
Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

99

Specification-Based Test Program
Generation for MIPS64 Memory

Management Units

A.S. Kamkin <kamkin@ispras.ru>
A.M. Kotsynyak <kotsynyak@ispras.ru>

Institute for System Programming of the Russian Academy of Sciences,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Abstract. In this paper, a tool for automatically generating test programs for MIPS64 memory
management units is described. The solution is based on the MicroTESK framework being
developed at the Institute for System Programming of the Russian Academy of Sciences. The
tool consists of two parts: an architecture-independent test program generation core and
MIPS64 memory subsystem specifications. Such separation is not a new principle in the area:
it is applied in a number of industrial test program generators, including IBM’s Genesys-Pro.
The main distinction is in how specifications are represented, what sort of information is
extracted from them, and how that information is exploited. In the suggested approach,
specifications comprise descriptions of the memory access instructions, loads and stores, and
definition of the memory management mechanisms such as translation lookaside buffers, page
tables, table lookup units, and caches. A dedicated problem-oriented language, called MMUSL,
is used for the task. The tool analyzes the MMUSL specifications and extracts all possible
instruction execution paths as well as all possible inter-path dependencies. The extracted
information is used to systematically enumerate test programs for a given user-defined test
template and allows exhaustively exercising co-execution of the template instructions,
including corner cases. Test data for a particular program are generated by using symbolic
execution and constraint solving techniques.

Keywords: microprocessor, memory management unit, caching, address translation, formal
specification, test program, test program generation, MIPS64.

DOI: 10.15514/ISPRAS-2016-28(4)-6

For citation: Kamkin A.S., Kotsynyak A.M. Specification-Based Test Program Generation for
MIPS64 Memory Management Units. Trudy ISP RAN /Proc. ISP RAS, 2016, vol. 28, issue 4,
pp. 99-114. DOI: 10.15514/ISPRAS-2016-28(4)-6

1. Introduction
A computer memory is known to be a complex hierarchy of data storage devices
varying in volume, latency and price. In addition to registers and main memory,

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

100

microprocessors include a multi-level cache memory and address translation buffers.
The set of devices responsible for handling memory accesses is referred to as a
memory subsystem or a memory management unit (MMU). Being one of the key
microprocessor components, the memory subsystem is strongly required to be correct
and reliable. Due to the complicated structure of the memory, the number of situations
that can occur in processing load and store instructions is huge; this makes it
improbable to verify the subsystem «manually».
It is widely accepted that test program generation (TPG) is an essential approach to
microprocessor verification [3]. The problem is how to overcome the complexity and
at the same time provide acceptable test coverage. It is a fallacy that (naive) random
TPG is a good way to optimize testing [4]. A better solution, we think, is a
specification-based approach [3]. A TPG tool consists of two components: (1) an
architecture-independent test generation core and (2) an architecture specification, or
model. The approach reduces the efforts to create a generator by reusing the core –
the only thing one needs to develop is a specification.
There exist a number of tools implementing the paradigm mentioned above [3], [5],
[6]. However, only few of them are distributed under open licenses. ISP RAS’s
MicroTESK [7] is one of those few. The tool uses a dialect of the nML language[8]
for specifying instruction set architectures (ISA) and an extensible set of dedicated
languages for specifying particular microarchitectural features, including, first of all,
a memory management. In this work, we would like to share our experience in
creating a MicroTESK-based TPG for verifying MIPS64 MMUs [1], [2].
The remainder of this paper is divided into four sections. Section 2 contains a brief
survey of the existing approaches to TPG for MMUs. Section 3 presents the
MicroTESK framework and its facilities aimed at MMU specification and testing.
Section 4 studies application of the TPG approach for MIPS64 MMU. Section 5
discusses the results of the work and outlines directions of future research and
development.

2. Related work
There are several TPG tools based on formal specifications of memory subsystems.
IBM's DeepTrans [9] uses a dedicated specification language. Address translation is
depicted as a directed acyclic graph (DAG) whose vertices correspond to the process
stages and whose edges relate to the transitions between the stages. A path from the
source of the DAG to the sink defines a particular situation in the address translation.
Such situations can be referred from high-level descriptions of test programs (TPs),
so-called test templates (TTs). The latter are processed by Genesys-Pro [3], which
formulates constraints on instruction operands, solves them and transforms the
solutions into the instruction sequences. The major advantage of the approach is the
use of the highly developed languages for modeling MMUs and describing TTs. A
possible disadvantage is that the tool seems not to be able to automatically extract
MMU-related dependencies between instructions.

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

101

In [10], the Java language coupled with a special library is used to model MMUs. As
in DeepTrans, the situations correspond to the paths in the DAG describing the MMU.
For example, {TLB(va).hit, TLB(va).entry.V, L1(pa).hit}: there is a hit in the
translation lookaside buffer (TLB); the matched entry is valid; there occurs a miss in
the first-level cache (L1). In addition, the approach provides facilities for specifying
MMU-related dependencies between instructions. For example, {TLB ↦ tagEqual,
L1 ↦ indexEqual}: instructions access different TLB entries; data are mapped onto
the same set of L1. TTs are constructed automatically by combining situations and
dependencies for short sequences of instructions. Building TTs and creating TPs is
done by MicroTESK (version 1) [7]. The strength of the approach is systematic TT
enumeration that takes into consideration instruction execution paths as well as
dependencies between instructions. The principal weakness is underdeveloped
specification facilities.

