. It is an accepted approach
in the Industry to frame this problem in the context of stream processing [5][4] as
opposed to a periodic batch process. In stream processing each collection of
documents can be represented as a separate stream of documents, which changes
constantly over time. Each new element of the stream is processed one by one, out-
of-order in parallel. The output of each transformation is represented as an another
stream of datum and can be directly consumed by another transformation. This is
quite di�erent from a periodic batch approach, where each collection is considered
static at the point in time and all transformations have to be applied to the entirety of
collection. This is disadvantageous for our case as certain transformations can depend
on others, which means a transformation has to be applied on all documents before
proceeding to the next step. Because This means we need to either join the
transformations together into more monolithic blocks or create large intermediary
collections of transformed documents and orchestrate the order of the batch jobs. In
our experience, this is highly impractical, as this entails either very large, not flexible
transformation steps or a complex scheduling problem. Such problems are very tricky
to tune to scale correctly. Not to mention the fact, that this process be definition is
high latency, but this of course depends on the number of documents and the
complexity of transformations at any point in time. The di�erence between the two
approaches is highlighted in Fig.2. The main issue comes from the necessity to sync
between transformations. A transform has to be notified that a previous step has been
completed. This introduces complexity and latency. In our approach we settled on
decreasing the granularity of data slices and define a stream of data. This in our
opinion allows for flexibility of adding and removing steps at essentially any point.
As opposed to only passing simple events around [7] we model the data as an
unbounded stream, so we can process these elements on-by-one or in larger batches
as well without intermediate storage. This greatly simplifies the amount of state that
has to be tracked in the entire solution and as a side e�ect, in our experience, leads
to more concise, performant and testable services. But we still need to define an
approach for scaling this type of solution and more importantly ensuring a certain
amount of automatic fault-tolerance to make the solution as flexibly and low-
maintenance as possible.

3.1 Components for Fault Tolerance and Scalability
ThereisasignificantconnectionbetweenFault-ToleranceandScalability. Scalability is
usually most directly solved by trying to parallelize the costly process, most often, by
launching more instances of the same service and balancing the work between each
instance. But according to the CAP theorem, which states that it is impossible for a
distributed computer system to simultaneously provide Consistency (all nodes see the
same data at the same time), Availability (every request receives a response about

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

14

whether it succeeded or failed) and Partition tolerance (the system continues to
operate despite arbitrary partitioning due to network failures. To this end the most
important architectural block of a streaming processing systems is the representation
of the "stream". As we described we need a proven way of storing unbounded
amounts of information, which has to be tolerant to failures and scale to a large
number of events and services.

3.1.1 Stream component
A widely accepted approach to this is using a distributed message broker, such as
Apache Kafka [25], which is a high throughput, distributed and durable messaging
system. Each stream can be represented as a topic in Kafka. A Topic is a partitioned
log of events. Each partition is an ordered, immutable sequence of messages that is
continually appended to—a commit log. The messages in the partitions are each
assigned a sequential id number called the o�set that uniquely identifies each
message within the partition [25]. This is a flexible representation as it allows us to
create many topics per stage, which can be consumed by processors in a
stage(consumers). Each Kafka consumers is part of a consumer group and Kafka itself
is balancing the partitions in the topic over the consumer processes in each group.
This means that it is simple to achieve processing scalability just by launching more
consumer processes. As data is automatically distributed and consumption is
balanced, Availability is straightforwardly addressed by dynamically launching more
instances of the service and relying on a balancing mechanism. On the other hand, as
described in [9][8] streaming systems are most sensitive to Partitioning and
Consistency problems. The generally accepted approach to try and solve this [10] [29]
is essentially based on o�set tracking. O�set tracking is tracking how far along in
the stream the processing service is. If each instance of the service has to make sure
it processed a single or batch of event before requesting new events. It would be quite
expensive to commit such o�sets for every event, so o�sets are usually committed
is small batches. This is supported as a core functionality within Kafka itself, which
o�ers approaches to store o�sets in a separate topic as well as allows for automatic
batching of events. Using Kafka, we introduce a scalable and fault tolerant
representation of a stream, both on the storage and processing level.

