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Abstract. Test program generation and simulation is the most widely used approach to 
functional verification of microprocessors. High complexity of modern hardware designs 
creates a demand for automated tools that are able to generate test programs covering non-
trivial situations in microprocessor functioning. The majority of such tools use test program 
templates that describe scenarios to be covered in an abstract way. This provides verification 
engineers with a flexible way to describe a wide range of test generation tasks with minimum 
effort. Test program templates are developed in special domain-specific languages. These 
languages must fulfill the following requirements: (1) be simple enough to be used by 
verification engineers with no sufficient programming skills; (2) be applicable to various 
microprocessor architectures and (3) be easy to extend with facilities for describing new types 
of test generation tasks. The present work discusses the test program template description 
language used in the reconfigurable and extensible test program generation framework 
MicroTESK being developed at ISP RAS. It is a flexible Ruby-based domain-specific language 
that allows describing a wide range of test generation tasks in terms of hardware abstractions. 
The tool and the language have been applied in industrial projects dedicated to verification of 
MIPS and ARM microprocessors. 
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1. Introduction 
Functional verification is acknowledged to be the bottleneck in microprocessor 
design cycle. According to various estimates, it accounts for more than 70% of overall 
project time and resources. In the current industrial practice, function verification 
mainly relies on test program generation (TPG) which is done by special automation 
tools [1]. Generated test programs (TP) are instruction sequences aimed to trigger 
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certain events in the microprocessor design under verification. TPG tools are aimed 
to provide a high level of test coverage by applying a rich set of generation methods. 
As modern microprocessors are getting more and more complex, new more advanced 
methods emerge. A common problem for TPG tool developers is how to overcome 
the complexity and make it easy to apply the growing set of methods to a wide range 
of microprocessor designs. 
One of possible ways to increase the flexibility of a TPG tool is to separate generation 
logic from descriptions of test cases. This method is known as template-based 
generation. The key idea of the method is that test programs are generated on the basis 
of abstract descriptions called test program templates or test templates (TTs). The 
method helps generate high-quality tests directed towards specific situations or 
classes of situations. TTs specify methods to be used for constructing instruction 
sequences and constraints on instruction operand values which must be satisfied to 
make certain events to fire. Test data are generated by finding random solutions to the 
given constraint systems. Such approach is usually referred to as constraint-based 
random generation [2]). 
The template-based approach is implemented in a number of TPG tools including 
MicroTESK [3], a reconfigurable [4] and extensible [5] TPG framework being 
developed at ISP RAS. The framework uses formal specifications to construct TPG 
tools for specific microprocessor designs. A constructed TPG tool is separated into 
two main components: (1) an architecture-independent test generation core and (2) an 
architecture specification, or a model. The approach called model-based [1] helps 
significantly reduce the efforts to support a new microprocessor architecture by 
reusing the core. The core is designed as a set of generation engines which can be 
easily extended with plugins implementing new TPG methods. Test programs are 
generated by processing TTs that describe verification tasks in terms of the model and 
the generation methods implemented by the core. 
This paper describes the test template description language (TTDL) used in 
MicroTESK. This is a domain-specific language implemented as a set of Ruby [6] 
libraries, which is easy adaptable to changing configurations. Facilities for describing 
instruction calls for a specific ISA are dynamically added and are based on 
information provided by the model. Also, the MicroTESK TTDL provides a rich set 
of facilities for describing verification tasks which are common for all microprocessor 
configurations. When MicroTESK is extended with new TPG methods, support for 
these features is added in the TTDL by providing new Ruby libraries. 
The rest of the paper is divided into five sections. Section 2 contains a brief survey of 
the existing TPG tools that follow the template-based approach. Section 3 formulates 
the requirements for a TTDL imposed by MicroTESK that led to creating the 
described TTDL. Section 4 provides a detailed description of the architecture and 
facilities of the MicroTESK TTDL. Section 5 contains a case study of applying the 
TTDL for describing test cases in industrial projects. Section 6 discusses the results 
and outlines directions of future research and development. 
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2. Related work 
Functional verification has always been a major issue for the research community. 
Over the last decades, a lot of TPG methods and tools have emerged. The template-
based approach described in this paper has been applied in a number of tools 
developed by different teams. This section gives an overview of the most significant 
of existing TPG tools and discusses strong and weak points of their TTDLs. 
IBM Research has been one of the major contributors in the field of TPG for 
microprocessors during the last decades. Genesys-Pro [1], one of their most recent 
tools, uses TTs to describe TPG tasks as constraint satisfaction problems (CSP) [2] 
and generates test data by solving these CSPs. Constraints can be used to specify such 
aspects of functionality as boundary conditions, exceptions, cache hits/misses, etc. 
The TTDL used by Genesys-Pro is a completely impendent domain-specific language 
which provides a rich set of features. The language features it offers can be divided 
into four groups: (1) basic instruction statements, (2) sequencing-control statements, 
(3) standard programming constructs, and (4) constraint statements. By combining 
these constructs, users can compose complex TTs with a degree of randomness varied 
from completely random to completely directed. The main advantage of the language 
is that it is designed for describing test scenarios and it does not confuse verification 
engineers with any unnecessary programming constructs. At the same time, being not 
based on existing languages, it does not take advantage of well-tried constructs that 
can help organize TTs into reusable libraries. This can be important as industrial 
testbenches usually contain thousands lines of code. Also, it is unclear how easy the 
language can be extended with new constructs for describing new types of TPG tasks. 
Another company that has made a significant contribution in development of TPG 
tools is Obsidian Software (now acquired by ARM) [7]. Their tool RAVEN (Random 
Architecture Verification Engine) [8] generates random and directed tests based on 
TTs. Test templates are focused on coverage grids and use constraints to formulate 
specific coverage goals. There is no detailed information available on this technology. 
It is known that TTs can be either generated by the tool’s GUI or created as text. The 
language must suit well for the TPG tasks that can be accomplished with RAVEN. 
However, the question whether it is suitable for more general tasks stays open. 
Also, Samsung Electronics created a TPG framework called RDG (Random 
Diagnostics Generator) [9] for testing reconfigurable processors. It uses TTs created 
in the C++ language to specify instructions that will be used in a TP and constraints 
on their input values that should be satisfied in order to meet testing goals. This 
approach takes advantage of power and performance of C++, but requires solid 
programming skills which are not common for verification engineers. 
Finally, MicroTESK [3] version 1.0 used TTs written using Java libraries [10]. This 
is not convenient as verification engineers are forced to deal with Java abstractions 
such as classes and interfaces, which are not related to verification tasks. Moreover, 
details of language implementation must be hidden from users in order to be able to 
change it without breaking existing TTs. This motivated to create a new domain-
specific language for the new version of MicroTESK. 
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3. Requirements for TTDL 
Requirements for a TTDL can be divided in two groups: (1) general requirements for 
a TTDL; (2) requirements related to integration into the MicroTESK framework. Let 
us first consider the general requirements that are common for all TTDLs. A TTDL 
used to describe scenarios for random and directed tests must provide facilities: 