3. MicroTESK Framework
MicroTESK (version 2.3 or higher) [11] combines the advantages of the approaches
presented in [9] and [10]. The tool inputs are ISA specifications in nML [8], MMU
specifications in MMUSL (MMU Specification Language) and TTs in Ruby [12]. The
basic principles of MicroTESK are close to ones implemented in Genesys-Pro [3].
The specifications are analyzed to extract testing knowledge (situations and
dependencies), which is used to generate TPs from the given TTs as well as to
systematically enumerate TTs. More information on the tool can be found in [13] and
[14]. Here we provide a brief introduction to MicroTESK by the example of an
MIPS64 MMU [2].

3.1 ISA Specifications
ISA specifications include definitions of data types, constants, registers, access
modes, memories and instructions. Here comes an example (a fragment of the
MIPS64 specification), where there are listed three data types, BYTE, SHORT and
DWORD.

type BYTE = card(8) // unsigned 8-bit vectors
type SHORT = int(16) // signed 16-bit vectors
type DWORD = card(64) // unsigned 64-bit vectors

Registers of the same type are grouped into arrays. Register access logic is
encapsulated in so-called modes, which, besides other things, define assembly format
(syntax) and binary encoding (image) of the registers. The following example
declares an array GPR, consisting of thirty two 64-bit registers, designates a stack
pointer alias SP = GPR[29], and defines a mode REG aimed at accessing those
registers.

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

102

reg GPR [32, DWORD] // Array of 32 DWORD Registers
reg SP[DWORD] alias = GPR[29] // Stack Pointer Alias

mode REG (i: card(5)) = GPR[i] // One-to-One Mapping
 syntax = format("r%d", i) // Assembly Format
 image = format("%5s", i) // Binary Encoding
 number = i // Custom Attribute

Like a group of registers, a memory unit is represented as a plain array. In the example
below, an array MEM is interpreted as a physical memory comprised of 2ଷ bytes.
Virtual memory issues such as address translation, caching, and the like are specified
separately with the use of a dedicated language (see the next section).

mem MEM[2 ** 36, BYTE] // Physical Memory Array

The attributes of instructions include syntax, image and action. Actions of load and
store instructions are described in an intuitive manner by reading or writing data from
or to the array representing the physical memory. Here is a specification of the Load
Byte instruction (LB), which derives an address from a base register (base) with given
offset (offset), loads a byte from the memory, and writes it to a register (rt).

op LB (rt: REG, offset: SHORT, base: REG)
 syntax = format("lb %s, %d(%s)", rt.syntax, offset, base.syntax)
 image = format("100000%5s%5s%16s", base.image, rt.image, offset.image)
 action = { rt = MEM[base + offset]; }

Notwithstanding MEM is interpreted as the physical memory, it is accessed through
virtual addresses – an access triggers the address translation mechanisms and other
MMU logic.

3.2 MMU Specifications
Being rather simple, nML does not have adequate facilities to describe MMUs. For
this purpose, a special MMUSL language is used. MMU specifications include address
types, memory segments, buffers, and control logic for handling loads and stores. In
the following example, address type, VA, is declared. It is a structure with single field
– address itself.

address VA(vaddress : 64)
A memory segment is considered as a mapping from a set of addresses of some type
to a set of addresses of another type. An example given below defines a segment

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

103

XKPHYS that maps a VA of the given set (range) to the physical address (PA). The
segment performs flat translation with no use of TLBs and tables (read).

segment XKPHYS (va: VA) = (pa: PA)
 range = (0x8000000000000000, 0xbfffFFFFffffFFFF)
 read = {
 pa.paddress = va.vaddress<35..0>;
 pa.cca = va.vaddress<61..59>;
 }

Buffers (TLBs, cache units, page tables, etc.) are specified with the following
parameters: the associativity (ways), the number of sets (sets), the entry format
(entry), the index calculation function (index), the tag calculation function (tag) and
the data eviction policy (policy). Their meaning passes current among
microprocessors designers. Here comes a sample description of TLB. It is accessed
by VAs. The keyword register means that the buffer is mapped to the registers and
can be accessed from the ISA specifications.

register buffer TLB (va: VA)
 sets = 1 // Fully associative buffer
 ways = 64
 entry = (R: 2, VPN2: 27, ASID: 8, PageMask: 16, G: 1, …)
 tag = va<39..13>

Processing of memory access instructions is specified by requesting the segments and
buffers. The syntax is similar to nML though allows using such constructs as B(A).hit
(the buffer B contains an entry for the address A), E=B(A) (the entry for the address
A is read from the buffer B and assigned to E), B(A)=E (the entry E for the address
A is written to the buffer B), and the like. Here is a fragment of the MIPS64 MMU
specification. It contains two attributes, read and write, which, respectively, define
logic of loads and stores.