3.1.2. Service Scheduling component
With the described approach each service is only responsible for deciding how many
events to process and from which o�sets to start and work balancing, storage and
transfer are handled by the stream representation. Kafka has no control over the
consumer processes as well has no idea how costly each operation or what
state(o�sets) have to be tracked. This means it is simple to scale processes just by
launching more processes, but making sure all events were processed correctly during
failures, as well as quickly is up to the consumer itself. To this end we require a
defined way for dynamically scaling process as well as restarting and retrying in case

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

15

of consumer outage. To solve this issue, we can exploit the fact, that with the proposed
way of handling data storage and state, each service is essentially immutable. Which
essentially means a crashed service does not need to be restarted or recovered, but we
can just start a new copy, which will catch up to the state the previous service was
automatically. Coupled with the fact, that we have a large number of machines at our
disposable the problem of service fault tolerance and scaling becomes a process
scheduling problem. Technically we have a set amount of resources for each stage,
each stage takes a certain amount of time to compute and we are trying to reach a
certain amount of latency. Using this information, we can approximate how many
processes have to run and where in order to achieve the required latency. We require
a component, that can decide whether to start, stop or restart processes. This is an
accepted approach to handle scaling largescale distributed application and has been
successfully implemented in the industry [11] [27] by means of a global resource
manager. Such a resource manager is essentially a higher level version of an
Operating Systems Kernel, but running on many machines. Applications decide based
on their processing time and requirement, what resources they require. The resource
manager tries to accommodate this. If the service crashes or the computing node fails,
it can be transparently restarted somewhere else assuming the application can
transparently handle something like this. Which our proposed approach can. Here we
use Apache Mesos, a commonly accepted High-Availability implementation of such
a system. Such a system has also proven to be very flexible to new services or any
adaption [13]. The system just needs to know what resource and what processes to
run.

3.2 View component and Architecture Implementation
The last thing missing from our architecture is the "view “layer. This is where the
output of the processing stages is stored in its final form, as well as as any extra data.
Based on the outlined requirements we need a flexible and scalable storage systems,
that supports a large scale of analytical queries. Considering the fact, that most of our
data are documents. It is more e�cient to store the output in a Search Engine. In this
work we use Elasticsearch [26] due to its proven scalability and performance,
specifically in the context of stream processing. Based on this we can define our
general purpose architecture for building a scalable and Fault-Tolerant stage based
Event Driven application for the purpose of extracting information, context from an
organizations documentation and allowing this to be e�ciently queried. A high level
overview of the architecture is presented in Fig. 3. It should be noted, that in this work
we concentrate on the architectural aspect of scaling and fault-tolerance and do not
define a novel approach, but more an architectural framework using the contexts from
these projects in order to e�ciently and accurately solve the problem for this specific
use case.

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

16

Fig. 3. Information Marketplace Architecture

4. Processing Stages and Implementation
Based on the described architecture we need to map the requirements described in the
previous chapters to a set of stages of transformation a single document has to go
through and queryable views, which are the end result of these transformations. First
lets define the views, which are needed to satisfy the requirements:

 Document Full-Text Search View
 Search View based on Author, Time, File-Format, Department, Data source
 Search View based on extracted keywords, contexts, summaries
 Related document View, based on contexts and keywords

These view are essentially queries against the Elasticsearch database, where the data
will be stored and so we will not outline them in much detail outside of the stage
definitions. What is required is a full representation of the document, data sources and
Departments. Based on this we can define the stages of transformation:

1. Document load from source

2. Document original format to plain text conversion with metadata extraction

3. Map document to specific organizational data source

4. Extract document summary

5. Extract semantic representation of the document(contexts)

6. Find closely related/similar documents

7. Find Departments a data source might refer to

8. Index document

We will now outline in more detail what each stage does and how it is implemented
as well as scalability and fault tolerance considerations for each stage.

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

17

4.1 Load document
 Input — Directories to watch for files
 Output — Stream of document creation, update, delete

Documents may reside on a filesystem in every Department. We need to detect all the
files already there and detect the creation of new files to fulfill the low-latency
requirement. We implemented a distributed directory watcher, which watches for
filesystem event and emits these events into a Kafka stream. Each watcher keeps a
reverse index of the filesystem it is watching. This is required in order to track what
files we have already processed, as no duplicates should be processes if possible. The
filepath and the last modified date are used as the o�set key in the reverse index. The
o�sets are only committed if the file was detected, and has not been modified in the
last few seconds. This is done in order to avoid reading files, which are still being
written to. With this approach we ensure fault tolerance and exactly once processing
of all files. Because this index is stored as a collection of o�sets in a Kafka topic no
duplicates or missing documents will be processed during service or full node
failures. We implemented these watcher using the Kafka Connect Framework [29],
which is a framework tightly coupled with Kafka and o�ers some utility methods to
more simply write data to Kafka. Each watcher writes an event to Kafka containing
the source of the event, the nature of the event and the filepath. This stage is then
defined as a collection of such watchers accessing multiple organizational sources
distributed throughout the organization.

