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Abstract. In this paper, a tool for automatically generating test programs for MIPS64 memory 
management units is described. The solution is based on the MicroTESK framework being 
developed at the Institute for System Programming of the Russian Academy of Sciences. The 
tool consists of two parts: an architecture-independent test program generation core and 
MIPS64 memory subsystem specifications. Such separation is not a new principle in the area: 
it is applied in a number of industrial test program generators, including IBM’s Genesys-Pro. 
The main distinction is in how specifications are represented, what sort of information is 
extracted from them, and how that information is exploited. In the suggested approach, 
specifications comprise descriptions of the memory access instructions, loads and stores, and 
definition of the memory management mechanisms such as translation lookaside buffers, page 
tables, table lookup units, and caches. A dedicated problem-oriented language, called MMUSL, 
is used for the task. The tool analyzes the MMUSL specifications and extracts all possible 
instruction execution paths as well as all possible inter-path dependencies. The extracted 
information is used to systematically enumerate test programs for a given user-defined test 
template and allows exhaustively exercising co-execution of the template instructions, 
including corner cases. Test data for a particular program are generated by using symbolic 
execution and constraint solving techniques. 
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1. Introduction 
A computer memory is known to be a complex hierarchy of data storage devices 
varying in volume, latency and price. In addition to registers and main memory, 
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microprocessors include a multi-level cache memory and address translation buffers. 
The set of devices responsible for handling memory accesses is referred to as a 
memory subsystem or a memory management unit (MMU). Being one of the key 
microprocessor components, the memory subsystem is strongly required to be correct 
and reliable. Due to the complicated structure of the memory, the number of situations 
that can occur in processing load and store instructions is huge; this makes it 
improbable to verify the subsystem «manually». 
It is widely accepted that test program generation (TPG) is an essential approach to 
microprocessor verification [3]. The problem is how to overcome the complexity and 
at the same time provide acceptable test coverage. It is a fallacy that (naive) random 
TPG is a good way to optimize testing [4]. A better solution, we think, is a 
specification-based approach [3]. A TPG tool consists of two components: (1) an 
architecture-independent test generation core and (2) an architecture specification, or 
model. The approach reduces the efforts to create a generator by reusing the core – 
the only thing one needs to develop is a specification. 
There exist a number of tools implementing the paradigm mentioned above [3], [5], 
[6]. However, only few of them are distributed under open licenses. ISP RAS’s 
MicroTESK [7] is one of those few. The tool uses a dialect of the nML language[8] 
for specifying instruction set architectures (ISA) and an extensible set of dedicated 
languages for specifying particular microarchitectural features, including, first of all, 
a memory management. In this work, we would like to share our experience in 
creating a MicroTESK-based TPG for verifying MIPS64 MMUs [1], [2]. 
The remainder of this paper is divided into four sections. Section 2 contains a brief 
survey of the existing approaches to TPG for MMUs. Section 3 presents the 
MicroTESK framework and its facilities aimed at MMU specification and testing. 
Section 4 studies application of the TPG approach for MIPS64 MMU. Section 5 
discusses the results of the work and outlines directions of future research and 
development. 

2. Related work 
There are several TPG tools based on formal specifications of memory subsystems. 
IBM's DeepTrans [9] uses a dedicated specification language. Address translation is 
depicted as a directed acyclic graph (DAG) whose vertices correspond to the process 
stages and whose edges relate to the transitions between the stages. A path from the 
source of the DAG to the sink defines a particular situation in the address translation. 
Such situations can be referred from high-level descriptions of test programs (TPs), 
so-called test templates (TTs). The latter are processed by Genesys-Pro [3], which 
formulates constraints on instruction operands, solves them and transforms the 
solutions into the instruction sequences. The major advantage of the approach is the 
use of the highly developed languages for modeling MMUs and describing TTs. A 
possible disadvantage is that the tool seems not to be able to automatically extract 
MMU-related dependencies between instructions. 
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In [10], the Java language coupled with a special library is used to model MMUs. As 
in DeepTrans, the situations correspond to the paths in the DAG describing the MMU. 
For example, {TLB(va).hit, TLB(va).entry.V, L1(pa).hit}: there is a hit in the 
translation lookaside buffer (TLB); the matched entry is valid; there occurs a miss in 
the first-level cache (L1). In addition, the approach provides facilities for specifying 
MMU-related dependencies between instructions. For example, {TLB ↦ tagEqual, 
L1 ↦ indexEqual}: instructions access different TLB entries; data are mapped onto 
the same set of L1. TTs are constructed automatically by combining situations and 
dependencies for short sequences of instructions. Building TTs and creating TPs is 
done by MicroTESK (version 1) [7]. The strength of the approach is systematic TT 
enumeration that takes into consideration instruction execution paths as well as 
dependencies between instructions. The principal weakness is underdeveloped 
specification facilities. 

