
Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

77

Language for Describing Templates for Test
Program Generation for Microprocessors

A.D. Tatarnikov <andrewt@ispras.ru>
Institute for System Programming of the Russian Academy of Sciences,

25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. Test program generation and simulation is the most widely used approach to
functional verification of microprocessors. High complexity of modern hardware designs
creates a demand for automated tools that are able to generate test programs covering non-
trivial situations in microprocessor functioning. The majority of such tools use test program
templates that describe scenarios to be covered in an abstract way. This provides verification
engineers with a flexible way to describe a wide range of test generation tasks with minimum
effort. Test program templates are developed in special domain-specific languages. These
languages must fulfill the following requirements: (1) be simple enough to be used by
verification engineers with no sufficient programming skills; (2) be applicable to various
microprocessor architectures and (3) be easy to extend with facilities for describing new types
of test generation tasks. The present work discusses the test program template description
language used in the reconfigurable and extensible test program generation framework
MicroTESK being developed at ISP RAS. It is a flexible Ruby-based domain-specific language
that allows describing a wide range of test generation tasks in terms of hardware abstractions.
The tool and the language have been applied in industrial projects dedicated to verification of
MIPS and ARM microprocessors.

Keywords: microprocessors; functional verification; test program generation; test templates;
domain-specific languages.

DOI: 10.15514/ISPRAS-2016-28(4)-5

For citation: Tatarnikov A.D. Language for Describing Templates for Test Program
Generation for Microprocessors. Trudy ISP RAN/Proc. ISP RAS, vol. 28, issue 4, 2016. pp. 77-
98. DOI: 10.15514/ISPRAS-2016-28(4)-5

1. Introduction
Functional verification is acknowledged to be the bottleneck in microprocessor
design cycle. According to various estimates, it accounts for more than 70% of overall
project time and resources. In the current industrial practice, function verification
mainly relies on test program generation (TPG) which is done by special automation
tools [1]. Generated test programs (TP) are instruction sequences aimed to trigger

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

78

certain events in the microprocessor design under verification. TPG tools are aimed
to provide a high level of test coverage by applying a rich set of generation methods.
As modern microprocessors are getting more and more complex, new more advanced
methods emerge. A common problem for TPG tool developers is how to overcome
the complexity and make it easy to apply the growing set of methods to a wide range
of microprocessor designs.
One of possible ways to increase the flexibility of a TPG tool is to separate generation
logic from descriptions of test cases. This method is known as template-based
generation. The key idea of the method is that test programs are generated on the basis
of abstract descriptions called test program templates or test templates (TTs). The
method helps generate high-quality tests directed towards specific situations or
classes of situations. TTs specify methods to be used for constructing instruction
sequences and constraints on instruction operand values which must be satisfied to
make certain events to fire. Test data are generated by finding random solutions to the
given constraint systems. Such approach is usually referred to as constraint-based
random generation [2]).
The template-based approach is implemented in a number of TPG tools including
MicroTESK [3], a reconfigurable [4] and extensible [5] TPG framework being
developed at ISP RAS. The framework uses formal specifications to construct TPG
tools for specific microprocessor designs. A constructed TPG tool is separated into
two main components: (1) an architecture-independent test generation core and (2) an
architecture specification, or a model. The approach called model-based [1] helps
significantly reduce the efforts to support a new microprocessor architecture by
reusing the core. The core is designed as a set of generation engines which can be
easily extended with plugins implementing new TPG methods. Test programs are
generated by processing TTs that describe verification tasks in terms of the model and
the generation methods implemented by the core.
This paper describes the test template description language (TTDL) used in
MicroTESK. This is a domain-specific language implemented as a set of Ruby [6]
libraries, which is easy adaptable to changing configurations. Facilities for describing
instruction calls for a specific ISA are dynamically added and are based on
information provided by the model. Also, the MicroTESK TTDL provides a rich set
of facilities for describing verification tasks which are common for all microprocessor
configurations. When MicroTESK is extended with new TPG methods, support for
these features is added in the TTDL by providing new Ruby libraries.
The rest of the paper is divided into five sections. Section 2 contains a brief survey of
the existing TPG tools that follow the template-based approach. Section 3 formulates
the requirements for a TTDL imposed by MicroTESK that led to creating the
described TTDL. Section 4 provides a detailed description of the architecture and
facilities of the MicroTESK TTDL. Section 5 contains a case study of applying the
TTDL for describing test cases in industrial projects. Section 6 discusses the results
and outlines directions of future research and development.