1) to describe instructions calls and data definitions using syntax similar to the 
one used in assembly code; 

2) to manage memory allocations in the same way as in the assembly language; 
3) to fill memory with data generated according to specific rules; 
4) to compose instruction sequences using a wide range of methods (random, 

combinatorial, etc.) and to merge these sequences; 
5) to specify random values and the degree of their randomness described by 

distributions; 
6) to select instructions at random with the specified degree of randomness; 
7) to specify constraints on instruction arguments; 
8) to describe initialization code that places generated test data to proper 

registers or memory addresses; 
9) to specify code of self-checks that check validity of the resulting state of the 

microprocessor; 
10) to describe exception handlers; 
11) to specify conditions for generating different code depending on the context; 
12) to insert comments and custom text into generated TPs; 
13) to reuse existing TTs and their parts; 
14) to split generated TPs into multiple files. 

This list is not complete, but it is enough to conclude that the TTDL must be a domain-
specific language that provides constructs for the listed facilities. 
Another important consideration is that it must be integrated into MicroTESK. First 
of all, MicroTESK is written in Java and its generation engines operate with Java 
objects. Therefore, the result of TT processing must be a hierarchy of Java objects 
that then will be passed to TPG engines. The front-end of a TTDL processor can be 
implemented using two approaches: (1) creating a Java-based parser for the new 
language or (2) reusing an existing Java-based parser for one of the popular 
programming languages. A crucial requirement for the second approach is that the 
language must be easy to extend with new domain-specific constructs. 
Now let us consider the requirements imposed by reconfigurability and extensibility 
of MicroTESK: 

1) Reconfigurability means that it can be applied to microprocessors with 
different ISAs. Consequently, facilities used to describe instruction calls 
must be changeable. Ideally, they must be added dynamically depending on 
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the information provided in the model that describes the configuration of the 
design under verification. 

2) Extensibility means that the set of supported TPG methods can be extended 
by adding plugins implementing new methods. Often it will require adding 
new constructs in the TTDL. Thus, it must be possible to dynamically add 
language constructs depending on the installed plugins. 