4.2 Document conversion
 Input — Stream of document
 Output — Stream of document metadata and text representations

We need to extract information from a large variety of document formats. As most of
the document ion is written we need to convert it to a simple text representation as
opposed to a native binary format such as Microsoft Word or PDF. For parsing a large
variety of format we use Apache Tika [28]. Tika also allows us to extract a full set of
file metadata from the file, such as authors, modified dates, owners and etc. This stage
produces three di�erent text representations:

1. HTML bases representation, preserving the formatting, useful for display

2. Plain Text representation

3. Filtered text, based on language stop words are filtered, characters are
normalized

As document arrive in a highly asynchronous manner from many data sources in a
single stream we can implement a distributed stream processing application running
on top of Mesos to convert this representation to Text. Essentially each streaming
consumer receives the file, extracts the text and metadata and materializes the result
to another stream. Processes can be pre-allocated based on the number of documents

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

18

committed and average processing time, this is implemented keeping the main ideas
of [14].

4.3. Data source mapping
• Input - Stream of documents
• Output - Stream of documents with Organization data sources labelled

As we outlined in previous sections understanding which data a document is referring
can be very beneficial to Data Scientists, when trying to build a project. This info can
both be used to find out what the data is about or the reverse, which data matches a
certain topic. What we have as input is a lot of documents with no extra information
apart from their content and origin. We need to map each document received to one
or more data sources. If we had some documentation for each data-source of the
organization we could rephrase this issue as a context matching problem, this could
be solved by one of our other stages of analysis. But it is very rarely the case, that an
Organization has any significant amount of information on every data source they
have, quite often the information is there, but has been lost in the thousands of
documents scattered across Departmental repositories. This is the aspect of the
problem we are trying to solve in this stage. As it stands assuming we have the
technical definition of each data source, schemas, column definitions and etc., we
need to find instances of documents that contain references on these attributes. A
straightforward approach would be to scan through each document and count how
many instances of all permutations of all columns are contained inside the document.
But if we consider the complexity of such calculations for a typical organization, it
becomes a very suboptimal approach. For example, this stage has to function with
low latency processing at an organization with dozens of di�erent database systems,
which have thousands of tables in total and each table containing potentially hundreds
of columns. Such an organization has tens of thousands of pieces of documentation,
with a hundreds of documents being modified or created every day. Such documents
usually contain hundreds of words on average. This is an obviously suboptimal
calculation, which is not practical to compute with low latency. For example, let’s
say we have 3000 tables with 100 column search and 10000 documents with 500
words each. This would mean for one document we would need to do 500×300000 =
150000000 not simple comparisons. Another downside of such an approach is, that
we would need to keep all data related information in memory as a collection, which
would lead to large resource requirements. To this we adopt a method similar to the
approach described in [21], which rephrases this issue as a comparison of sets of data.
Indeed, we can e�ciently represent a document and each data source specification as
sets, and then our problem would be to find a set most similar to each incoming
document. Of course this would mean, that we are taking the overlap of a document
and a full set of data columns, which would never truly fully overlap, but as described
in [21] this would give us a good approximate match and we could then analyse which
of the matched data source is truly mentioned in the document. For this we build an
e�cient representation of each data source specification using the Minhash (min-wise

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

19

independent permutations locality sensitive hashing scheme) algorithm [20]. 4.3.1.
Minhash
The Jaccard similarity coe�cient is a commonly used indicator of the similarity
between two sets. For sets A and B, the Jaccard similarity is defined as:

We can phrase this as the ratio of the size of the intersection of A and B to the size of
their union. J lies in 0 <= J <= 1. More specifically, if J = 1 the sets are identical, if J
= 0 there are no shared members otherwise the value can be interpreted as “the
probability that a random element from the union of two sets is also in their
intersection” or “the probability that a randomly chosen element chosen from one of
the sets is also in the other set.”. This is widely accepted measure of similarity, but it
is still quite expensive to compute [21] especially for our case. To this end [20]
describes an algorithm to estimate the Jaccard similarity (resemblance) between sets
of arbitrary sizes in linear time using a small and fixed memory space. It is also quite
suitable to use in a stream processing context due to the low computation time and
compact representation. First lets define a matrix representation of the comparison of
multiple sets. Let’s define matrix M where ݉ is 1 if element i is in set ܵ and 0
otherwise. Let’s denote N as the number of all unique elements in each set. Then for
N let’s take K random hash functions {݄ଵ, ݄ଶ, . . . ݄}, which map each element to a
random unique ID from[N]. Then for k counters ܿଵ, ܿଶ, . . . , ܿ we can define the
Minhash for the set S as: Then set mj(S) = cj and we can define the Jaccard distance
estimate as:

, where I(σ) = 1 if σ = 1.
This also gives us a compact representation, which we can calculate and store for each
data source specification, meaning we only need to calculate the Minhash for each
incoming document. But this is still computationally expensive as we still need do the
computation at least O(௧ܰ௦), meaning the query cost increases linearly with
respect to the number of data sources. A popular alternative is to use Locality
Sensitive Hashing (LSH) index.

4.3.1 Minhash-LSH
One approach to implement LSH is to "hash" each element many times, so that similar
items are more likely to be hashed to the same bucket. We can then just look at the
pairs, which ended up in the same bucket. The main idea as described in [21] is that
most of the dissimilar pairs will never hash to the same bucket, and therefore will
never be checked, and the number of false positives is low.

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

20

For a Minhash representation computed as described above, an effective way to
choose the hash functions is to take the matrix of the representation and partition it in
to b partitions with r rows each. Then we use a hash function for each partitions
and calculate the mapping to many buckets. Each partitions can use the same has
function and keep a separate bucket for each partition. This means columns with the
same vector in different bands will not hash to the same bucket. Then we can check
each band for matches in each bucket.
Based on the describes algorithms we create a Minhash representation for all data
source specifications and build and LSH index over these. This allows us to very
efficiently query for the most similar data sources for an incoming document in a
stream. We take the 3 top matches and find, which one actually is most referenced
inside the document. This is attached to the document as extra metadata and is written
to another stream. Due to the implementation this can be easily scaled by launching
more instances as the Minhash representation is fairly compact.

4.4 Document summary
 Input — Stream of documents
 Output — Stream of documents with added summary

This stages receives a stream of documents as input and outputs the same document
with an additional summarization field attached to the metadata. A text summary in
this context is a set of most important phrases/sentences of the document. Such kind
of method are very sensitive to stop words, words that do not impact the semantic
meaning of the text, such as "and" or " and etc. So this stage relies on the third form
of the text representation, which is already filtered and cleaned. As we only have
unstructured documents and most organization do not tag or write abstracts for each
document, we need to rely on an unsupervised method for text summarization [19].
We summarize the given text, by extracting one or more important sentences from
the text. This summarizer is based on the "TextRank" algorithm [18], which was
chosen when considering its performance and a simpler implementation for key-
sentence extraction vs keywords.

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

21

4.4.1 TextRank
In the TextRank algorithm [18], a text is represented by a graph. Each vertex
corresponds to a word type or sentence. Vertices ݒ and ݆ݒ are connected with a
weight ݓ, which corresponds to the number of times the corresponding word types
co-occur within a defined window in the text. The main objective of TextRank is to
compute the most important vertices of the text. If we denote the neighbors of vertex
 is computed iteratively using the following (ݒ)then the score S ,(ݒ) as Adjݒ
formulae:

Vertexes with many neighbors that have high scores will be ranked higher. We are of
course not interested in keyword extraction, but sentences based summarization. To
this end as shown in [18] it is we can adapt the same algorithm to sentences. Each
vertex will represent a sentence and, as “co-occurrence” is not a logical relation
between sentences, defining another similarity measures. A similarity of two
sentences is defined as a function of how much they overlap. The overlap of two
sentences can be determined simply as the number of common tokens
.ଵݓ . . ேݓ 	between the lexical representations of the two sentences ܵ and ܵ. In [18] it
is defined as:

By applying the same ranking algorithm 0.3 and sorting the sentences in reversed
order of their score we can find the most important sentences, that represent the
document. This algorithm was implemented and applied in a stream of document to
produce the output of the stage. The algorithm performance only depends on the
length of the documents, and based on our average length of documents, the
processing speed satisfies out latency requirements.