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

79

2. Related work
Functional verification has always been a major issue for the research community.
Over the last decades, a lot of TPG methods and tools have emerged. The template-
based approach described in this paper has been applied in a number of tools
developed by different teams. This section gives an overview of the most significant
of existing TPG tools and discusses strong and weak points of their TTDLs.
IBM Research has been one of the major contributors in the field of TPG for
microprocessors during the last decades. Genesys-Pro [1], one of their most recent
tools, uses TTs to describe TPG tasks as constraint satisfaction problems (CSP) [2]
and generates test data by solving these CSPs. Constraints can be used to specify such
aspects of functionality as boundary conditions, exceptions, cache hits/misses, etc.
The TTDL used by Genesys-Pro is a completely impendent domain-specific language
which provides a rich set of features. The language features it offers can be divided
into four groups: (1) basic instruction statements, (2) sequencing-control statements,
(3) standard programming constructs, and (4) constraint statements. By combining
these constructs, users can compose complex TTs with a degree of randomness varied
from completely random to completely directed. The main advantage of the language
is that it is designed for describing test scenarios and it does not confuse verification
engineers with any unnecessary programming constructs. At the same time, being not
based on existing languages, it does not take advantage of well-tried constructs that
can help organize TTs into reusable libraries. This can be important as industrial
testbenches usually contain thousands lines of code. Also, it is unclear how easy the
language can be extended with new constructs for describing new types of TPG tasks.
Another company that has made a significant contribution in development of TPG
tools is Obsidian Software (now acquired by ARM) [7]. Their tool RAVEN (Random
Architecture Verification Engine) [8] generates random and directed tests based on
TTs. Test templates are focused on coverage grids and use constraints to formulate
specific coverage goals. There is no detailed information available on this technology.
It is known that TTs can be either generated by the tool’s GUI or created as text. The
language must suit well for the TPG tasks that can be accomplished with RAVEN.
However, the question whether it is suitable for more general tasks stays open.
Also, Samsung Electronics created a TPG framework called RDG (Random
Diagnostics Generator) [9] for testing reconfigurable processors. It uses TTs created
in the C++ language to specify instructions that will be used in a TP and constraints
on their input values that should be satisfied in order to meet testing goals. This
approach takes advantage of power and performance of C++, but requires solid
programming skills which are not common for verification engineers.
Finally, MicroTESK [3] version 1.0 used TTs written using Java libraries [10]. This
is not convenient as verification engineers are forced to deal with Java abstractions
such as classes and interfaces, which are not related to verification tasks. Moreover,
details of language implementation must be hidden from users in order to be able to
change it without breaking existing TTs. This motivated to create a new domain-
specific language for the new version of MicroTESK.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

80

3. Requirements for TTDL
Requirements for a TTDL can be divided in two groups: (1) general requirements for
a TTDL; (2) requirements related to integration into the MicroTESK framework. Let
us first consider the general requirements that are common for all TTDLs. A TTDL
used to describe scenarios for random and directed tests must provide facilities:

1) to describe instructions calls and data definitions using syntax similar to the
one used in assembly code;

2) to manage memory allocations in the same way as in the assembly language;
3) to fill memory with data generated according to specific rules;
4) to compose instruction sequences using a wide range of methods (random,

combinatorial, etc.) and to merge these sequences;
5) to specify random values and the degree of their randomness described by

distributions;
6) to select instructions at random with the specified degree of randomness;
7) to specify constraints on instruction arguments;
8) to describe initialization code that places generated test data to proper

registers or memory addresses;
9) to specify code of self-checks that check validity of the resulting state of the

microprocessor;
10) to describe exception handlers;
11) to specify conditions for generating different code depending on the context;
12) to insert comments and custom text into generated TPs;
13) to reuse existing TTs and their parts;
14) to split generated TPs into multiple files.

This list is not complete, but it is enough to conclude that the TTDL must be a domain-
specific language that provides constructs for the listed facilities.
Another important consideration is that it must be integrated into MicroTESK. First
of all, MicroTESK is written in Java and its generation engines operate with Java
objects. Therefore, the result of TT processing must be a hierarchy of Java objects
that then will be passed to TPG engines. The front-end of a TTDL processor can be
implemented using two approaches: (1) creating a Java-based parser for the new
language or (2) reusing an existing Java-based parser for one of the popular
programming languages. A crucial requirement for the second approach is that the
language must be easy to extend with new domain-specific constructs.
Now let us consider the requirements imposed by reconfigurability and extensibility
of MicroTESK:

1) Reconfigurability means that it can be applied to microprocessors with
different ISAs. Consequently, facilities used to describe instruction calls
must be changeable. Ideally, they must be added dynamically depending on

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

81

the information provided in the model that describes the configuration of the
design under verification.

2) Extensibility means that the set of supported TPG methods can be extended
by adding plugins implementing new methods. Often it will require adding
new constructs in the TTDL. Thus, it must be possible to dynamically add
language constructs depending on the installed plugins.

In other words, a crucial requirement for the MicroTESK TTDL is the ability to
dynamically change the set of supported language constructs. Obviously, changes in
the tool configuration must not involve modification of the TTDL processor. Creating
a flexible language processor from scratch is a challenging task. A simpler solution
would be to reuse a parser of an existing language.
Having considered several possible alternatives, it was decided to use JRuby [11], a
Java-based implementation of the Ruby language, as a front-end of the TTDL
processor. Ruby was selected because of its support for metaprogramming [12],
which allows adding new language features at runtime. Thus, the created TTDL
combines basic programming constructs provided by the Ruby core with constructs
for describing TTs provided by MicroTESK. The TTDL front-end is implemented as
a set of Ruby libraries that define language facilities for the above mentioned
requirements. Facilities that depend on the current configuration are dynamically
added using metaprogramming.
It is also worth mentioning that scripting languages like Ruby are quite popular among
verification engineers, who often use them to create in-house test generators. So,
another advantage of using Ruby is that it can make the TTDL easier to learn.