3. MicroTESK Framework 
MicroTESK (version 2.3 or higher) [11] combines the advantages of the approaches 
presented in [9] and [10]. The tool inputs are ISA specifications in nML [8], MMU 
specifications in MMUSL (MMU Specification Language) and TTs in Ruby [12]. The 
basic principles of MicroTESK are close to ones implemented in Genesys-Pro [3]. 
The specifications are analyzed to extract testing knowledge (situations and 
dependencies), which is used to generate TPs from the given TTs as well as to 
systematically enumerate TTs. More information on the tool can be found in [13] and 
[14]. Here we provide a brief introduction to MicroTESK by the example of an 
MIPS64 MMU [2]. 

3.1 ISA Specifications 
ISA specifications include definitions of data types, constants, registers, access 
modes, memories and instructions. Here comes an example (a fragment of the 
MIPS64 specification), where there are listed three data types, BYTE, SHORT and 
DWORD. 
 
type BYTE = card(8) // unsigned 8-bit vectors 
type SHORT = int(16) // signed 16-bit vectors 
type DWORD = card(64) // unsigned 64-bit vectors 
 
Registers of the same type are grouped into arrays. Register access logic is 
encapsulated in so-called modes, which, besides other things, define assembly format 
(syntax) and binary encoding (image) of the registers. The following example 
declares an array GPR, consisting of thirty two 64-bit registers, designates a stack 
pointer alias SP = GPR[29], and defines a mode REG aimed at accessing those 
registers. 
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reg GPR [32, DWORD]  // Array of 32 DWORD Registers 
reg SP[DWORD] alias = GPR[29] // Stack Pointer Alias 
 
mode REG (i: card(5)) = GPR[i] // One-to-One Mapping 
  syntax = format("r%d", i) // Assembly Format 
  image = format("%5s", i) // Binary Encoding 
  number = i   // Custom Attribute 
 
Like a group of registers, a memory unit is represented as a plain array. In the example 
below, an array MEM is interpreted as a physical memory comprised of 2ଷ bytes. 
Virtual memory issues such as address translation, caching, and the like are specified 
separately with the use of a dedicated language (see the next section). 
 
mem MEM[2 ** 36, BYTE] // Physical Memory Array 
 
The attributes of instructions include syntax, image and action. Actions of load and 
store instructions are described in an intuitive manner by reading or writing data from 
or to the array representing the physical memory. Here is a specification of the Load 
Byte instruction (LB), which derives an address from a base register (base) with given 
offset (offset), loads a byte from the memory, and writes it to a register (rt). 
 
op LB (rt: REG, offset: SHORT, base: REG) 
  syntax = format("lb %s, %d(%s)", rt.syntax, offset, base.syntax) 
  image = format("100000%5s%5s%16s", base.image, rt.image, offset.image) 
  action = { rt = MEM[base + offset]; } 
 
Notwithstanding MEM is interpreted as the physical memory, it is accessed through 
virtual addresses – an access triggers the address translation mechanisms and other 
MMU logic. 

3.2 MMU Specifications 
Being rather simple, nML does not have adequate facilities to describe MMUs. For 
this purpose, a special MMUSL language is used. MMU specifications include address 
types, memory segments, buffers, and control logic for handling loads and stores. In 
the following example, address type, VA, is declared. It is a structure with single field 
– address itself. 
 
address VA(vaddress : 64) 
A memory segment is considered as a mapping from a set of addresses of some type 
to a set of addresses of another type. An example given below defines a segment 
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XKPHYS that maps a VA of the given set (range) to the physical address (PA). The 
segment performs flat translation with no use of TLBs and tables (read). 
 
segment XKPHYS (va: VA) = (pa: PA) 
  range = (0x8000000000000000, 0xbfffFFFFffffFFFF) 
  read = { 
    pa.paddress = va.vaddress<35..0>; 
    pa.cca = va.vaddress<61..59>; 
  } 
 