4.5 Context extraction
 Input — Stream of documents with extracted information
 Output — Stream of documents with context
 Output — Context Model for each Department

We require a representation of each document in the context of the Department it is
generated by, as well as other Departments. To do this we need a model, that captures
the concepts most used and referred to by projects in the Department. This would give
us a valuable contextual representation of key concepts. This could be achieved by
extracting keywords or popular words similar to the methods described in the
Document Summarizing stage, but what this kind of approach lacks is the document
level representation. We want to consider the context both on the level of separate

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

22

concepts as well as groups of these concepts(documents). This would give us a more
complete view of the context of the Department as well as allow us to extract, such a
contextual representation for any document. Meaning we would see how a document
relates to work usually carried out in the Departments. We also want to analyse the
extracted context to find similar concepts. Another requirement we have is that any
model used should be flexible and require little maintenance to be updated in the
future. For this Probabilistic Topic Models are a widely accepted choice [17]. Using
these models, we can infer the semantic structure of a collection of document using
Bayesian analysis. These models are fairly popular and have been used to solve a
wide range of similar problems [23] [24]. In this work we specifically adopted the
Latent Dirichlet allocation (LDA) model.

4.5.1 Latent Dirichlet allocation
One of the most popular models is Latent Dirichlet allocation (LDA) [17]. LDA is a
model for extracting underlying topical information from unstructured data. LDA
models each document as being represent by multiple "topics". The topics are
represented as a collection of words, or more specifically a probability distribution
over a fixed vocabulary of terms. In LDA documents in a corpus are assumed to be
generated from a set of K topics. Each topic k is represented by a Dirichlet distribution
over the vocabulary:

Each document d is also repented as a Dirichlet ݀ߠ.Eachword w indocument d is then
assumed to be generated by drawing a topic index ݖௗ௪ from a multinomial distribution
Mult(θ(d)), then choose a word wdn for that topic from Mult (φ௭ೢ). By assuming
this generative process, we can go backwards and estimate these matrices from a
collection of documents. In this case a collection per Department, which will generate
a model per Department. There are a number of way to train such a model [17] [16].
In this work as we require low latency inference as well as flexibility to do automatic
model updates, we adopt the Online Variational Bayes algorithm [16]. This method
also has the quality of being static in memory as the entire stream of documents does
not have to be loaded fully when required. Mini-Batches of documents are processed
to infer these matrices. As with most vibrational algorithms, the processing consists
of two steps:

 The E-Step: Given the minibatch of documents, updates to the
corresponding rows of the topic/word matrix are computed.

 The M-Step: The updates from the E-Step are blended with the current
topic/word matrix resulting in the updated topic/word matrix.

Each document received is added to the model and after that the topics are extracted,
this allows us to continuously update the model as well as extract topics from
documents. It is more e�ective to update the model with minibatches [16]. A mini-
batch is a small batch of documents. In our case, this is usually set to 100. This is also

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

23

e�cient for throughput as well as simplified o�set tracking. O�sets are committed
only after a mini-batch of documents has been successfully processed. After each
iteration the model is save to disk and only then the o�sets are committed. This means
we ensure the update model always contains all the documents and is up to date. The
topics are attached to the document with their distribution, this is necessary later on
for ranking text matches. A model is produced per Department in order to captured
the unique context of each. This means the stage contains at least one instance of each
model, but the output of the stage is still a single stream. Related documents as we
are extracting the context of each document via the LDA model and attaching this
information with the specific weights to the document that is indexed in the Search
Engine, it is fairly trivial to find contextually related documents, just by including this
field and its weights when executing text searches

4.6 Related documents
As we are extracting the context of each document via the LDA model and attaching
this information with the specific weights to the document that is indexed in the
Search Engine, it is fairly trivial to find contextually related documents, just by
including this field and its weights when executing text searches.