4. TTDL Description

4.1 Language Processor Architecture
The job of the TTDL processor is to build a hierarchy of Java objects describing a TT
and to pass it to the MicroTESK generation engines for further processing. The TTDL
processor is divided into a Ruby-based front-end and Java-based back-end. The back-
end is implemented as set of factories for creating Java objects that correspond to
specific entities of a TT. The front-end is represented by Ruby libraries that provide
language constructs for describing these entities and perform interaction with the
back-end to build corresponding Java objects. In other words, a language feature is
defined by a Ruby module that specifies its syntax and a Java module that describes
corresponding entities and provides means of constructing them. New language
features can be supported by providing corresponding modules.
The TTDL contains features that are configuration dependent. This includes facilities
for describing instruction calls, which are determined by the model built by
MicroTESK from ISA specifications. These language features are managed by a
special Ruby module that uses metaprogramming to define corresponding constructs
at runtime based on the information provided by the model.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

82

4.2 Test Template Structure
A TT is a program in Ruby executed by MicroTESK with the help of JRuby to build
Java objects that formulate tasks for the TPG engines implemented by the tool core.
More technically, it is a subclass of the Template base class provided by the
MicroTESK library. All domain-specific language constructs are implemented as
methods of this class. The Template class is not monolithic, it unites a set of Ruby
modules responsible for various features into a single class. Language extensions are
also implemented as modules to be included in the base class. Configuration-specific
methods are dynamically defined when the class is loaded.
The listing below shows the structure of a TT class:

require ENV[’TEMPLATE’]
class MyTemplate < Template
 def initialize
 super
 # Initialize settings here
 end
 def pre
 # Place your initialization code here
 end
 def post
 # Place your finalization code here
 end
 def run
 # Place your testing task description here
 end
end

The first line imports the Template base class from the location specified by the
TEMPLATE environment variable. The exact location depends on the configuration
and is determined automatically.
Classes describing TTs define four methods:

 initialize - configures TT settings if there is a need to override the default;
 pre - defines ISA-specific constructs and specifies initialization code to be

inserted in the beginning of TPs;
 post - specifies finalization code to be inserted in the end of TPs;
 run - contains descriptions of test cases to be generated.

The methods will be filled with constructs described further.

4.3 Managing Memory Allocation
It may be required to place code and data sections of generated TPs at specific
memory locations. The assembly language provides special directives to accomplish
this task. The TTDL offers similar constructs. An important note is that MicroTESK

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

83

simulates TPs in the process of their generation. Consequently, these constructs not
only specify directives to be placed into TPs, but also manage memory allocation in
the simulator.
The TTDL provides the following methods for managing addresses, which are
applicable to both code and data sections:

 align - aligns the allocation address by the amount n passed as an argument,
which by default means 2n bytes.

 org - sets the allocation origin, which is required to increase the allocation
address. It is possible to set an absolute or relative origin. The former can be
specified as org n and means an offset by n bytes from the base virtual
address. The latter can be specified as org :delta=>n and means an offset by
n bytes from the most recent allocation address.

 label - associates the specified label with the current address.
The listed methods rely on the following TT settings:

 align_format - specifies textual format for the align directive;
 org_format - specifies textual format for the org directive;
 base_virtual_address - specifies the base virtual address for memory

allocation;
 base_physical_address - specifies the base physical address for memory

allocation;
 alignment_in_bytes - specifies how the alignment amount should be

interpreted.
The first four settings are initialized with default values in the initialize method of the
Template base class as shown below and can be changed in the current TT class:

@org_format = ".org 0x%x"
@align_format = ".align %d"
@base_virtual_address = 0x0
@base_physical_address = 0x0

The last setting is implemented as a method that can be overridden to change its
behavior:

def alignment_in_bytes(n) 2 ** n end

4.4 Defining Random Distributions
Many TPG tasks involve selection based on random distribution. The TTDL provides
the following methods to define random distributions:

 range - creates an object describing a range of values and its weight, which
are specified by the value and bias attributes. Values can be one of the
following types:

- single value;

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

84

- range of values;
- array of values;
- distribution of values.

The bias attribute can be skipped which means default weight. Default
weights are used to specify an even distribution based on ranges with equal
weights.

 dist - creates an object describing a random distribution from a collection of
ranges.

The code below illustrates how to create weighted distributions for integer numbers:
simple_dist = dist(
 range(:value => 0, :bias => 25), # Value
 range(:value => 1..2, :bias => 25), # Range
 range(:value => [3, 5, 7], :bias => 50) # Array
)
composite_dist = dist(
 range(:value=> simple_dist, :bias => 80), # Distribution
 range(:value=> [4, 6, 8], :bias => 20) # Array
)

4.5 Describing Data Definitions
Data definitions are based on assembler-specific directives, which are not described
by the microprocessor model and, therefore, must be configured in TTs. The
configuration information includes textual format of the directives and mappings
between data types used by the assembler and the microprocessor model. Data
directives are configured using the data_config construct, which must be placed in
the pre method. Here is an example:

data_config(:text=>".data", :target=>"MEM") {
 define_type :id=>:byte, :text=>".byte", :type=>card(8)
 define_type :id=>:half, :text=>".half", :type=>card(16)
 define_type :id=>:word, :text=>".word", :type=>card(32)
 define_space :id=>:space, :text=>".space", :fillWith=>0
 define_ascii :id=>:ascii, :text=>".ascii", :zero=>false
 define_ascii :id=>:asciiz, :text=>".asciiz", :zero=>true
}

The data_config method has the following parameters:
 text - specifies the textual format of a directive that marks the beginning of

a data section;
 target - specifies the memory array defined in the model to which data will

be placed during simulation;
 base_virtual_address (optional, 0 by default) - specifies the base virtual

address for data sections.