Buffers (TLBs, cache units, page tables, etc.) are specified with the following 
parameters: the associativity (ways), the number of sets (sets), the entry format 
(entry), the index calculation function (index), the tag calculation function (tag) and 
the data eviction policy (policy). Their meaning passes current among 
microprocessors designers. Here comes a sample description of TLB. It is accessed 
by VAs. The keyword register means that the buffer is mapped to the registers and 
can be accessed from the ISA specifications. 
 
register buffer TLB (va: VA) 
  sets = 1 // Fully associative buffer 
  ways = 64 
  entry = (R: 2, VPN2: 27, ASID: 8, PageMask: 16, G: 1, …) 
  tag = va<39..13> 
 
Processing of memory access instructions is specified by requesting the segments and 
buffers. The syntax is similar to nML though allows using such constructs as B(A).hit 
(the buffer B contains an entry for the address A), E=B(A) (the entry for the address 
A is read from the buffer B and assigned to E), B(A)=E (the entry E for the address 
A is written to the buffer B), and the like. Here is a fragment of the MIPS64 MMU 
specification. It contains two attributes, read and write, which, respectively, define 
logic of loads and stores. 
 
mmu MMU (va: VA) = (data: DATA_SIZE) 
  var pa: PA; 
  var line: DATA_SIZE; 
  var l1Entry: L1.entry; 
  read = { 
    pa = TranslateAddress(va); // Address Translation 
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    if IsCached(pa.cca) == 1 then 
      if L1(pa).hit then // L1 Cache Access 
        l1Entry = L1(pa); 
        line = l1Entry.DATA; 
      else 
        line = MEM(pa); 
        l1Entry.TAG = pa.paddress<...>; // L1 Cache Update 
        l1Entry.DATA = line; 
        L1(pa) = l1Entry; 
      endif; 
    else 
      line = MEM(pa); 
    endif; 
    data = line; 
  } 
  write = { … } 

3.3 TPG Approach 
The MicroTESK TPG approach is based on TTs written in Ruby [12]. In general 
terms, the process is as follows [14]. A TT describing a microprocessor verification 
scenario is given to MicroTESK. The tool processes the TT and builds a series of 
symbolic TPs, where abstract situations and dependencies (often in the form of 
constraints) are used instead of specific values. Each symbolic TP is instantiated with 
appropriate test data (TD). The resultant TP is supplemented with preparation code 
that initializes the registers, the buffers, and the memory. 
TTs are allowed to use modes and instructions defined in the specifications as well as 
special TPG constructs (blocks, situations, etc) [14]. More technically, a TT is a 
subclass of the Template base class provided by the MicroTESK library. In the 
example below, MmuTemplate is a subclass of Mips64BaseTemplate, which, in turn, 
is a subclass of Template. The entry point is method run. This method declares a 
block of two instructions, LD and SD, to be processed with the dedicated memory 
engine. The situation access guides TPG by specifying constraints and biases for the 
MMU variables and buffers. The denotation reg(_) means any instance of the mode 
REG, i.e. any GPR. 
 
class MmuTemplate < Mips64BaseTemplate 
  def run 
    block(:engine => "memory", ...) { 
      ld reg(_), 0x0, reg(_) 
        do situation("access", hit("L1"), ...) end 
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      sd reg(_), 0x0, reg(_) 
    } 
  end 
end 
 
Let us consider how TPG for MMUs is organized. Parsing specifications results in 
two entities: an interpreter, which is a part of the instruction set simulator (ISS), and 
a symbolic representation in the form of a labeled DAG. The DAG is traversed, and 
all possible execution paths are extracted. An execution path describes processing of 
a single memory request and finishes either with a memory access or with an 
exception (alignment fault, TLB refill event, etc.). Paths are composed of transitions. 
Each transition is supplied with a guard, i.e. a condition that enables the transition, 
and an action to be performed; it can also be labeled with a buffer being used in the 
guarded action. Here is a fragment of the execution path in MMU (see above) 
represented in a hypothetical language. 
 