4.7 Departmental context
 Input — Stream of Documents
 Output — Stream of documents with attached "Department" label

If we take the described LDA Topic Model for each Department as a contextual
representation of the concepts used, we can use this as the representation of what the
Department does in the context of the organization. We essentially have a collection
of sets of topics per Department and we want to find which other Departments this
document relates to. We can exploit the Minhash based set matching approach we
used in the previous stages and apply it to the problem of matching a document to an
organization. We can define an LSH index over each set of topics for each
organization. Then for any incoming document we need to find the most similar set
of topics from each organization a document relates to. Based on this we can extract
a very rough estimation of "related Departments".
As we are using the same efficient representation as with the data source mapping
stage we can efficiently calculate this with low resource requirements.

4.8 Document indexing
 Input — Stream of documents with extracted information
 Output — Elasticsearch indexes

This is the stage that actually indexes the data into a search engine, in this case
Elasticsearch is used to create a reverse token index of the documents.

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

24

We implemented these watcher using the Kafka Connect Framework [29]. Each index
writes an event from Kafka into Elasticsearch. This stage is then defined as a
collection of such indexers accessing multiple sources throughout the organization.
The data is keyed with the filenames, event timestamp, and a unique o�set is
generated via a has function to ensure, that no duplicate data is written into
Elasticsearch even during node faults. We can rely on Elasticsearch’s idempotent
write semantics to ensure exactly once delivery. By setting ids in Elasticsearch
documents, the connector can ensure exactly once delivery by simply overwriting the
data and not creating new records. You can restart and kill the processes and they will
pick up where they left o�, copying only new data. As opposed to the data loading
stage we can read from and write to Elasticsearch in parallel and so we can launch
more services to scale this stage based on amount of input.

5. Conclusion
We proposed a flexible way for discovering data and interconnections of the data,
based on metadata, functional descriptions and Documentation, in an automated and
intelligent way, while not requiring a full Departmental restructure. We outlined the
set of requirements desired by many Organizations in the industry. We described a
scalable, fault-tolerant and flexible Architecture as well as technical and algorithmic
implementation, that satisfies all these requirements. We believe the approach,
proposed solution and its architecture provide a solid basis for implementing similar
information retrieval solutions at large Organizations, that are starting to explore
Data-Driven projects.

References
[1]. Topchyan A.R. Enabling Data Driven Projects for a Modern Enterprise. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 209-230. DOI: 10.15514/ISPRAS-2016-
28(3)-13

[2]. Rahman, Nayem, and Fahad Aldhaban. "Assessing the e�ectiveness of big data
initiatives."2015 Portland International Conference on Management of Engineering and
Technology (PICMET). IEEE, 2015.

[3]. Davenport, Thomas H., and Jill Dych´e. "Big data in big companies."International
Institute for Analytics (2013).

[4]. Dunning, Ted, and Ellen Friedman. Streaming Architecture: New Designs Using Apache
Kafka and Mapr Streams. O’Reilly Media .2016.

[5]. Marz, Nathan, and James Warren. Big Data: Principles and best practices of scalable real-
time data systems. Manning Publications Co, 2015

[6]. Michael Hausenblas and Nathan Bijnens. Lambda Architecture. http://lambda-
architecture.net, 2015.

[7]. K. Mani Chandy. vent-Driven Applications: Costs, Benefits and Design Approaches,
California Institute of Technology, 2006.

[8]. Akidau, Tyler, et al. "MillWheel: fault-tolerant stream processing at internet
scale."Proceedings of the VLDB Endowment 6.11:1033-1044, 2013.

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

25

[9]. Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at
scale."Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM, 2013.

[10]. Akidau, Tyler, et al. "The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, outof-order data processing."Proceedings
of the VLDB Endowment 8.12: 1792-1803, 2015.

[11]. Verma, Abhishek, et al. "Large-scale cluster management at Google with
Borg."Proceedings of the Tenth European Conference on Computer Systems. ACM, 2015.

[12]. Boritz, J. "IS Practitioners’ Views on Core Concepts of Information Integrity".
International Journal of Accounting Information Systems. Elsevier, 2011.