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

85

Distinct data directives are configured using special methods that must be called
inside the data_config block. All of these methods share two common parameters: id
and text. The first specifies the keyword to be used in a TT to address the directive
and the second specifies how it will be printed into the TP. Here is the list of methods:

 define_type - defines a directive to allocate memory for a data element of the
data type specified by the type parameter;

 define_space - defines a directive to allocate memory filled with a default
value specified by the fillWith parameter;

 define_ascii_string - defines a directive to allocate memory for an ASCII
string terminated or not terminated with zero depending on the zero
parameter.

The above example defines directives byte, half, word, ascii (non-zero terminated
string) and asciiz (zero terminated string) that place data in the memory array MEM
defined in the microprocessor model.
Once data directives have been configured, data sections can be defined using the
data construct. Data definitions can be of two kinds depending on the context:

1) Global data that are available to all test cases generated from the given TT.
They are defined in the root of the pre or run methods. Global data are placed
into the simulator’s memory during initial processing of a TT.

2) Test case level data that are defined and used by specific test cases. Such
data are placed into the simulator’s memory when the test case is being
generated.

The data method has two optional parameters:
 global - a flag that states that the data definition should be treated as global

regardless of the context.
 separate_file - a flag that specifies whether the generated data definitions

should be placed into a separate source code file.

Here is an example of a data definition:

data(:global => true, :separate_file => false) {
 org 0x00001000
 label :byte_values
 byte 1, 2, 3, 4
 label :word_values
 word 0xDEADBEEF, 0xBAADF00D
}

The above code defines global data: four byte values and two word values. Memory
is allocated at offset 0x00001000. Data values are aligned by their size (1 and 4 bytes).
Labels byte_values and word_values point at the beginning of the byte and the word
arrays correspondingly.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

86

4.6 Describing Instruction Calls
To describe instruction calls, the TTDL provides runtime methods that are defined
using the metaprogramming facilities of Ruby on the basis of information provided
by the model. Methods have the same names and parameters as operations describing
corresponding instructions, which are defined in ISA specifications. Operations use
parameters of three kinds:

1) Immediate values that represent constants.
2) Addressing modes that encapsulate logic of reading and writing data to

memory resources. Usually they provide access to registers or memory.
3) Operations that specify operations to be performed as a part of execution of

the current operation. They are used to describe complex instructions
composed of several operations (e.g. VLIW instructions).

For example, a call to the add instruction from the MIPS ISA [13], which adds two
general-purpose registers t0 ($8), t1 ($9) and t2 ($10) described by the reg addressing
mode, can be specified in the following way:

add reg(8), reg(9), reg(10)
The TTDL supports creating aliases for addressing modes and operations invoked
with certain arguments. Aliases help make TTs more human-readable. They are
created by defining Ruby functions with corresponding names. The code below shows
how to create aliases for the registers from the previous example:

def t0 reg(8) end
def t1 reg(9) end
def t2 reg(10) end

Now the arguments of the add instruction can be specified using alises:
add t0, t1, t2

Also, the TTDL provides the pseudo function that can be used to specify calls to
pseudo instructions that do not have corresponding operations in ISA specifications.
They print user-specified text, but are not simulated by the generator. Here is an
example:

pseudo ’syscall’

4.7 Defining Groups
Addressing modes and operations can be organized into groups. Groups are used
when it is required to randomly select an addressing mode or operation from the
specified set. Groups can be defined in ISA specifications or in TTs. To do this in
TTs, the define_mode_group and define_op_group functions are used. Both functions
take the name and distribution arguments that specify the group name and the
distribution used to select its items.
For example, the code below defines an instruction group called alu that contains
instructions add, sub, and, or, nor, and xor selected randomly according to the
specified distribution:

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

87

alu_dist = dist(
 range(:value => ’add’, :bias => 40),
 range(:value => ’sub’, :bias => 30),
 range(:value => [’and’, ’or’, ’nor’, ’xor’], :bias => 30)
)
define_op_group(’alu’, alu_dist)