In other words, a crucial requirement for the MicroTESK TTDL is the ability to 
dynamically change the set of supported language constructs. Obviously, changes in 
the tool configuration must not involve modification of the TTDL processor. Creating 
a flexible language processor from scratch is a challenging task. A simpler solution 
would be to reuse a parser of an existing language. 
Having considered several possible alternatives, it was decided to use JRuby [11], a 
Java-based implementation of the Ruby language, as a front-end of the TTDL 
processor. Ruby was selected because of its support for metaprogramming [12], 
which allows adding new language features at runtime. Thus, the created TTDL 
combines basic programming constructs provided by the Ruby core with constructs 
for describing TTs provided by MicroTESK. The TTDL front-end is implemented as 
a set of Ruby libraries that define language facilities for the above mentioned 
requirements. Facilities that depend on the current configuration are dynamically 
added using metaprogramming. 
It is also worth mentioning that scripting languages like Ruby are quite popular among 
verification engineers, who often use them to create in-house test generators. So, 
another advantage of using Ruby is that it can make the TTDL easier to learn. 

4. TTDL Description 

4.1 Language Processor Architecture 
The job of the TTDL processor is to build a hierarchy of Java objects describing a TT 
and to pass it to the MicroTESK generation engines for further processing. The TTDL 
processor is divided into a Ruby-based front-end and Java-based back-end. The back-
end is implemented as set of factories for creating Java objects that correspond to 
specific entities of a TT. The front-end is represented by Ruby libraries that provide 
language constructs for describing these entities and perform interaction with the 
back-end to build corresponding Java objects. In other words, a language feature is 
defined by a Ruby module that specifies its syntax and a Java module that describes 
corresponding entities and provides means of constructing them. New language 
features can be supported by providing corresponding modules. 
The TTDL contains features that are configuration dependent. This includes facilities 
for describing instruction calls, which are determined by the model built by 
MicroTESK from ISA specifications. These language features are managed by a 
special Ruby module that uses metaprogramming to define corresponding constructs 
at runtime based on the information provided by the model. 
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4.2 Test Template Structure 
A TT is a program in Ruby executed by MicroTESK with the help of JRuby to build 
Java objects that formulate tasks for the TPG engines implemented by the tool core. 
More technically, it is a subclass of the Template base class provided by the 
MicroTESK library. All domain-specific language constructs are implemented as 
methods of this class. The Template class is not monolithic, it unites a set of Ruby 
modules responsible for various features into a single class. Language extensions are 
also implemented as modules to be included in the base class. Configuration-specific 
methods are dynamically defined when the class is loaded. 
The listing below shows the structure of a TT class: 

require ENV[’TEMPLATE’] 
class MyTemplate < Template 
  def initialize 
    super 
    # Initialize settings here 
  end 
  def pre 
    # Place your initialization code here 
  end 
  def post 
    # Place your finalization code here 
  end 
  def run 
    # Place your testing task description here 
  end 
end 

The first line imports the Template base class from the location specified by the 
TEMPLATE environment variable. The exact location depends on the configuration 
and is determined automatically. 
Classes describing TTs define four methods: 

 initialize - configures TT settings if there is a need to override the default; 
 pre - defines ISA-specific constructs and specifies initialization code to be 

inserted in the beginning of TPs; 
 post - specifies finalization code to be inserted in the end of TPs; 
 run - contains descriptions of test cases to be generated. 

The methods will be filled with constructs described further. 

4.3 Managing Memory Allocation 
It may be required to place code and data sections of generated TPs at specific 
memory locations. The assembly language provides special directives to accomplish 
this task. The TTDL offers similar constructs. An important note is that MicroTESK 
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simulates TPs in the process of their generation. Consequently, these constructs not 
only specify directives to be placed into TPs, but also manage memory allocation in 
the simulator. 
The TTDL provides the following methods for managing addresses, which are 
applicable to both code and data sections: 

 align - aligns the allocation address by the amount n passed as an argument, 
which by default means 2n bytes. 

 org - sets the allocation origin, which is required to increase the allocation 
address. It is possible to set an absolute or relative origin. The former can be 
specified as org n and means an offset by n bytes from the base virtual 
address. The latter can be specified as org :delta=>n and means an offset by 
n bytes from the most recent allocation address. 

 label - associates the specified label with the current address. 
The listed methods rely on the following TT settings: 

 align_format - specifies textual format for the align directive; 
 org_format - specifies textual format for the org directive; 
 base_virtual_address - specifies the base virtual address for memory 

allocation; 
 base_physical_address - specifies the base physical address for memory 

allocation; 
 alignment_in_bytes - specifies how the alignment amount should be 

interpreted. 
The first four settings are initialized with default values in the initialize method of the 
Template base class as shown below and can be changed in the current TT class: 

@org_format = ".org 0x%x" 
@align_format = ".align %d" 
@base_virtual_address = 0x0 
@base_physical_address = 0x0 

The last setting is implemented as a method that can be overridden to change its 
behavior: 

def alignment_in_bytes(n) 2 ** n end 

4.4 Defining Random Distributions 
Many TPG tasks involve selection based on random distribution. The TTDL provides 
the following methods to define random distributions: 

 range - creates an object describing a range of values and its weight, which 
are specified by the value and bias attributes. Values can be one of the 
following types: 

- single value; 
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- range of values; 
- array of values; 
- distribution of values. 