path PATH(va: VA) = (data: DATA_SIZE) 
  transition { 
    guard = TRUE 
    action = {} // Go to TranslateAddress(va) 
  } … 
  transition { 
    guard = L1(pa).hit 
    action = { l1Entry = L1(pa); line = l1Entry.DATA; } 
    buffer = L1 
  } … 
Given two execution paths, the tool can extract possible dependencies between them. 
A dependency is a map from the set of buffers common for the given paths to the set 
of conflict types. More formally, let ଵ and ଶ be execution paths, ܥ	be a non-empty 
set of conflict types, and ܤሺሻ be the set of buffers used in a path . A dependency 
between ଵ and ଶ is a map ݀:	ܤሺଵሻ ∩ ଶሻሺܤ →  is supposed to include ܥ The set .ܥ
the following elements and their negations: 

 indexEqual – access to the same set of the buffer; 
 tagEqual – access to the same entry of the buffer; 
 tagEvicted – access to the recently evicted entry. 

Given a TT, symbolic TPs are systematically enumerated. The main, but not the only, 
approach supported by MicroTESK is combinatorial generation. Symbolic TPs are 
constructed by selecting all relevant execution paths for the TT’s instructions and 
producing all satisfiable dependencies for each combination of the paths. To avoid 
combinatorial explosion, special heuristics are used, including factorization of the 
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paths and limitation of the depth of the dependencies. Among them, a buffer-event 
factorization is frequently used. Let  be a path, and ݁ݐ݊݁ݒ ∶ ሻሺܤ	 	→ 	 ሼ	݄݅ݏݏ݅݉,ݐ	ሽ 
be the induced map of the buffers to the events. Two paths, ଵ and ଶ, are equivalent, 
if ܤሺଵሻ 	ൌ ܾ ଶሻ and for eachሺܤ	 ∈ భሺܾሻݐ݊݁ݒ݁ ,ଵሻሺܤ	 	ൌ  .మሺܾሻ holdsݐ݊݁ݒ݁	
During TPG, the equivalence classes are enumerated, while their representatives are 
randomized. 
Symbolic TP is a pair 〈ሼሽୀଵ 	, ൛݀ൟ,ୀଵሺழሻ

 〉, where  is an execution path, and ݀ 
is a dependency between  and . To produce a TP from a symbolic TP, appropriate 
TD are required, including addresses of the instructions, entries of the buffers being 
accessed (except replaceable ones, such as caches) and sequences of addresses to be 
used to load or evict data to or from the replaceable buffers. Formally, TD are a tuple 
〈ሼܽ݀݀ݎሽୀଵ , ሼ݁݊ݕݎݐሽୀଵ , ,݈݀ܽ  ܽ ሺܽሻ is an address of the typeݎ݀݀ܽ where ,〈ݐܿ݅ݒ݁
used in the path , ݁݊ݕݎݐሺܾ is an entry of the buffer ܾ accessed by the path , 
,ሺܾ݈݀ܽ  ,of the buffer ܾ and ݏ is a sequence of addresses to load data to the set ݏ
finally, ݁ݐܿ݅ݒሺܾ,  of the buffer ݏ ሻ is a sequence of addresses to evict data from the setݏ
ܾ. 
Here is an approximation of the TD generation algorithm implemented in 
MicroTESK’s memory engine. The following denotations are used: : ݀ሺܾ, ܿሻ is the 
minimal ݅, such that 1  	݅	 ൏ 	݆ and ݀ሺܾሻ 	ൌ 	ܿ, or a special value ߳ ∉ 	ܰ if there 
are no such ݅; ܽ݀݀ݎሺܾሻ	is equivalent to ܽ݀݀ݎሺܽሻ, where ܽ is the address type of 
the buffer ܾ; ݃ܽݐሺܽ݀݀ݎሻ and ݅݊݀݁ݔሺܽ݀݀ݎሻ are, respectively, the tag and the index 
extracted from ܽ݀݀ݎ by using the corresponding functions of the buffer ܾ; 
,݃ܽݐሺݎ݀݀ܣݓ݁݊ ,ݔ݁݀݊݅ . . . ሻ is an address constructed from ݔ݁݀݊݅ ,݃ܽݐ, and, 
probably, some other information; ݊݁ݕݎݐ݊ܧݓሺ݅݀,  ሻ is an empty entry of theݔ݁݀݊݅
buffer ܾ with specified ݅݀ and ݅݊݀݁ݔ; given a buffer ܾ, its state ݏ, and ݅݊݀݁ݔ, 
,ݏሺ݉݅ݐܿ݅ݒ  ሻ is a tag to be evicted. Other functions will be briefly explainedݔ݁݀݊݅
further below. 
 