The following code specifies three calls that use instructions randomly selected from
the alu group:

alu t0, t1, t2
alu t3, t4, t5
alu t6, t7, t8

4.8 Describing Instruction Call Sequences
Instruction call sequences are described using block-like structures. Each block
specifies a sequence or a collection of sequences. Blocks can be nested to construct
complex sequences. The algorithm used for sequence construction depends on the
type and the attributes of a block.
An individual instruction call is considered a primitive block describing a single
sequence that consists of a single instruction call. A single sequence that consists of
multiple calls can be described using the sequence or the atomic construct. The
difference between the two is that an atomic sequence is never mixed with other
instruction calls when sequences are merged. The code below demonstrates how to
specify a sequence of three instruction calls:

sequence {
 add t0, t1, t2
 sub t3, t4, t5
 or t6, t7, t8
}

A collection of sequences that are processed one by one can be specified using the
iterate construct. For example, the code below describes three sequences consisting
of one instruction call:

iterate {
 add t0, t1, t2
 sub t3, t4, t5
 or t6, t7, t8
}

Sequences can be combined using the block construct. The resulting sequences are
constructed by sequentially applying the following engines to sequences returned by
nested blocks:

 combinator - builds combinations of sequences returned by nested blocks.
Each combination is a tuple of length equal to the number of nested blocks.

 permutator - modifies combinations returned by combinator by rearranging
some sequences.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

88

 compositor - merges (multiplexes) sequences in a combination into a single
sequence preserving the initial order of instructions calls in each sequence.

 rearranger - rearranges sequences constructed by compositor.
 obfuscator - modifies sequences returned by rearranger by permuting some

instruction calls.
Each engine has several implementations based on different methods. It is possible to
extend the list of supported methods with new implementations. Specific methods are
selected by specifying corresponding block attributes. When they are not specified,
default methods are applied. The format of a block structure for combining sequences
looks as follows:

block(
 :combinator => ’combinator-name’,
 :permutator => ’permutator-name’,
 :compositor => ’compositor-name’,
 :rearranger => ’rearranger-name’,
 :obfuscator => ’obfuscator-name’) {
 # Block A. 3 sequences of length 1: {A11}, {A21}, {A31}
 iterate { A11; A21; A31 }
 # Block B. 2 sequences of length 2: {B11, B12}, {B21, B22}
 iterate { sequence { B11, B12 }; sequence { B21, B22 } }
 # Block C. 1 sequence of length 3: {C11, C12, C13}
 iterate { sequence { C11; C12; C13 } }
}

The default method names are: diagonal for combinator, catenation for compositor,
and trivial for permutator, rearranger and obfuscator. Such a combination of engines
describes a collection of sequences constructed as a concatenation of sequences
returned by nested blocks. For example, sequences constructed for the block in the
above example will be as follows: {A11, B11, B12, C11, C12, C13}, {A21, B21, B22,
C11, C12, C13} and {A31, B11, B12, C11, C12, C13}.

4.9 Specifying Test Situations
Test situations are associated with specific instruction calls and specify methods used
to generate their input data. There is a wide range of data generation methods
implemented by various data generation engines. Test situations are specified using
the situation construct. It takes the situation name and a map of optional attributes
that specify situation-specific parameters. For example, the following line of code
causes input registers of the add instruction to be filled with zeros:

add t1, t2, t3 do situation(’zero’) end
When no situation is specified, a default situation is used. This situation places
random values into input registers. It is possible to assign a custom default situation
for individual instructions and instruction groups with the set_default_situation
function. For example:

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

89

set_default_situation ’add’ do situation(’zero’) end
Situations can be selected at random. The selection is based on a distribution. This
can be done by using the random_situation construct. For example:

sit_dist = dist(
 range(:value => situation(’add.overflow’)),
 range(:value => situation(’add.normal’)),
 range(:value => situation(’zero’)),
 range(:value => situation(’random’, :dist => int_dist))
)
add t1, t2, t3 do random_situation(sit_dist) end

Unknown immediate arguments that should have their values generated are specified
using the ”_” symbol. For example, the code below states that a random value should
be added to a value stored in a random register and the result should be placed to
another random register:

addi reg(_), reg(_), _ do situation(’random’) end

4.10 Selecting Registers
Unknown immediate arguments of addressing modes are a special case and their
values are generated in a slightly different way. Typically, they specify register
indexes and are bounded by the lenght of register arrays. Often such indexes must be
selected from a specific range taking into account previous selections. For example,
registers are allocated at random and they must not overlap. To be able to solve such
tasks, all values passed to addressing modes are tracked. The allowed value range and
the method of value selection are specified in configuration files. Values are selected
using the specified method before the instruction call is processed by the engine that
generates data for the test situation. The selection method can be customized by using
the mode_allocator function. It takes the allocation method name and a map of
method-specific parameters. For example, the following code states that the output
register of the add instruction must be a random register which is not used in the
current test case:

add reg(_ mode_allocator(’free’)), t0, t1
Also, the TTDL allows customizing the allowed range for selected values. It is
possible to exclude some elements from the range by using the exclude attribute or to
provide a new range by using the retain attribute. For example:

add reg(_ :exclude=>[1, 5, 7]), t0, t1
add reg(_ :retain=>8..15), t0, t1

Addressing modes with specific argument values can be marked as free using the
free_allocated_mode function. To free all allocated addressing modes, the
free_all_allocated_modes function can be used.

4.11 Describing Preparators
Preparators describe instruction sequences that place data into registers or memory
accessed via the specified addressing mode. They are inserted into TPs to set up the

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

90

initial state of the microprocessor required by test situations. It is possible to overload
preparators for specific cases (value masks, register numbers, etc). Preparators are
defined in the pre method using the preparator construct, which uses the following
parameters describing conditions under which it is applied:

 target - the name of the target addressing mode;
 mask (optional) - the mask that should be matched by the value in order for

the preparator to be selected;
 arguments (optional) - values of the target addressing mode arguments that

should be matched in order for the preparator to be selected;
 name (optional) - the name that identifies the current preparator to resolve

ambiguity when there are several different preparators that have the same
target, mask and arguments.