The bias attribute can be skipped which means default weight. Default 
weights are used to specify an even distribution based on ranges with equal 
weights. 

 dist - creates an object describing a random distribution from a collection of 
ranges. 

The code below illustrates how to create weighted distributions for integer numbers: 
simple_dist = dist( 
  range(:value => 0, :bias => 25),           # Value 
  range(:value => 1..2, :bias => 25),       # Range 
  range(:value => [3, 5, 7], :bias => 50)  # Array 
  ) 
composite_dist = dist( 
  range(:value=> simple_dist, :bias => 80), # Distribution 
  range(:value=> [4, 6, 8], :bias => 20)       # Array 
  ) 

4.5 Describing Data Definitions 
Data definitions are based on assembler-specific directives, which are not described 
by the microprocessor model and, therefore, must be configured in TTs. The 
configuration information includes textual format of the directives and mappings 
between data types used by the assembler and the microprocessor model. Data 
directives are configured using the data_config construct, which must be placed in 
the pre method. Here is an example: 

data_config(:text=>".data", :target=>"MEM") { 
  define_type :id=>:byte, :text=>".byte", :type=>card(8) 
  define_type :id=>:half, :text=>".half", :type=>card(16) 
  define_type :id=>:word, :text=>".word", :type=>card(32) 
  define_space :id=>:space, :text=>".space", :fillWith=>0 
  define_ascii :id=>:ascii, :text=>".ascii", :zero=>false 
  define_ascii :id=>:asciiz, :text=>".asciiz", :zero=>true 
} 

The data_config method has the following parameters: 
 text - specifies the textual format of a directive that marks the beginning of 

a data section; 
 target - specifies the memory array defined in the model to which data will 

be placed during simulation; 
 base_virtual_address (optional, 0 by default) - specifies the base virtual 

address for data sections. 
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Distinct data directives are configured using special methods that must be called 
inside the data_config block. All of these methods share two common parameters: id 
and text. The first specifies the keyword to be used in a TT to address the directive 
and the second specifies how it will be printed into the TP. Here is the list of methods: 

 define_type - defines a directive to allocate memory for a data element of the 
data type specified by the type parameter; 

 define_space - defines a directive to allocate memory filled with a default 
value specified by the fillWith parameter; 

 define_ascii_string - defines a directive to allocate memory for an ASCII 
string terminated or not terminated with zero depending on the zero 
parameter. 

The above example defines directives byte, half, word, ascii (non-zero terminated 
string) and asciiz (zero terminated string) that place data in the memory array MEM 
defined in the microprocessor model. 
Once data directives have been configured, data sections can be defined using the 
data construct. Data definitions can be of two kinds depending on the context: 

1) Global data that are available to all test cases generated from the given TT. 
They are defined in the root of the pre or run methods. Global data are placed 
into the simulator’s memory during initial processing of a TT. 

2) Test case level data that are defined and used by specific test cases. Such 
data are placed into the simulator’s memory when the test case is being 
generated. 

The data method has two optional parameters: 
 global - a flag that states that the data definition should be treated as global 

regardless of the context. 
 separate_file - a flag that specifies whether the generated data definitions 

should be placed into a separate source code file. 

Here is an example of a data definition: 

data(:global => true, :separate_file => false) { 
  org 0x00001000 
  label :byte_values 
  byte 1, 2, 3, 4 
  label :word_values 
  word 0xDEADBEEF, 0xBAADF00D 
} 

The above code defines global data: four byte values and two word values. Memory 
is allocated at offset 0x00001000. Data values are aligned by their size (1 and 4 bytes). 
Labels byte_values and word_values point at the beginning of the byte and the word 
arrays correspondingly. 
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4.6 Describing Instruction Calls 
To describe instruction calls, the TTDL provides runtime methods that are defined 
using the metaprogramming facilities of Ruby on the basis of information provided 
by the model. Methods have the same names and parameters as operations describing 
corresponding instructions, which are defined in ISA specifications. Operations use 
parameters of three kinds: 

1) Immediate values that represent constants. 
2) Addressing modes that encapsulate logic of reading and writing data to 

memory resources. Usually they provide access to registers or memory. 
3) Operations that specify operations to be performed as a part of execution of 

the current operation. They are used to describe complex instructions 
composed of several operations (e.g. VLIW instructions). 