mmu MMU (va: VA) = (data: DATA_SIZE)
 var pa: PA;
 var line: DATA_SIZE;
 var l1Entry: L1.entry;
 read = {
 pa = TranslateAddress(va); // Address Translation

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

104

 if IsCached(pa.cca) == 1 then
 if L1(pa).hit then // L1 Cache Access
 l1Entry = L1(pa);
 line = l1Entry.DATA;
 else
 line = MEM(pa);
 l1Entry.TAG = pa.paddress<...>; // L1 Cache Update
 l1Entry.DATA = line;
 L1(pa) = l1Entry;
 endif;
 else
 line = MEM(pa);
 endif;
 data = line;
 }
 write = { … }

3.3 TPG Approach
The MicroTESK TPG approach is based on TTs written in Ruby [12]. In general
terms, the process is as follows [14]. A TT describing a microprocessor verification
scenario is given to MicroTESK. The tool processes the TT and builds a series of
symbolic TPs, where abstract situations and dependencies (often in the form of
constraints) are used instead of specific values. Each symbolic TP is instantiated with
appropriate test data (TD). The resultant TP is supplemented with preparation code
that initializes the registers, the buffers, and the memory.
TTs are allowed to use modes and instructions defined in the specifications as well as
special TPG constructs (blocks, situations, etc) [14]. More technically, a TT is a
subclass of the Template base class provided by the MicroTESK library. In the
example below, MmuTemplate is a subclass of Mips64BaseTemplate, which, in turn,
is a subclass of Template. The entry point is method run. This method declares a
block of two instructions, LD and SD, to be processed with the dedicated memory
engine. The situation access guides TPG by specifying constraints and biases for the
MMU variables and buffers. The denotation reg(_) means any instance of the mode
REG, i.e. any GPR.

class MmuTemplate < Mips64BaseTemplate
 def run
 block(:engine => "memory", ...) {
 ld reg(_), 0x0, reg(_)
 do situation("access", hit("L1"), ...) end

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

105

 sd reg(_), 0x0, reg(_)
 }
 end
end

Let us consider how TPG for MMUs is organized. Parsing specifications results in
two entities: an interpreter, which is a part of the instruction set simulator (ISS), and
a symbolic representation in the form of a labeled DAG. The DAG is traversed, and
all possible execution paths are extracted. An execution path describes processing of
a single memory request and finishes either with a memory access or with an
exception (alignment fault, TLB refill event, etc.). Paths are composed of transitions.
Each transition is supplied with a guard, i.e. a condition that enables the transition,
and an action to be performed; it can also be labeled with a buffer being used in the
guarded action. Here is a fragment of the execution path in MMU (see above)
represented in a hypothetical language.

path PATH(va: VA) = (data: DATA_SIZE)
 transition {
 guard = TRUE
 action = {} // Go to TranslateAddress(va)
 } …
 transition {
 guard = L1(pa).hit
 action = { l1Entry = L1(pa); line = l1Entry.DATA; }
 buffer = L1
 } …
Given two execution paths, the tool can extract possible dependencies between them.
A dependency is a map from the set of buffers common for the given paths to the set
of conflict types. More formally, let ଵ and ଶ be execution paths, ܥ	be a non-empty
set of conflict types, and ܤሺሻ be the set of buffers used in a path . A dependency
between ଵ and ଶ is a map ݀:	ܤሺଵሻ ∩ ଶሻሺܤ → is supposed to include ܥ The set .ܥ
the following elements and their negations:

 indexEqual – access to the same set of the buffer;
 tagEqual – access to the same entry of the buffer;
 tagEvicted – access to the recently evicted entry.

Given a TT, symbolic TPs are systematically enumerated. The main, but not the only,
approach supported by MicroTESK is combinatorial generation. Symbolic TPs are
constructed by selecting all relevant execution paths for the TT’s instructions and
producing all satisfiable dependencies for each combination of the paths. To avoid
combinatorial explosion, special heuristics are used, including factorization of the

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

106

paths and limitation of the depth of the dependencies. Among them, a buffer-event
factorization is frequently used. Let be a path, and ݁ݐ݊݁ݒ ∶ ሻሺܤ	 	→ 	 ሼ	݄݅ݏݏ݅݉,ݐ	ሽ
be the induced map of the buffers to the events. Two paths, ଵ and ଶ, are equivalent,
if ܤሺଵሻ 	ൌ ܾ ଶሻ and for eachሺܤ	 ∈ భሺܾሻݐ݊݁ݒ݁ ,ଵሻሺܤ	 	ൌ .మሺܾሻ holdsݐ݊݁ݒ݁	
During TPG, the equivalence classes are enumerated, while their representatives are
randomized.
Symbolic TP is a pair 〈ሼሽୀଵ 	, ൛݀ൟ,ୀଵሺழሻ