It is possible to define several variants of a preparator which are selected at random
according to the specified distribution. They are described using the variant construct.
It has two optional parameters:

 name (optional) - identifies the variant to make it possible to explicitly select
a specific variant;

 bias - specifies the weight of the variant, can be skipped to set up an even
distribution.

Here is an example of a preparator what places a value into a 32-bit register described
by the REG addressing mode and two its special cases for values equal to 0x00000000
and 0xFFFFFFFF:

preparator(:target => ’REG’) {
 variant(:bias => 25) {
 data {
 label :preparator_data
 word value
 }
 la at, :preparator_data
 lw target, 0, at
 }
 variant(:bias => 75) {
 lui target, value(16, 31)
 ori target, target, value(0, 15)
 }
}
preparator(:target => ’REG’, :mask => ’00000000’) {
 xor target, zero, zero
}
preparator(:target => ’REG’, :mask => ’FFFFFFFF’) {
 nor target, zero, zero
}

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

91

Code inside the preparator block uses the target and value functions to access the
target addressing mode and the value passed to the preparator.
The TTDL provides the prepare function to explicitly insert preparators into TPs. It
can be used to create composite preparators. The function has the following
arguments:

 target - specifies the target addressing mode;
 value - specifies the value to be written;
 attrs (optional) - specifies the preparator name and the variant name to select

a specific preparator.
For example, the following line of code places value 0xDEADBEEF into the t0
register:

prepare t0, 0xDEADBEEF

4.12 Describing Self-Checks
TPs can include self-checks that check validity of the microprocessor state after a test
case has been executed. These checks are instruction sequences inserted in the end of
test cases which compare values stored in registers with expected values. If the values
do not match control is transferred to a handler that reports an error. Expected values
are produced by the MicroTESK simulator. Self-check are described using the
comparator construct which has the same features as the preparator construct, but
serves a different purpose. Here is an example of a comparator for 32-bit registers and
its special case for value equal to 0x00000000:

comparator(:target => ’REG’) {
 prepare target, value
 bne at, target, :check_failed
 nop
}
comparator(:target => ’REG’, :mask => "00000000") {
 bne zero, target, :check_failed
 nop
}

4.13 Describing Test Cases
A TP can be described by the following formula:
 = start {start, xi, stop}i=1,n stop, where:

 start is a TP prologue that consists of instructions aimed for microprocessor
initialization;

 start, xi, stop is a test case that specifies an individual stimulus and consists
of:

- start is a test case prologue that performs all necessary preparations
for the test case;

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

92

- xi is a test case action that contains the main code of the test case;
- stop is a test case epilogue that performs finalization actions for the

test case such as self-checks.
 stop is a TP epilogue that consists of instructions aimed for microprocessor

finalization;
 n is the number of test cases in a TP.

The TTDL provides means of describing each part of a TP. start and stop are
described in the pre and post methods of a TT class correspondingly. Test cases are
specified in the run method.
Test cases are described by block constructs specifying one or more sequences of
instruction calls. Each sequence is a separate test case. It is possible to process a block
multiple times. This makes sense when sequences use randomization. In this case, it
results different test cases based on the same description. For example, the code below
describes five test cases based on the same sequence of three calls. Input data for the
calls are generated at random and will be different for all test cases.

def run
 sequence {
 add t0, t1, t2
 sub t3, t4, t5
 or t6, t7, t8
 }.run 5
end

start that contains preparators for input registers and stop that contains self-checks
will be generated by the tool automatically. Also, it is possible to specify additional
prologue and epilogue for test cases. They will be inserted between automatically
generated prologue and epilogue and main code of the test cases. They are specified
using the prologue and epilogue blocks nested into the sequence block. The syntax
looks like this:

sequence {
 prologue { ... }
 ...
 epilogue { ... }
}.run n

When instruction sequences are merged by nesting blocks, prologue and epilogue of
nested blocks wrap sequences returned by these blocks.
Test cases can be processed by different TPG engines. A specific engine can be
selected by passing the engine parameter to the block construct that describes the test
cases.

4.14 Describing Exception Handlers
TPs must contain handlers of exceptions that may occur during their execution.
Exception handlers are described using the exception_handler construct. This

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

93

description is also used by the MicroTESK simulator to handle exceptions. Separate
exception handlers are described using the section construct nested into the
exception_handler block. The section function has two arguments: org that specifies
the handler’s location in memory and exception that specifies names of associated
exceptions. For example, the code below describes a handler for the IntegerOverflow,
SystemCall and Breakpoint exceptions, which resumes execution from the next
instruction:

exception_handler {
 section(:org =>0x380, :exception => [’IntegerOverflow’, ’SystemCall’, ’Breakpoint’]) {
 mfc0 ra, cop0(14)
 addi ra, ra, 4
 jr ra
 nop
 }
}

4.15 Printing Text
TPs are printed in textual form to source code files. The printed text includes various
supplementary messages such as comments and separators. They are generated by
MicroTESK engines or specified by users in TTs. The format of printed text is set up
using the following settings:

 sl_comment_starts_with - starting characters for single-line comments.
Default value is ”//”.

 ml_comment_starts_with - starting characters for multi-line comments.
Default value is ”/*”.

 ml_comment_ends_with - terminating characters for multi-line comments.
Default value is ”*/”.

 indent_token - indentation token. Default value is ”\t”.
 separator_token - token used in separator lines. Default value is ”=”.