For example, a call to the add instruction from the MIPS ISA [13], which adds two 
general-purpose registers t0 ($8), t1 ($9) and t2 ($10) described by the reg addressing 
mode, can be specified in the following way: 

add reg(8), reg(9), reg(10) 
The TTDL supports creating aliases for addressing modes and operations invoked 
with certain arguments. Aliases help make TTs more human-readable. They are 
created by defining Ruby functions with corresponding names. The code below shows 
how to create aliases for the registers from the previous example: 

def t0 reg(8) end 
def t1 reg(9) end 
def t2 reg(10) end 

Now the arguments of the add instruction can be specified using alises: 
add t0, t1, t2 

Also, the TTDL provides the pseudo function that can be used to specify calls to 
pseudo instructions that do not have corresponding operations in ISA specifications. 
They print user-specified text, but are not simulated by the generator. Here is an 
example: 

pseudo ’syscall’ 

4.7 Defining Groups 
Addressing modes and operations can be organized into groups. Groups are used 
when it is required to randomly select an addressing mode or operation from the 
specified set. Groups can be defined in ISA specifications or in TTs. To do this in 
TTs, the define_mode_group and define_op_group functions are used. Both functions 
take the name and distribution arguments that specify the group name and the 
distribution used to select its items. 
For example, the code below defines an instruction group called alu that contains 
instructions add, sub, and, or, nor, and xor selected randomly according to the 
specified distribution: 
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alu_dist = dist( 
  range(:value => ’add’, :bias => 40), 
  range(:value => ’sub’, :bias => 30), 
  range(:value => [’and’, ’or’, ’nor’, ’xor’], :bias => 30) 
) 
define_op_group(’alu’, alu_dist) 

The following code specifies three calls that use instructions randomly selected from 
the alu group: 

alu t0, t1, t2 
alu t3, t4, t5 
alu t6, t7, t8 

4.8 Describing Instruction Call Sequences 
Instruction call sequences are described using block-like structures. Each block 
specifies a sequence or a collection of sequences. Blocks can be nested to construct 
complex sequences. The algorithm used for sequence construction depends on the 
type and the attributes of a block. 
An individual instruction call is considered a primitive block describing a single 
sequence that consists of a single instruction call. A single sequence that consists of 
multiple calls can be described using the sequence or the atomic construct. The 
difference between the two is that an atomic sequence is never mixed with other 
instruction calls when sequences are merged. The code below demonstrates how to 
specify a sequence of three instruction calls: 

sequence { 
  add t0, t1, t2 
  sub t3, t4, t5 
  or t6, t7, t8 
} 

A collection of sequences that are processed one by one can be specified using the 
iterate construct. For example, the code below describes three sequences consisting 
of one instruction call: 

iterate { 
  add t0, t1, t2 
  sub t3, t4, t5 
  or t6, t7, t8 
} 

Sequences can be combined using the block construct. The resulting sequences are 
constructed by sequentially applying the following engines to sequences returned by 
nested blocks: 

 combinator - builds combinations of sequences returned by nested blocks. 
Each combination is a tuple of length equal to the number of nested blocks. 

 permutator - modifies combinations returned by combinator by rearranging 
some sequences. 
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 compositor - merges (multiplexes) sequences in a combination into a single 
sequence preserving the initial order of instructions calls in each sequence. 

 rearranger - rearranges sequences constructed by compositor. 
 obfuscator - modifies sequences returned by rearranger by permuting some 

instruction calls. 
Each engine has several implementations based on different methods. It is possible to 
extend the list of supported methods with new implementations. Specific methods are 
selected by specifying corresponding block attributes. When they are not specified, 
default methods are applied. The format of a block structure for combining sequences 
looks as follows: 

block( 
  :combinator => ’combinator-name’, 
  :permutator => ’permutator-name’, 
  :compositor => ’compositor-name’, 
  :rearranger => ’rearranger-name’, 
  :obfuscator => ’obfuscator-name’) { 
  # Block A. 3 sequences of length 1: {A11}, {A21}, {A31} 
  iterate { A11; A21; A31 } 
  # Block B. 2 sequences of length 2: {B11, B12}, {B21, B22} 
  iterate { sequence { B11, B12 }; sequence { B21, B22 } } 
  # Block C. 1 sequence of length 3: {C11, C12, C13} 
  iterate { sequence { C11; C12; C13 } } 
} 

The default method names are: diagonal for combinator, catenation for compositor, 
and trivial for permutator, rearranger and obfuscator. Such a combination of engines 
describes a collection of sequences constructed as a concatenation of sequences 
returned by nested blocks. For example, sequences constructed for the block in the 
above example will be as follows: {A11, B11, B12, C11, C12, C13}, {A21, B21, B22, 
C11, C12, C13} and {A31, B11, B12, C11, C12, C13}. 