	ܔܔ܉ܚܗ ∈ 	 ሼ, . . . , 	ܗ܌	ሽ
࢘ࢊࢊࢇ		 ← .࢘ࢋ࢜ࡿ	 	൯൫࢙ࢋ࢙࢙ࢋ࢘ࢊࢊ࢚ࢉ࢛࢚࢙࢘ࢉ
࢈	ܔܔ܉ܚܗ		 ∈ 	ܗ܌	ሻሺ
,࢈ሺࢊ	ܑ				 ሻࢇ࢛ࡱࢍࢇ࢚ ് 	ܖ܍ܐܜ	ࣕ
						 ← ,࢈ሺࢊ	 	ሻࢇ࢛ࡱࢍࢇ࢚
ሻ࢈ሺ࢘ࢊࢊࢇ						 ← ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈ࢍࢇ࢚ሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
,࢈ሺࢊ	ܑ	܍ܛܔ܍				 ሻࢇ࢛ࡱ࢞ࢋࢊ ് 	ܖ܍ܐܜ	ࣕ
								 ← ,࢈ሺࢊ	 	ሻࢇ࢛ࡱ࢞ࢋࢊ
࢝ࢋࢍࢇ࢚								 ← .࢚࢘ࢇࢉ ,࢈ሺࢍࢇࢀࢉࢇ 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
ሻ࢈ሺ࢘ࢊࢊࢇ								 ← ,࢝ࢋࢍࢇ࢚ሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
	ܑ܌ܖ܍				
	ܚܗ܌ܖ܍		
	
࢈	ܔܔ܉ܚܗ		 ∈ 	ܗ܌	ሻሺ	
.࢈	ܑ				 ࢟ࢉ ് 	ܖ܍ܐܜ	ࢋ	
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ሻ࢈ሺ࢚ࢋ࢜ࢋ	ܑ						 	ൌ 	ܖ܍ܐܜ	࢚ࢎ	
,࢈ሺࢊࢇ								 ሻ࢞ࢋࢊ ← ,࢈ሺࢊࢇ	 ሻ࢞ࢋࢊ ⋅ ሼ࢘ࢊࢊࢇሺ࢈ሻሽ	
	܍ܛܔ܍						
	ܔܔ܉ܚܗ								 ∈ 	 ሼ, . . . , 	ܗ܌	ሽ࢙࢟ࢇ࢝.࢈
࢝ࢋࢍࢇ࢚										 ← .࢚࢘ࢇࢉ ,࢈ሺࢍࢇࢀࢉࢇ 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
࢚ࢉ࢜ࢋ࢘ࢊࢊࢇ										 ← ,࢝ࢋࢍࢇ࢚ሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
,࢈ሺ࢚ࢉ࢜ࢋ										 ሻ࢞ࢋࢊ ← ,࢈ሺ࢚ࢉ࢜ࢋ	 ሻ࢞ࢋࢊ ⋅ 	 ሼ࢚ࢉ࢜ࢋ࢘ࢊࢊࢇሽ	
	ܚܗ܌ܖ܍								
	ܑ܌ܖ܍						
	܍ܛܔ܍				
ሻ࢈ሺ࢚ࢋ࢜ࢋ	ܑ						 	ൌ 	ܖ܍ܐܜ	࢚ࢎ	
,࢈ሺࢊ	ܑ								 ሻࢇ࢛ࡱࢍࢇ࢚ ് 	ܖ܍ܐܜ	ࣕ
										 ← ,࢈ሺࢊ	 	ሻࢇ࢛ࡱࢍࢇ࢚
ሻ࢈ሺ࢚࢟࢘ࢋ										 ← 	ሻ࢈ሺ࢚࢟࢘ࢋ	
	܍ܛܔ܍								
࢝ࢋࢊ										 ← .࢚࢘ࢇࢉ	 ,࢈ሺࢊࡵ࢚࢟࢘ࡱࢉࢇ 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
ሻ࢈ሺ࢚࢟࢘ࢋ										 ← ,࢝ࢋࢊሺ࢈࢚࢟࢘ࡱ࢝ࢋ	 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
	ܑ܌ܖ܍								
	ܑ܌ܖ܍						
	ܑ܌ܖ܍				
	ܚܗ܌ܖ܍		
	ܚܗ܌ܖ܍
	