 〉, where is an execution path, and ݀
is a dependency between and . To produce a TP from a symbolic TP, appropriate
TD are required, including addresses of the instructions, entries of the buffers being
accessed (except replaceable ones, such as caches) and sequences of addresses to be
used to load or evict data to or from the replaceable buffers. Formally, TD are a tuple
〈ሼܽ݀݀ݎሽୀଵ , ሼ݁݊ݕݎݐሽୀଵ , ,݈݀ܽ ܽ ሺܽሻ is an address of the typeݎ݀݀ܽ where ,〈ݐܿ݅ݒ݁
used in the path , ݁݊ݕݎݐሺܾ is an entry of the buffer ܾ accessed by the path ,
,ሺܾ݈݀ܽ ,of the buffer ܾ and ݏ is a sequence of addresses to load data to the set ݏ
finally, ݁ݐܿ݅ݒሺܾ, of the buffer ݏ ሻ is a sequence of addresses to evict data from the setݏ
ܾ.
Here is an approximation of the TD generation algorithm implemented in
MicroTESK’s memory engine. The following denotations are used: : ݀ሺܾ, ܿሻ is the
minimal ݅, such that 1 	݅	 ൏ 	݆ and ݀ሺܾሻ 	ൌ 	ܿ, or a special value ߳ ∉ 	ܰ if there
are no such ݅; ܽ݀݀ݎሺܾሻ	is equivalent to ܽ݀݀ݎሺܽሻ, where ܽ is the address type of
the buffer ܾ; ݃ܽݐሺܽ݀݀ݎሻ and ݅݊݀݁ݔሺܽ݀݀ݎሻ are, respectively, the tag and the index
extracted from ܽ݀݀ݎ by using the corresponding functions of the buffer ܾ;
,݃ܽݐሺݎ݀݀ܣݓ݁݊ ,ݔ݁݀݊݅ . . . ሻ is an address constructed from ݔ݁݀݊݅ ,݃ܽݐ, and,
probably, some other information; ݊݁ݕݎݐ݊ܧݓሺ݅݀, ሻ is an empty entry of theݔ݁݀݊݅
buffer ܾ with specified ݅݀ and ݅݊݀݁ݔ; given a buffer ܾ, its state ݏ, and ݅݊݀݁ݔ,
,ݏሺ݉݅ݐܿ݅ݒ ሻ is a tag to be evicted. Other functions will be briefly explainedݔ݁݀݊݅
further below.

	ܔܔ܉ܚܗ ∈ 	 ሼ, . . . , 	ܗ܌	ሽ
࢘ࢊࢊࢇ		 ← .࢘ࢋ࢜ࡿ	 	൯൫࢙ࢋ࢙࢙ࢋ࢘ࢊࢊ࢚ࢉ࢛࢚࢙࢘ࢉ
࢈	ܔܔ܉ܚܗ		 ∈ 	ܗ܌	ሻሺ
,࢈ሺࢊ	ܑ				 ሻࢇ࢛ࡱࢍࢇ࢚ ് 	ܖ܍ܐܜ	ࣕ
						 ← ,࢈ሺࢊ	 	ሻࢇ࢛ࡱࢍࢇ࢚
ሻ࢈ሺ࢘ࢊࢊࢇ						 ← ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈ࢍࢇ࢚ሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
,࢈ሺࢊ	ܑ	܍ܛܔ܍				 ሻࢇ࢛ࡱ࢞ࢋࢊ ് 	ܖ܍ܐܜ	ࣕ
								 ← ,࢈ሺࢊ	 	ሻࢇ࢛ࡱ࢞ࢋࢊ
࢝ࢋࢍࢇ࢚								 ← .࢚࢘ࢇࢉ ,࢈ሺࢍࢇࢀࢉࢇ 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
ሻ࢈ሺ࢘ࢊࢊࢇ								 ← ,࢝ࢋࢍࢇ࢚ሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
	ܑ܌ܖ܍				
	ܚܗ܌ܖ܍		
	