4.9 Specifying Test Situations 
Test situations are associated with specific instruction calls and specify methods used 
to generate their input data. There is a wide range of data generation methods 
implemented by various data generation engines. Test situations are specified using 
the situation construct. It takes the situation name and a map of optional attributes 
that specify situation-specific parameters. For example, the following line of code 
causes input registers of the add instruction to be filled with zeros: 

add t1, t2, t3 do situation(’zero’) end 
When no situation is specified, a default situation is used. This situation places 
random values into input registers. It is possible to assign a custom default situation 
for individual instructions and instruction groups with the set_default_situation 
function. For example: 
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set_default_situation ’add’ do situation(’zero’) end 
Situations can be selected at random. The selection is based on a distribution. This 
can be done by using the random_situation construct. For example: 

sit_dist = dist( 
  range(:value => situation(’add.overflow’)), 
  range(:value => situation(’add.normal’)), 
  range(:value => situation(’zero’)), 
  range(:value => situation(’random’, :dist => int_dist)) 
  ) 
add t1, t2, t3 do random_situation(sit_dist) end 

Unknown immediate arguments that should have their values generated are specified 
using the ”_” symbol. For example, the code below states that a random value should 
be added to a value stored in a random register and the result should be placed to 
another random register: 

addi reg(_), reg(_), _ do situation(’random’) end 

4.10 Selecting Registers 
Unknown immediate arguments of addressing modes are a special case and their 
values are generated in a slightly different way. Typically, they specify register 
indexes and are bounded by the lenght of register arrays. Often such indexes must be 
selected from a specific range taking into account previous selections. For example, 
registers are allocated at random and they must not overlap. To be able to solve such 
tasks, all values passed to addressing modes are tracked. The allowed value range and 
the method of value selection are specified in configuration files. Values are selected 
using the specified method before the instruction call is processed by the engine that 
generates data for the test situation. The selection method can be customized by using 
the mode_allocator function. It takes the allocation method name and a map of 
method-specific parameters. For example, the following code states that the output 
register of the add instruction must be a random register which is not used in the 
current test case: 

add reg(_ mode_allocator(’free’)), t0, t1 
Also, the TTDL allows customizing the allowed range for selected values. It is 
possible to exclude some elements from the range by using the exclude attribute or to 
provide a new range by using the retain attribute. For example: 

add reg(_ :exclude=>[1, 5, 7]), t0, t1 
add reg(_ :retain=>8..15), t0, t1 

Addressing modes with specific argument values can be marked as free using the 
free_allocated_mode function. To free all allocated addressing modes, the 
free_all_allocated_modes function can be used. 

4.11 Describing Preparators 
Preparators describe instruction sequences that place data into registers or memory 
accessed via the specified addressing mode. They are inserted into TPs to set up the 
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initial state of the microprocessor required by test situations. It is possible to overload 
preparators for specific cases (value masks, register numbers, etc). Preparators are 
defined in the pre method using the preparator construct, which uses the following 
parameters describing conditions under which it is applied: 

 target - the name of the target addressing mode; 
 mask (optional) - the mask that should be matched by the value in order for 

the preparator to be selected; 
 arguments (optional) - values of the target addressing mode arguments that 

should be matched in order for the preparator to be selected; 
 name (optional) - the name that identifies the current preparator to resolve 

ambiguity when there are several different preparators that have the same 
target, mask and arguments. 

It is possible to define several variants of a preparator which are selected at random 
according to the specified distribution. They are described using the variant construct. 
It has two optional parameters: 

 name (optional) - identifies the variant to make it possible to explicitly select 
a specific variant; 

 bias - specifies the weight of the variant, can be skipped to set up an even 
distribution. 

Here is an example of a preparator what places a value into a 32-bit register described 
by the REG addressing mode and two its special cases for values equal to 0x00000000 
and 0xFFFFFFFF: 

preparator(:target => ’REG’) { 
  variant(:bias => 25) { 
    data { 
      label :preparator_data 
      word value 
    } 
    la at, :preparator_data 
    lw target, 0, at 
  } 
  variant(:bias => 75) { 
    lui target, value(16, 31) 
    ori target, target, value(0, 15) 
  } 
} 
preparator(:target => ’REG’, :mask => ’00000000’) { 
  xor target, zero, zero 
} 
preparator(:target => ’REG’, :mask => ’FFFFFFFF’) { 
  nor target, zero, zero 
} 



Татарников А.Д. Язык описания шаблонов для генерации тестовых программ для микропроцессоров. Труды 
ИСП РАН, том 28,  вып. 4, 2016, стр. 77-98 