ࢋ࢚ࢇ࢚࢙ ← .࢘ࢋ࢚ࢋ࢘࢘ࢋ࢚ࡵ	 	ሺሻࢋ࢚ࢇ࢚ࡿࢋ࢜࢘ࢋ࢙࢈
࢙ࢊࢇ ← .࢘ࢋࢊࢇࡸ	 ,ࢊࢇሺ࢙ࢊࢇࡸࢋ࢘ࢇࢋ࢘ 	ሻ࢚ࢉ࢜ࢋ
ࢋ࢚ࢇ࢚࢙ ← .࢘ࢋ࢚ࢋ࢘࢘ࢋ࢚ࡵ	 ,࢙ࢊࢇሺ࢛ࡹࢉࢋ࢞ࢋ 	ሻࢋ࢚ࢇ࢚࢙
	
	ܔܔ܉ܚܗ ∈ 	 ሼ, . . . , 	ܗ܌	ሽ
࢈	ܔܔ܉ܚܗ		 ∈ ,ሺ	 	ܗ܌	ሻࢇ
,࢈ሺࢊ	ܑ				 ሻࢋࢉࢇࢋࡾࢍࢇ࢚ ് 	ܖ܍ܐܜ	ࣕ
						 ← ,࢈ሺࢊ	 	ሻࢋࢉࢇࢋࡾࢍࢇ࢚
ሻ࢈ሺ࢘ࢊࢊࢇ						 ← ,࢈ሺ࢚ࢉ࢜ࢋࢍࢇࢀሺ࢈࢘ࢊࢊ࢝ࢋ	 ,ሻ ,ሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ . . . ሻ	
	ܑ܌ܖ܍				
ሻ࢈ሺ࢚ࢋ࢜ࢋ	ܑ				 	ൌ 	ܖ܍ܐܜ	࢙࢙	
,࢈൫࢚ࢉ࢜ࢋࢍࢇࢀ						 ൯ ← ,ࢋ࢚ࢇ࢚࢙ሺ࢈࢚ࢉ࢜	 	ሻሻሻ࢈ሺ࢘ࢊࢊࢇሺ࢈࢞ࢋࢊ
	ܑ܌ܖ܍				
ࢋ࢚ࢇ࢚࢙				 ← .࢘ࢋ࢚ࢋ࢘࢘ࢋ࢚ࡵ	 ,࢈ሺ࢘ࢋࢌࢌ࢛ࢉࢋ࢞ࢋ ሼ࢘ࢊࢊࢇሺ࢈ሻሽ, 	ሻࢋ࢚ࢇ࢚࢙
	ܚܗ܌ܖ܍		
	ܚܗ܌ܖ܍
	
	ܔܔ܉ܚܗ ∈ 	 ሼ, . . . , 	ܗ܌	ሽ
࢚࢟࢘ࢋ		 ← .࢘ࢋ࢜ࡿ	 	ሻሺ࢙ࢋ࢚࢘ࡱ࢚ࢉ࢛࢚࢙࢘ࢉ
 ܚܗ܌ܖ܍
 
 ݎ݁ݐ݁ݎݎ݁ݐ݊ܫ ,ݎݐ݈݈ܽܿܣ ,ݎ݁ݒ݈ܵ :exploits several auxiliary components ݎݐܽݎ݁݊݁ܩ
and ݎ݁ݒ݈ܵ .ݎ݁݀ܽܮ performs symbolic execution of a given path and constructs 
required entities (addresses, entries, etc.) by calling constraint solvers. Interface with 
solvers is provided by Fortress library [15]. It supports SMT solvers, such as Z3 [16] 
and CVC4 [17], as well as in-house solvers aimed at particular tasks. Allocator 
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chooses buffer indices, tags and other address fields taking into account user-defined 
constraints (e.g., forbidden memory regions). The default strategy is to allocate a new 
index or a new tag for a given index on every request. This allows avoiding 
undesirable dependencies between instructions. ݎ݁ݐ݁ݎݎ݁ݐ݊ܫ simulates accesses to 
buffers and predicts data evictions. The results of the predictions are used to satisfy 
 and ݐ݄݅ prepares a sequence of accesses so as to fulfill ݎ݁݀ܽܮ .conflicts ݀݁ݐܿ݅ݒܧ݃ܽݐ
 requirements. The default strategy is as follows. Buffers are handled in reverse ݏݏ݅݉
order; for every buffer ܾ and every set ݐܿ݅ݒ݁ ,ݏሺܾ, ,ሺܾ݈݀ܽ ሻ andݏ  ሻ are added to theݏ
sequence. 
Finally, TD are transformed to the ISA-specific preparation code. For this job, the 
tool needs to know what instructions have to be used to set up addresses and entries. 
Such information is provided in TTs in the form of so-called preparators. 
Technically, a preparator is a piece of code that defines a sequence of instructions to 
reach a certain goal. Given a register type (to be more precise, an access mode), there 
usually exists a family of preparators differing in patterns of loaded values. For 
example, Mips64BaseTemplate contains the following preparator for loading a 32-bit 
value into a GPR via the mode REG. 
 