࢈	ܔܔ܉ܚܗ		 ∈ 	ܗ܌	ሻሺ	
.࢈	ܑ				 ࢟ࢉ ് 	ܖ܍ܐܜ	ࢋ	

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

107

ሻ࢈ሺ࢚ࢋ࢜ࢋ	ܑ						 	ൌ 	ܖ܍ܐܜ	࢚ࢎ	
,࢈ሺࢊࢇ								 ሻ࢞ࢋࢊ ← ,࢈ሺࢊࢇ	 ሻ࢞ࢋࢊ ⋅ ሼ࢘ࢊࢊࢇሺ࢈ሻሽ	
	܍ܛܔ܍						
	ܔܔ܉ܚܗ								 ∈ 	 ሼ, . . . , 	ܗ܌	ሽ࢙࢟ࢇ࢝.࢈
࢝ࢋࢍࢇ࢚										 ← .࢚࢘ࢇࢉ ,࢈ሺࢍࢇࢀࢉࢇ 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
࢚ࢉ࢜ࢋ࢘ࢊࢊࢇ										 ← ,࢝ࢋࢍࢇ࢚ሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
,࢈ሺ࢚ࢉ࢜ࢋ										 ሻ࢞ࢋࢊ ← ,࢈ሺ࢚ࢉ࢜ࢋ	 ሻ࢞ࢋࢊ ⋅ 	 ሼ࢚ࢉ࢜ࢋ࢘ࢊࢊࢇሽ	
	ܚܗ܌ܖ܍								
	ܑ܌ܖ܍						
	܍ܛܔ܍				
ሻ࢈ሺ࢚ࢋ࢜ࢋ	ܑ						 	ൌ 	ܖ܍ܐܜ	࢚ࢎ	
,࢈ሺࢊ	ܑ								 ሻࢇ࢛ࡱࢍࢇ࢚ ് 	ܖ܍ܐܜ	ࣕ
										 ← ,࢈ሺࢊ	 	ሻࢇ࢛ࡱࢍࢇ࢚
ሻ࢈ሺ࢚࢟࢘ࢋ										 ← 	ሻ࢈ሺ࢚࢟࢘ࢋ	
	܍ܛܔ܍								
࢝ࢋࢊ										 ← .࢚࢘ࢇࢉ	 ,࢈ሺࢊࡵ࢚࢟࢘ࡱࢉࢇ 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
ሻ࢈ሺ࢚࢟࢘ࢋ										 ← ,࢝ࢋࢊሺ࢈࢚࢟࢘ࡱ࢝ࢋ	 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
	ܑ܌ܖ܍								
	ܑ܌ܖ܍						
	ܑ܌ܖ܍				
	ܚܗ܌ܖ܍		
	ܚܗ܌ܖ܍
	
ࢋ࢚ࢇ࢚࢙ ← .࢘ࢋ࢚ࢋ࢘࢘ࢋ࢚ࡵ	 	ሺሻࢋ࢚ࢇ࢚ࡿࢋ࢜࢘ࢋ࢙࢈
࢙ࢊࢇ ← .࢘ࢋࢊࢇࡸ	 ,ࢊࢇሺ࢙ࢊࢇࡸࢋ࢘ࢇࢋ࢘ 	ሻ࢚ࢉ࢜ࢋ
ࢋ࢚ࢇ࢚࢙ ← .࢘ࢋ࢚ࢋ࢘࢘ࢋ࢚ࡵ	 ,࢙ࢊࢇሺ࢛ࡹࢉࢋ࢞ࢋ 	ሻࢋ࢚ࢇ࢚࢙
	
	ܔܔ܉ܚܗ ∈ 	 ሼ, . . . , 	ܗ܌	ሽ
࢈	ܔܔ܉ܚܗ		 ∈ ,ሺ	 	ܗ܌	ሻࢇ
,࢈ሺࢊ	ܑ				 ሻࢋࢉࢇࢋࡾࢍࢇ࢚ ് 	ܖ܍ܐܜ	ࣕ
						 ← ,࢈ሺࢊ	 	ሻࢋࢉࢇࢋࡾࢍࢇ࢚
ሻ࢈ሺ࢘ࢊࢊࢇ						 ← ,࢈ሺ࢚ࢉ࢜ࢋࢍࢇࢀሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻ ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
	ܑ܌ܖ܍				
ሻ࢈ሺ࢚ࢋ࢜ࢋ	ܑ				 	ൌ 	ܖ܍ܐܜ	࢙࢙	
,࢈൫࢚ࢉ࢜ࢋࢍࢇࢀ						 ൯ ← ,ࢋ࢚ࢇ࢚࢙ሺ࢈࢚ࢉ࢜	 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
	ܑ܌ܖ܍				
ࢋ࢚ࢇ࢚࢙				 ← .࢘ࢋ࢚ࢋ࢘࢘ࢋ࢚ࡵ	 ,࢈ሺ࢘ࢋࢌࢌ࢛ࢉࢋ࢞ࢋ ሼ࢘ࢊࢊࢇሺ࢈ሻሽ, 	ሻࢋ࢚ࢇ࢚࢙
	ܚܗ܌ܖ܍		
	ܚܗ܌ܖ܍
	
	ܔܔ܉ܚܗ ∈ 	 ሼ, . . . , 	ܗ܌	ሽ
࢚࢟࢘ࢋ		 ← .࢘ࢋ࢜ࡿ	 	ሻሺ࢙ࢋ࢚࢘ࡱ࢚ࢉ࢛࢚࢙࢘ࢉ
 ܚܗ܌ܖ܍

 ݎ݁ݐ݁ݎݎ݁ݐ݊ܫ ,ݎݐ݈݈ܽܿܣ ,ݎ݁ݒ݈ܵ :exploits several auxiliary components ݎݐܽݎ݁݊݁ܩ
and ݎ݁ݒ݈ܵ .ݎ݁݀ܽܮ performs symbolic execution of a given path and constructs
required entities (addresses, entries, etc.) by calling constraint solvers. Interface with
solvers is provided by Fortress library [15]. It supports SMT solvers, such as Z3 [16]
and CVC4 [17], as well as in-house solvers aimed at particular tasks. Allocator