91 

Code inside the preparator block uses the target and value functions to access the 
target addressing mode and the value passed to the preparator. 
The TTDL provides the prepare function to explicitly insert preparators into TPs. It 
can be used to create composite preparators. The function has the following 
arguments: 

 target - specifies the target addressing mode; 
 value - specifies the value to be written; 
 attrs (optional) - specifies the preparator name and the variant name to select 

a specific preparator. 
For example, the following line of code places value 0xDEADBEEF into the t0 
register: 

prepare t0, 0xDEADBEEF 

4.12 Describing Self-Checks 
TPs can include self-checks that check validity of the microprocessor state after a test 
case has been executed. These checks are instruction sequences inserted in the end of 
test cases which compare values stored in registers with expected values. If the values 
do not match control is transferred to a handler that reports an error. Expected values 
are produced by the MicroTESK simulator. Self-check are described using the 
comparator construct which has the same features as the preparator construct, but 
serves a different purpose. Here is an example of a comparator for 32-bit registers and 
its special case for value equal to 0x00000000: 

comparator(:target => ’REG’) { 
  prepare target, value 
  bne at, target, :check_failed 
  nop 
} 
comparator(:target => ’REG’, :mask => "00000000") { 
  bne zero, target, :check_failed 
  nop 
} 

4.13 Describing Test Cases 
A TP can be described by the following formula: 
 = start  {start, xi, stop}i=1,n  stop, where: 

 start is a TP prologue that consists of instructions aimed for microprocessor 
initialization; 

 start, xi, stop is a test case that specifies an individual stimulus and consists 
of: 

- start is a test case prologue that performs all necessary preparations 
for the test case; 
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- xi is a test case action that contains the main code of the test case; 
- stop is a test case epilogue that performs finalization actions for the 

test case such as self-checks. 
 stop is a TP epilogue that consists of instructions aimed for microprocessor 

finalization; 
 n is the number of test cases in a TP. 

The TTDL provides means of describing each part of a TP. start and stop are 
described in the pre and post methods of a TT class correspondingly. Test cases are 
specified in the run method. 
Test cases are described by block constructs specifying one or more sequences of 
instruction calls. Each sequence is a separate test case. It is possible to process a block 
multiple times. This makes sense when sequences use randomization. In this case, it 
results different test cases based on the same description. For example, the code below 
describes five test cases based on the same sequence of three calls. Input data for the 
calls are generated at random and will be different for all test cases. 

def run 
  sequence { 
    add t0, t1, t2 
    sub t3, t4, t5 
    or t6, t7, t8 
  }.run 5 
end 

start that contains preparators for input registers and stop that contains self-checks 
will be generated by the tool automatically. Also, it is possible to specify additional 
prologue and epilogue for test cases. They will be inserted between automatically 
generated prologue and epilogue and main code of the test cases. They are specified 
using the prologue and epilogue blocks nested into the sequence block. The syntax 
looks like this: 

sequence { 
  prologue { ... } 
  ... 
  epilogue { ... } 
}.run n 

When instruction sequences are merged by nesting blocks, prologue and epilogue of 
nested blocks wrap sequences returned by these blocks. 
Test cases can be processed by different TPG engines. A specific engine can be 
selected by passing the engine parameter to the block construct that describes the test 
cases. 

4.14 Describing Exception Handlers 
TPs must contain handlers of exceptions that may occur during their execution. 
Exception handlers are described using the exception_handler construct. This 
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description is also used by the MicroTESK simulator to handle exceptions. Separate 
exception handlers are described using the section construct nested into the 
exception_handler block. The section function has two arguments: org that specifies 
the handler’s location in memory and exception that specifies names of associated 
exceptions. For example, the code below describes a handler for the IntegerOverflow, 
SystemCall and Breakpoint exceptions, which resumes execution from the next 
instruction: 

exception_handler { 
  section(:org =>0x380, :exception => [’IntegerOverflow’, ’SystemCall’, ’Breakpoint’]) { 
    mfc0 ra, cop0(14) 
    addi ra, ra, 4 
    jr ra 
    nop 
  } 
} 

4.15 Printing Text 
TPs are printed in textual form to source code files. The printed text includes various 
supplementary messages such as comments and separators. They are generated by 
MicroTESK engines or specified by users in TTs. The format of printed text is set up 
using the following settings: 

 sl_comment_starts_with - starting characters for single-line comments. 
Default value is ”//”. 

 ml_comment_starts_with - starting characters for multi-line comments. 
Default value is ”/*”. 

 ml_comment_ends_with - terminating characters for multi-line comments. 
Default value is ”*/”. 

 indent_token - indentation token. Default value is ”\t”. 
 separator_token - token used in separator lines. Default value is ”=”. 