[13]. Netflix. Distributed Resource Scheduling with Apache Mesos.
http://techblog.netflix.com/2016/07/distributedresource-scheduling-with.html

[14]. Newell, Andrew, et al. "Optimizing distributed actor systems for dynamic interactive
services.”. Proceedings of the Eleventh European Conference on Computer Systems.
ACM, 2016

[15]. Cohen, William, Pradeep Ravikumar, and Stephen Fienberg. "A comparison of string
metrics for matching names and records.". Kdd workshop on data cleaning and object
consolidation. Vol. 3, 2003

[16]. Ho�man, Matthew, Francis R. Bach, and David M. Blei. "Online learning for latent
dirichlet allocation.”. Advances in neural information processing systems, 2010

[17]. Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation.
“Journal of machine Learning research 3.Jan: 993-1022, 2003

[18]. Mihalcea, Rada, and Paul Tarau. "TextRank: Bringing order into texts. “Association for
Computational Linguistics, 2004.

[19]. Hasan, Kazi Saidul, and Vincent Ng. "Conundrums in unsupervised key phrase extraction:
making sense of the state-of-the-art. "Proceedings of the 23rd International Conference on
Computational Linguistics: Posters. Association for Computational Linguistics, 2010.

[20]. Broder, Andrei Z. "Identifying and filtering near-duplicate documents. “Annual
Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2000.

[21]. E. Cohen et al. "Finding interesting associations without support pruning. "IEEE
Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp. 64-78, 2001.

[22]. Leskovec, Jure, Anand Rajaraman, and Je�rey David Ullman. Mining of massive
datasets. Cambridge University Press, 2014.

[23]. Krestel, Ralf, Peter Fankhauser, and Wolfgang Nejdl. "Latent dirichlet allocation for tag
recommendation. “Proceedings of the third ACM conference on Recommender systems.
ACM, 2009.

[24]. Maskeri, Girish, Santonu Sarkar, and Kenneth Heafield. "Mining business topics in source
code using latent dirichlet allocation. “Proceedings of the 1st India software engineering
conference. ACM, 2008.

[25]. Apache Kafka. http://kafka.apache.org, 2015.
[26]. Gormley, Clinton, and Zachary Tong. Elasticsearch: The Definitive Guide. "O’Reilly

Media, Inc.", 2015.
[27]. Apache Mesos. http://mesos.apache.org, 2015.
[28]. Apache Tika. https://tika.apache.org, 2015.
[29]. Confluent Inc. Kafka-Connect. http://docs.confluent.io, 2015.

Topchyan A.R. Information Retrieval and Analysis for a Modern Organization. Trudy ISP RAN/Proc. ISP RAS, vol. 28,
issue 4, 2016, pp. 7-28

26

Извлечение и анализ информации в современных
предприятиях

А.Р. Топчян <a.topchyan@reply.de>
Ереванский государственный университет,

0025, Армения, г. Ереван, ул. А. Манукяна, дом 1

Аннотация. С ростом объема данных и потребности в них одной из основных проблем
организаций становится обнаружение природы данных, выявление несомой ими
информации и установление того, как и кем они используются. Объем данных и число
разнородных систем, используемых для их обработки, растет, данные и системы все
время усложняются, и совместное использование этих систем становится все более и
более сложным. В этой работе мы описываем интеллектуальную поисковую систему, в
основном предназначенную для решения проблемы поиска и обмена информацией в
большом многопрофильной организации, в которой уже имеется много действующих
систем для каждого отдела. Эта система является неотъемлемой частью совместной
оперативной платформы данных (ODP) для исследования и обработки данных.

Ключевые слова: проекты, ориентированные на данные; извлечение информации,
потоковая обработа; Mesos; Kafka

DOI: 10.15514/ISPRAS-2016-28(4)-1

Для цитирования: Топчян А.Р. Извлечение и анализ информации в современных
предприятиях. Труды ИСП РАН, том 28, вып, 4, 2016, стр. 7-28 (на английском). DOI:
10.15514/ISPRAS-2016-28(4)-1

Список литературы
[1]. Topchyan A.R. Enabling Data Driven Projects for a Modern Enterprise. Trudy ISP

RAN/Proc. ISP RAS, vol. 28, issue 3, 2016, pp. 209-230. DOI: 10.15514/ISPRAS-2016-
28(3)-13

[2]. Rahman, Nayem, and Fahad Aldhaban. "Assessing the e�ectiveness of big data
initiatives."2015 Portland International Conference on Management of Engineering and
Technology (PICMET). IEEE, 2015.

[3]. Davenport, Thomas H., and Jill Dych´e. "Big data in big companies."International
Institute for Analytics (2013).