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

108

chooses buffer indices, tags and other address fields taking into account user-defined
constraints (e.g., forbidden memory regions). The default strategy is to allocate a new
index or a new tag for a given index on every request. This allows avoiding
undesirable dependencies between instructions. ݎ݁ݐ݁ݎݎ݁ݐ݊ܫ simulates accesses to
buffers and predicts data evictions. The results of the predictions are used to satisfy
 and ݐ݄݅ prepares a sequence of accesses so as to fulfill ݎ݁݀ܽܮ .conflicts ݀݁ݐܿ݅ݒܧ݃ܽݐ
 requirements. The default strategy is as follows. Buffers are handled in reverse ݏݏ݅݉
order; for every buffer ܾ and every set ݐܿ݅ݒ݁ ,ݏሺܾ, ,ሺܾ݈݀ܽ ሻ andݏ ሻ are added to theݏ
sequence.
Finally, TD are transformed to the ISA-specific preparation code. For this job, the
tool needs to know what instructions have to be used to set up addresses and entries.
Such information is provided in TTs in the form of so-called preparators.
Technically, a preparator is a piece of code that defines a sequence of instructions to
reach a certain goal. Given a register type (to be more precise, an access mode), there
usually exists a family of preparators differing in patterns of loaded values. For
example, Mips64BaseTemplate contains the following preparator for loading a 32-bit
value into a GPR via the mode REG.

preparator(:target => "REG", :mask => "00000000xxxxxxxx") {
 ori target, target, value(16, 31)
 dsll target, target, 16
 ori target, zero, value(0, 15)
}

For each buffer, there should be a preparator to write an entry into it. A preparator for
MIPS64 DTLB is given below.

buffer_preparator(:target => "DTLB") {
 ori t0, zero, address(48, 63)
 dsll t0, t0, 16
 ori t0, t0, address(32, 47)
 dsll t0, t0, 16
 ori t0, t0, address(16, 31)
 dsll t0, t0, 16
 ori t0, t0, address(0, 15)
 lb t0, 0, t0
}

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

109

4. MIPS64 MMU Case Study
The most challenging part of developing a specification-based TPG tool for a
microprocessor is MMU specification. Speaking of MIPS64, the following things
have been specified [2]: address spaces, a TLB entry format, and an address
translation procedure. Additionally, we have described a two-level write-through
cache memory.
MicroTESK’s MMUSL has allowed specifying MIPS64 MMU in quite a compact way
(approximately 220 lines of code). The specifications involve a TLB (JTLB and
DTLB), two-level cache memory buffers (L1 and L2) and memory segments (kseg0,
kseg1, xkphys, and useg). On the base of the ISA [18] and MMU [2] specifications,
18 memory access instructions and several auxiliary instructions to access the TLB
and the cache have been defined. Description of a single instruction makes up
approximately 10 lines of nML code on average.

Table 1. Complexity of MIPS64 MMU Specification

 Min Max Average
Number of Transitions if an Execution Path 7 52 38
Number of Variables in a Path Formula 3 76 49
Number of Execution Paths of an Instruction 76

Table 1 contains numeric data on MIPS64 MMU execution path complexity. While
the complexity is relatively low (average path consists of less than 40 transitions and
comprises less than 50 variables), only very short TTs can be processed by exhaustive
enumeration of symbolic TPs. In more complicated cases, heuristics become of
crucial importance. E.g., the buffer-event factorization gives only 9 path equivalence
classes, enabling systematic enumeration of longer sequences of memory accesses.
Generation of more complicated TPs is done with the help of constrained random
generation. This requires verification engineers to explicate their knowledge in the
form of constraints and biases.
This is an ongoing project, and some useful information, such as test coverage, is not
available at the moment. Though it is worth considering the lessons learned. We found
it convenient to use domain-specific languages (DSLs) for specifying ISAs and
MMUs. The use of DSLs, first, eases extraction of testing knowledge and, second,
simplifies learning of the TPG tool. On the other hand, it seems that dynamic
programming languages, such as Ruby and Python, suit well for describing TTs. Such
languages can be easily extended with TPG constructs. Our negative experience is
mostly connected with low performance of the tool. Constraint solving needs to be
optimized. As the authors of [19], we believe that specialized solvers will help.