The settings are initialized with default values in the initialize method of the Template 
class can be redefined in the initialize method of a TT. 
The TTDL provides functions for printing custom text messages. Text messages are 
printed either into the generated source code or into the simulator log. Here is the list 
of supported functions: 

 newline - adds the new line character into the TP; 
 text - adds text into the TP; 
 trace - prints text into the simulator execution log; 
 comment - adds a comment into the TP; 
 start_comment - starts a multi-line comment; 
 end_comment - ends a multi-line comment. 
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The text, trace and comment functions print formatted text. They take a format string 
and an array of objects to be printed, which can be constants or memory locations. To 
specify locations to be printed (registers, memory), the location function should be 
used. It takes the name of the memory array and the index of the selected element. 
For example, the code below prints a constant value and a value stored in a register 
in the hexadecimal format: 

text ’Constant: 0x%X’, 0xDEADBEEF 
text ’Register: 0x%X’, location(’GPR’, 8) 

5. Case Study 
MicroTESK and its TTDL have been applied in industrial projects to generate TPs 
for MIPS64 [13] and ARMv8 [14] microprocessors. Table 1 provides characteristics 
of the MIPS64 and ARMv8 specifications used to configure MicroTESK for 
generating TPs for these designs. 

Table 1. Industrial application of the proposed TTDL and supporting tool 

Project MIPS64 ARMv8 
Number of instructions 102 207 
ISA specification size (lines of code) 70 143 
MMU specification size (lines of code) 134 637 
Efforts (person-months) 101 809 

Created tests include: 
 tests for arithmetical instructions; 
 tests for floating-point instructions; 
 tests for branch instructions; 
 tests for memory access instructions. 

To describe tests for branch and memory instruction, the TTDL was extended with 
additional constructs based on existing ones. The language was evolving in the 
process of working on the projects. Some features were changed and some were 
added. A number of language features came as requirements from customers. The 
approach based on using dynamic languages such as Ruby to create TTDLs has 
proved its flexibility. The TTDL allowed describing test cases in a format which is 
maximally close to assembly language for corresponding microprocessors. This 
allows verification engineers to concentrate on verification problems instead of issues 
related to the use of a specific programming language. 

5. Conclusion 
A concept of a TTDL for a reconfigurable and extensible TPG framework has been 
considered. The proposed solution was implemented in the MicroTESK [3] 
framework. The developed TTDL is based on the Ruby [6] language and uses its 
metaprogramming facilities to dynamically add configuration-dependent language 
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constructs. The language is integrated into MicroTESK, which is a Java-based tool, 
with the help of JRuby [11]. Facilities of the TTDL can be extended by adding new 
Ruby libraries. 
Directions for further research and development are to apply the described principles 
to create TTDLs based on other programming languages. First of all, it is Python and 
its Java-based implementation called Jython. It provides facilities similar to those of 
Ruby and is also popular among verification engineers. For this reason, it would be 
advantageous to provide a Python-based version of the TTDL for those who are more 
comfortable with this language. 
Another task is development of a TTDL based on C++. It will be a part of a large 
research project dedicated to on-line generation. An on-line TPG tool is represented 
by a binary image with basic functions of an operating system, which is loaded 
directly to a microprocessor chip where it generates and executes test stimuli. The 
tool will be created by MicroTESK from C++ libraries based on formal specifications. 
For further unification of TPG tools, it is important that TTs for on-line generation 
are developed using the same principles. 
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Аннотация. Генерация тестовых программ на языке ассемблера и проверка 
корректности результатов их выполнения является наиболее широко применяемым 
подходом к функциональной верификации микропроцессоров. Данная задача решается 
при помощи специальных автоматизированных средств, называемых генераторами 
тестовых программ. Высокая сложность современных электронных устройств создает 
потребность в автоматизированных средствах, способных генерировать тестовые 
программы, покрывающие нетривиальные ситуации в их работе. Большинство таких 
средств используют в качестве входных данных шаблоны тестовых программ, которые 
позволяют описывать тестовые сценарии в абстрактном виде. Такой подход 
предоставляет инженерам-верификаторам возможность описывать широкий спектр 
задач генерации, затрачивая минимальные усилия. Шаблоны тестовых программ 
разрабатываются на специальных предметно-ориентированных языках. Такие языки 
должны удовлетворять следующим требованиям: (1) они должны быть достаточно 
простыми для использования инженерами-верификаторами, не обладающими 
серьезными навыками программирования; (2) они должны быть применимы для 
широкого спектра микропроцессорных архитектур и (3) они должны быть легко 
расширяемы для поддержки описания новых типов задач генерации. В данной работе 
рассматривается язык описания шаблонов тестовых программ, который был создан для 
расширяемой среды генерации тестовых программ MicroTESK, разрабатываемой в 
ИСП РАН. Это гибкий предметно-ориентированный язык, основанный на языке Ruby, 
который позволяет описывать широкий набор задач генерации в терминах абстракций 
цифровой аппаратуры. Среда генерации MicroTESK и язык описания тестовых 
шаблонов успешно применяются в промышленных проектах по верификации 
микропроцессоров на базе архитектур MIPS и ARM. 

Ключевые слова: микропроцессоры; функциональная верификация; генерация 
тестовых программ; тестовые шаблоны; предметно-ориентированные языки. 
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