The settings are initialized with default values in the initialize method of the Template
class can be redefined in the initialize method of a TT.
The TTDL provides functions for printing custom text messages. Text messages are
printed either into the generated source code or into the simulator log. Here is the list
of supported functions:

 newline - adds the new line character into the TP;
 text - adds text into the TP;
 trace - prints text into the simulator execution log;
 comment - adds a comment into the TP;
 start_comment - starts a multi-line comment;
 end_comment - ends a multi-line comment.

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

94

The text, trace and comment functions print formatted text. They take a format string
and an array of objects to be printed, which can be constants or memory locations. To
specify locations to be printed (registers, memory), the location function should be
used. It takes the name of the memory array and the index of the selected element.
For example, the code below prints a constant value and a value stored in a register
in the hexadecimal format:

text ’Constant: 0x%X’, 0xDEADBEEF
text ’Register: 0x%X’, location(’GPR’, 8)

5. Case Study
MicroTESK and its TTDL have been applied in industrial projects to generate TPs
for MIPS64 [13] and ARMv8 [14] microprocessors. Table 1 provides characteristics
of the MIPS64 and ARMv8 specifications used to configure MicroTESK for
generating TPs for these designs.

Table 1. Industrial application of the proposed TTDL and supporting tool

Project MIPS64 ARMv8
Number of instructions 102 207
ISA specification size (lines of code) 70 143
MMU specification size (lines of code) 134 637
Efforts (person-months) 101 809

Created tests include:
 tests for arithmetical instructions;
 tests for floating-point instructions;
 tests for branch instructions;
 tests for memory access instructions.

To describe tests for branch and memory instruction, the TTDL was extended with
additional constructs based on existing ones. The language was evolving in the
process of working on the projects. Some features were changed and some were
added. A number of language features came as requirements from customers. The
approach based on using dynamic languages such as Ruby to create TTDLs has
proved its flexibility. The TTDL allowed describing test cases in a format which is
maximally close to assembly language for corresponding microprocessors. This
allows verification engineers to concentrate on verification problems instead of issues
related to the use of a specific programming language.

5. Conclusion
A concept of a TTDL for a reconfigurable and extensible TPG framework has been
considered. The proposed solution was implemented in the MicroTESK [3]
framework. The developed TTDL is based on the Ruby [6] language and uses its
metaprogramming facilities to dynamically add configuration-dependent language

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

95

constructs. The language is integrated into MicroTESK, which is a Java-based tool,
with the help of JRuby [11]. Facilities of the TTDL can be extended by adding new
Ruby libraries.
Directions for further research and development are to apply the described principles
to create TTDLs based on other programming languages. First of all, it is Python and
its Java-based implementation called Jython. It provides facilities similar to those of
Ruby and is also popular among verification engineers. For this reason, it would be
advantageous to provide a Python-based version of the TTDL for those who are more
comfortable with this language.
Another task is development of a TTDL based on C++. It will be a part of a large
research project dedicated to on-line generation. An on-line TPG tool is represented
by a binary image with basic functions of an operating system, which is loaded
directly to a microprocessor chip where it generates and executes test stimuli. The
tool will be created by MicroTESK from C++ libraries based on formal specifications.
For further unification of TPG tools, it is important that TTs for on-line generation
are developed using the same principles.

References
[1]. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:

Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84–93.

[2]. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and G. Shurek. Constraint-
Based Random Stimuli Generation for Hardware Verification. AI Magazine, Volume 28,
Number 3, 2007, pp. 13–30.

[3]. MicroTESK page. http://forge.ispras.ru/projects/microtesk
[4]. A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based Test Program

Generator for Microprocessors. International Conference on Software Testing,
Verification and Validation Workshops, 2011. pp. 47–54.

[5]. A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov, M.M. Chupilko. Extensible
Environment for Test Program Generation for Microprocessors. Programming and
Computer Software, 40(1), 2014. pp. 1-9.

[6]. Ruby site: http://www.ruby-lang.org
[7]. E.A. Poe. Introduction to Random Test Generation for Processor Verification. Obsidian

Software, 7 pp, 2002.
[8]. RAVEN test program generator. Available at:

http://www.slideshare.net/DVClub/introducing-obsidian-software-and-ravengcs-for-
powerpc

[9]. Seonghun Jeong, Youngchul Cho, Daeyong Shin, Changyeon Jo, Yenjo Han, Soojung
Ryu, Jeongwook Kim, and Bernhard Egger. Random Test Program Generation for
Reconfigurable Architectures. 13th International Workshop on Microprocessor Test and
Verification (MTV), 2012, 6 p.