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

110

5. Conclusion
TPG is a widely-accepted approach to microprocessor verification, including, in
particular, MMU verification. State-of-the-art MMUs are extremely complex devices
comprising multi-level address translation and caching. Naive approaches to
automated TPG for MMUs – meaning, first of all, random generation techniques –
are highly improbable to reach high level of test coverage in reasonable time.
Specification-based TPG, in our opinion, is one of the most promising directions in
the area. Since 1990s, it has been successfully applied to microprocessor testing and
verification, e.g., in IBM [3], and it continues to evolve.
The MicroTESK team [7] contributes its mite to the evolution of the specification-
based approach. Our goal is to create an open-source, extensible and reconfigurable
TPG framework [13], [14]. Different versions of MicroTESK, including the one
described in [10], have been applied to several industrial microprocessors and allowed
to reveal a large number of critical bugs, which had not been detected by randomly
generated TPs.
The proposed solution is based on ISA specifications in nML [8] and MMU
specifications in MMUSL. ISA specifications formally describe microprocessor
instructions, while MMU specifications define memory segments and buffers.
MicroTESK is able to automatically extract testing knowledge from the specifications
and to exploit it for TPG. TTs are created with the help of Ruby [12]. To generate
TD, symbolic execution and constraint solving techniques are intensively used.
The work is still in progress, and a number of things need to be done. The most
priority task is a performance optimization of the constraint solving. Another task is
to extend the approach to multicore designs and multiprocessor systems. The main
challenge here is to create a unified technology that would include formal verification
of cache coherence protocols, unit-level verification of MMUs, and system-level
TPG.

References
[1]. MIPS64™ Architecture For Programmers. Volume 1: Introduction to the MIPS64™

Architecture. Revision 6.01. MIPS Technologies Inc. 2014. 148 p.
[2]. MIPS64™ Architecture For Programmers. Volume 3: MIPS64™/microMIPS64™

Privileged Resource Architecture. Revision 6.03. MIPS Technologies Inc. 2015. 368 p.
[3]. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:

Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84-93.

[4]. R.L. Glass. Facts and Fallacies of Software Engineering. Addison-Wesley Professional,
2002. 224 p.

[5]. T. Li, D. Zhu, Y. Guo, G. Liu, S. Li. MA2TG: A Functional Test Program Generator for
Microprocessor Verification. Euromicro Conference on Digital System Design, 2005.
pp. 176-183.

[6]. A. Kamkin, A. Tatarnikov. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. Spring/Summer Young Researchers Colloquium on
Software Engineering, 2012, pp. 64-69.

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

111

[7]. MicroTESK tool. http://forge.ispras.ru/projects/microtesk
[8]. M. Freericks. The nML Machine Description Formalism. Technical Report TR SM-

IMP/DIST/08, TU Berlin CS Department, 1993.
[9]. A. Adir, L. Fournier, Y. Katz, A. Koyfman. DeepTrans – Extending the Model-based

Approach to Functional Verification of Address Translation Mechanisms High-Level
Design Validation and Test Workshop, 2006. pp. 102-110.

[10]. D. Vorobyev, A. Kamkin. [Test program generation for memory management units of
microprocesssors]. Trudy ISP RAN /Proc. ISP RAS, vol. 17, 2009. pp. 119-132 (in
Russian).

[11]. A. Kamkin, A. Protsenko, A. Tatarnikov. An Approach to Test Program Generation
Based on Formal Specifications of Caching and Address Translation Mechanisms Trudy
ISP RAN, 27(3), 2015. pp. 125-138.

[12]. Ruby programming language. http://www.ruby-lang.org
[13]. A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based Test Program

Generator for Microprocessors International Conference on Software Testing,
Verification and Validation Workshops, 2011. pp. 47-54.

[14]. A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov, M.M. Chupilko. Extensible
Environment for Test Program Generation for Microprocessors. Programming and
Computer Software, 40(1), 2014, pp. 1-9.

[15]. Fortress library. http://forge.ispras.ru/projects/solver-api
[16]. Z3 SMT solver. http://github.com/Z3Prover/z3
[17]. CVC4 SMT solver. http://cvc4.cs.nyu.edu
[18]. MIPS64™ Architecture For Programmers. Volume 2: The MIPS64™ Instruction Set

Reference Manual. Revision 6.04. MIPS Technologies Inc. 2015. 551 p.
[19]. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, G. Shurek. Constraint-

Based Random Stimuli Generation for Hardware Verification AI Magazine, 28(3), 2007.
pp. 13-30.

Генерация тестовых программ для
подсистемы управления памятью MIPS64

на основе спецификаций
А.С. Камкин <kamkin@ispras.ru>

А.М. Коцыняк <kotsynyak@ispras.ru>
Институт системного программирования РАН,

109004, Россия, г. Москва, ул. А. Солженицына, д. 25

Аннотация. В данной работе описан инструмент автоматической генерации тестовых
программ для подсистем управления памятью микропроцессоров с архитектурой
MIPS64. Предлагаемое средство базируется на среде MicroTESK, разрабатываемой в
Институте системного программирования РАН. Инструмент состоит из двух частей:
архитектурно независимого ядра генерации тестовых программ и спецификации
подсистемы памяти MIPS64. Такое разделение не является новым — аналогичный
подход применяется в промышленных генераторах, в том числе в Genesys-Pro,
разрабатываемом в исследовательском подразделении компании IBM. Основные
различия между инструментами состоят в форме представления спецификаций, типе

Kamkin A.S,, Kotsynyak A.M. Specification-Based Test Program Generation for MIPS64 Memory Management Units.
Trudy ISP RAN /Proc. ISP RAS, vol. 28, issue 4, 2016, pp. 99-114.