[4]. Dunning, Ted, and Ellen Friedman. Streaming Architecture: New Designs Using Apache
Kafka and Mapr Streams. O’Reilly Media .2016.

[5]. Marz, Nathan, and James Warren. Big Data: Principles and best practices of scalable real-
time data systems. Manning Publications Co, 2015

[6]. Michael Hausenblas and Nathan Bijnens. Lambda Architecture. http://lambda-
architecture.net, 2015.

[7]. K. Mani Chandy. vent-Driven Applications: Costs, Benefits and Design Approaches,
California Institute of Technology, 2006.

[8]. Akidau, Tyler, et al. "MillWheel: fault-tolerant stream processing at internet
scale."Proceedings of the VLDB Endowment 6.11:1033-1044, 2013.

Топчян А.Р. Извлечение и анализ информации в современных предприятиях. Труды ИСП РАН, том 28, вып. 4,
2016, стр. 7-28.

27

[9]. Zaharia, Matei, et al. "Discretized streams: Fault-tolerant streaming computation at
scale."Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles. ACM, 2013.

[10]. Akidau, Tyler, et al. "The dataflow model: a practical approach to balancing correctness,
latency, and cost in massive-scale, unbounded, outof-order data processing."Proceedings
of the VLDB Endowment 8.12: 1792-1803, 2015.

[11]. Verma, Abhishek, et al. "Large-scale cluster management at Google with
Borg."Proceedings of the Tenth European Conference on Computer Systems. ACM, 2015.

[12]. Boritz, J. "IS Practitioners’ Views on Core Concepts of Information Integrity".
International Journal of Accounting Information Systems. Elsevier, 2011.

[13]. Netflix. Distributed Resource Scheduling with Apache Mesos.
http://techblog.netflix.com/2016/07/distributedresource-scheduling-with.html

[14]. Newell, Andrew, et al. "Optimizing distributed actor systems for dynamic interactive
services.”. Proceedings of the Eleventh European Conference on Computer Systems.
ACM, 2016

[15]. Cohen, William, Pradeep Ravikumar, and Stephen Fienberg. "A comparison of string
metrics for matching names and records.". Kdd workshop on data cleaning and object
consolidation. Vol. 3, 2003

[16]. Ho�man, Matthew, Francis R. Bach, and David M. Blei. "Online learning for latent
dirichlet allocation.”. Advances in neural information processing systems, 2010

[17]. Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation.
“Journal of machine Learning research 3.Jan: 993-1022, 2003

[18]. Mihalcea, Rada, and Paul Tarau. "TextRank: Bringing order into texts. “Association for
Computational Linguistics, 2004.

[19]. Hasan, Kazi Saidul, and Vincent Ng. "Conundrums in unsupervised key phrase extraction:
making sense of the state-of-the-art. "Proceedings of the 23rd International Conference on
Computational Linguistics: Posters. Association for Computational Linguistics, 2010.

[20]. Broder, Andrei Z. "Identifying and filtering near-duplicate documents. “Annual
Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg, 2000.

[21]. E. Cohen et al. "Finding interesting associations without support pruning. "IEEE
Transactions on Knowledge and Data Engineering, vol. 13, no. 1, pp. 64-78, 2001.

[22]. Leskovec, Jure, Anand Rajaraman, and Je�rey David Ullman. Mining of massive
datasets. Cambridge University Press, 2014.

[23]. Krestel, Ralf, Peter Fankhauser, and Wolfgang Nejdl. "Latent dirichlet allocation for tag
recommendation. “Proceedings of the third ACM conference on Recommender systems.
ACM, 2009.

[24]. Maskeri, Girish, Santonu Sarkar, and Kenneth Heafield. "Mining business topics in source
code using latent dirichlet allocation. “Proceedings of the 1st India software engineering
conference. ACM, 2008.

[25]. Apache Kafka. http://kafka.apache.org, 2015.
[26]. Gormley, Clinton, and Zachary Tong. Elasticsearch: The Definitive Guide. "O’Reilly

Media, Inc.", 2015.
[27]. Apache Mesos. http://mesos.apache.org, 2015.
[28]. Apache Tika. https://tika.apache.org, 2015.
[29]. Confluent Inc. Kafka-Connect. http://docs.confluent.io, 2015.