[10]. A. Kamkin. Test Program Generation for Microprocessors. Trudy ISP RAN / Proc. ISP
RAS], vol. 14, part 2, 2008, pp. 23-64 (in Russian).

[11]. JRuby site: http://www.jruby.org

Tatarnikov A.D. Language for Describing Templates for Test Program Generation for Microprocessors. Trudy ISP
RAN/Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 77-98.

96

[12]. Flanagan D., Matsumoto Y. The Ruby Programming Language. OReilly Media,
Sebastopol, 2008.

[13]. MIPS64TM Architecture For Programmers. Volume II: The MIPS64TM Instruction Set,
Document Number: MD00087, Revision 2.00, June 9, 2003.

[14]. ARM Architecture Reference Manual. ARM DDI 0487A.f, ARM Corporation, 2015.
5886 p.

Язык описания шаблонов для генерации
тестовых программ для

микропроцессоров

А.Д. Татарников <andrewt@ispras.ru>
Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25

Аннотация. Генерация тестовых программ на языке ассемблера и проверка
корректности результатов их выполнения является наиболее широко применяемым
подходом к функциональной верификации микропроцессоров. Данная задача решается
при помощи специальных автоматизированных средств, называемых генераторами
тестовых программ. Высокая сложность современных электронных устройств создает
потребность в автоматизированных средствах, способных генерировать тестовые
программы, покрывающие нетривиальные ситуации в их работе. Большинство таких
средств используют в качестве входных данных шаблоны тестовых программ, которые
позволяют описывать тестовые сценарии в абстрактном виде. Такой подход
предоставляет инженерам-верификаторам возможность описывать широкий спектр
задач генерации, затрачивая минимальные усилия. Шаблоны тестовых программ
разрабатываются на специальных предметно-ориентированных языках. Такие языки
должны удовлетворять следующим требованиям: (1) они должны быть достаточно
простыми для использования инженерами-верификаторами, не обладающими
серьезными навыками программирования; (2) они должны быть применимы для
широкого спектра микропроцессорных архитектур и (3) они должны быть легко
расширяемы для поддержки описания новых типов задач генерации. В данной работе
рассматривается язык описания шаблонов тестовых программ, который был создан для
расширяемой среды генерации тестовых программ MicroTESK, разрабатываемой в
ИСП РАН. Это гибкий предметно-ориентированный язык, основанный на языке Ruby,
который позволяет описывать широкий набор задач генерации в терминах абстракций
цифровой аппаратуры. Среда генерации MicroTESK и язык описания тестовых
шаблонов успешно применяются в промышленных проектах по верификации
микропроцессоров на базе архитектур MIPS и ARM.

Ключевые слова: микропроцессоры; функциональная верификация; генерация
тестовых программ; тестовые шаблоны; предметно-ориентированные языки.

DOI: 10.15514/ISPRAS-2016-28(4)-5

Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды
ИСП РАН, том 28, вып. 4, 2016, стр. 77-98

97

Для цитирования: Татарников А.Д. Язык описания шаблонов для генерации тестовых
программ для микропроцессоров. Труды ИСП РАН, том 28, вып. 4, 2016, стр. 77-98. DOI:
10.15514/ISPRAS-2016-28(4)-5

Список литературы
[1]. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:

Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84–93.

[2]. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus and G. Shurek. Constraint-
Based Random Stimuli Generation for Hardware Verification. AI Magazine, Volume 28,
Number 3, 2007, pp. 13–30.

[3]. Инструмента MicroTESK. http://forge.ispras.ru/projects/microtesk
[4]. A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based Test Program

Generator for Microprocessors. International Conference on Software Testing,
Verification and Validation Workshops, 2011. pp. 47–54.

[5]. Камкин А.С., Сергеева Т.И., Смолов С.А., Татарников А.Д., Чупилко М.М.
Расширяемая среда генерации тестовых программ для микропроцессоров.
Программирование, № 1, 2014, стр. 3-14.

[6]. Язык Ruby: http://www.ruby-lang.org.
[7]. E.A. Poe. Introduction to Random Test Generation for Processor Verification. Obsidian

Software, 7 pp, 2002.
[8]. Инструмент RAVEN: http://www.slideshare.net/DVClub/introducing-obsidian-

software-and-ravengcs-for-powerpc.
[9]. Seonghun Jeong, Youngchul Cho, Daeyong Shin, Changyeon Jo, Yenjo Han, Soojung

Ryu, Jeongwook Kim, and Bernhard Egger. Random Test Program Generation for
Reconfigurable Architectures. 13th International Workshop on Microprocessor Test and
Verification (MTV), 2012, 6 p.

[10]. А.С. Камкин. Генерация тестовых программ для микропроцессоров. Труды ИСП
РАН, 14(2), 2008. C. 23-63.

[11]. Интерпретатор JRuby: http://www.jruby.org.
[12]. Flanagan D., Matsumoto Y. The Ruby Programming Language. OReilly Media,

Sebastopol, 2008.
[13]. MIPS64TM Architecture For Programmers. Volume II: The MIPS64TM Instruction Set,

Document Number: MD00087, Revision 2.00, June 9, 2003.
[14]. ARM Architecture Reference Manual. ARM DDI 0487A.f, ARM Corporation, 2015.

5886 p.