112

извлекаемой из них информации и способах использования этой информации для
построения тестов. В предлагаемом подходе спецификации включают в себя описания
инструкций доступа к памяти (инструкций чтения и записи) и описания механизмов
управления памятью, таких как буфер трансляции адресов, таблица страниц, устройство
аппаратного поиска по таблице страниц, кэш-память. Для спецификации такого рода
механизмов (устройств) разработан проблемно-ориентированный язык, названный
MMUSL. Инструмент анализирует MMUSL-спецификации и извлекает все возможные
пути исполнения инструкций (варианты обработки запросов к подсистеме памяти) и все
возможные зависимости между этими путями (конфликты использования устройств).
Извлеченная информация используется для систематического перебора тестовых
программ для заданного пользователем тестового шаблона и позволяет исчерпывающим
образом исследовать совместное исполнение группы инструкций, включая разного рода
граничные случаи. Тестовые данные для тестовых программ (значения адресов,
содержимое буферов и т.п.) генерируются с использованием техник символического
исполнения и решения ограничений.

Ключевые слова: микропроцессор, подсистема памяти, кэширование, трансляция
адресов, формальная спецификация, тестовая программа, генератор тестовых программ,
MIPS64.

DOI: 10.15514/ISPRAS-2016-28(4)-6

Для цитирования: Камкин А.С., Коцыняк А.М. Генерация тестовых программ для
подсистемы управления памятью MIPS65 на основе спецификаций. Труды ИСП РАН,
2016, том 28, вып. 4, с. 99-114 (на английском). DOI: 10.15514/ISPRAS-2016-28(4)-6

Список литературы
[1]. MIPS64™ Architecture For Programmers. Volume 1: Introduction to the MIPS64™

Architecture. Revision 6.01. MIPS Technologies Inc. 2014. 148 p.
[2]. MIPS64™ Architecture For Programmers. Volume 3: MIPS64™/microMIPS64™

Privileged Resource Architecture. Revision 6.03. MIPS Technologies Inc. 2015. 368 p.
[3]. A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, A. Ziv. Genesys-Pro:

Innovations in Test Program Generation for Functional Processor Verification. Design &
Test of Computers, 2004. pp. 84-93.

[4]. R.L. Glass. Facts and Fallacies of Software Engineering. Addison-Wesley Professional,
2002. 224 p.

[5]. T. Li, D. Zhu, Y. Guo, G. Liu, S. Li. MA2TG: A Functional Test Program Generator for
Microprocessor Verification. Euromicro Conference on Digital System Design, 2005.
pp. 176-183.

[6]. A. Kamkin, A. Tatarnikov. MicroTESK: An ADL-Based Reconfigurable Test Program
Generator for Microprocessors. Spring/Summer Young Researchers Colloquium on
Software Engineering, 2012, pp. 64-69.

[7]. Инструмент MicroTESK. http://forge.ispras.ru/projects/microtesk
[8]. M. Freericks. The nML Machine Description Formalism. Technical Report TR SM-

IMP/DIST/08, TU Berlin CS Department, 1993.

Камкин А.С., Коцыняк А.М. Генерация тестовых программ для подсистемы управления памятью MIPS64 на
основе спецификаций. Труды ИСП РАН, том 28 вып. 4, 2016, стр. 99-114.

113

[9]. A. Adir, L. Fournier, Y. Katz, A. Koyfman. DeepTrans – Extending the Model-based
Approach to Functional Verification of Address Translation Mechanisms High-Level
Design Validation and Test Workshop, 2006. pp. 102-110.

[10]. Д. Воробьев, А. Камкин. Генерация тестовых программ для подсистемы
управления памятью микропроцессора. Труды ИСП РАН, 17, 2009, с. 119-132

[11]. A. Kamkin, A. Protsenko, A. Tatarnikov. An Approach to Test Program Generation
Based on Formal Specifications of Caching and Address Translation Mechanisms Trudy
ISP RAN, 27(3), 2015. pp. 125–138.

[12]. Язык программирования Ruby. http://www.ruby-lang.org
[13]. A. Kamkin, E. Kornykhin, D. Vorobyev. Reconfigurable Model-Based Test Program

Generator for Microprocessors International Conference on Software Testing,
Verification and Validation Workshops, 2011. pp. 47-54.

[14]. A.S. Kamkin, T.I. Sergeeva, S.A. Smolov, A.D. Tatarnikov, M.M. Chupilko. Extensible
Environment for Test Program Generation for Microprocessors. Programming and
Computer Software, 40(1), 2014, pp. 1-9.

[15]. Библиотека Fortress. http://forge.ispras.ru/projects/solver-api
[16]. SMT-решатель Z3. http://github.com/Z3Prover/z3
[17]. SMT-решатель CVC4. http://cvc4.cs.nyu.edu
[18]. MIPS64™ Architecture For Programmers. Volume 2: The MIPS64™ Instruction Set

Reference Manual. Revision 6.04. MIPS Technologies Inc. 2015. 551 p.
[19]. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcus, G. Shurek. Constraint-

Based Random Stimuli Generation for Hardware Verification AI Magazine, 28(3), 2007.
pp. 13-30.