preparator( :target => "REG", :mask => "00000000xxxxxxxx") { 
  ori target, target, value(16, 31) 
  dsll target, target, 16 
  ori target, zero, value(0, 15) 
} 
 
For each buffer, there should be a preparator to write an entry into it. A preparator for 
MIPS64 DTLB is given below. 
 
buffer_preparator(:target => "DTLB") { 
  ori t0, zero, address(48, 63) 
  dsll t0, t0, 16 
  ori t0, t0, address(32, 47) 
  dsll t0, t0, 16 
  ori t0, t0, address(16, 31) 
  dsll t0, t0, 16 
  ori t0, t0, address(0, 15) 
  lb t0, 0, t0 
} 
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4. MIPS64 MMU Case Study 
The most challenging part of developing a specification-based TPG tool for a 
microprocessor is MMU specification. Speaking of MIPS64, the following things 
have been specified [2]: address spaces, a TLB entry format, and an address 
translation procedure. Additionally, we have described a two-level write-through 
cache memory. 
MicroTESK’s MMUSL has allowed specifying MIPS64 MMU in quite a compact way 
(approximately 220 lines of code). The specifications involve a TLB (JTLB and 
DTLB), two-level cache memory buffers (L1 and L2) and memory segments (kseg0, 
kseg1, xkphys, and useg). On the base of the ISA [18] and MMU [2] specifications, 
18 memory access instructions and several auxiliary instructions to access the TLB 
and the cache have been defined. Description of a single instruction makes up 
approximately 10 lines of nML code on average. 
 

Table 1. Complexity of MIPS64 MMU Specification 

 Min Max Average 
Number of Transitions if an Execution Path 7 52 38 
Number of Variables in a Path Formula 3 76 49 
Number of Execution Paths of an Instruction 76 

 
Table 1 contains numeric data on MIPS64 MMU execution path complexity. While 
the complexity is relatively low (average path consists of less than 40 transitions and 
comprises less than 50 variables), only very short TTs can be processed by exhaustive 
enumeration of symbolic TPs. In more complicated cases, heuristics become of 
crucial importance. E.g., the buffer-event factorization gives only 9 path equivalence 
classes, enabling systematic enumeration of longer sequences of memory accesses. 
Generation of more complicated TPs is done with the help of constrained random 
generation. This requires verification engineers to explicate their knowledge in the 
form of constraints and biases. 
This is an ongoing project, and some useful information, such as test coverage, is not 
available at the moment. Though it is worth considering the lessons learned. We found 
it convenient to use domain-specific languages (DSLs) for specifying ISAs and 
MMUs. The use of DSLs, first, eases extraction of testing knowledge and, second, 
simplifies learning of the TPG tool. On the other hand, it seems that dynamic 
programming languages, such as Ruby and Python, suit well for describing TTs. Such 
languages can be easily extended with TPG constructs. Our negative experience is 
mostly connected with low performance of the tool. Constraint solving needs to be 
optimized. As the authors of [19], we believe that specialized solvers will help. 
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5. Conclusion 
TPG is a widely-accepted approach to microprocessor verification, including, in 
particular, MMU verification. State-of-the-art MMUs are extremely complex devices 
comprising multi-level address translation and caching. Naive approaches to 
automated TPG for MMUs – meaning, first of all, random generation techniques – 
are highly improbable to reach high level of test coverage in reasonable time. 
Specification-based TPG, in our opinion, is one of the most promising directions in 
the area. Since 1990s, it has been successfully applied to microprocessor testing and 
verification, e.g., in IBM [3], and it continues to evolve. 
The MicroTESK team [7] contributes its mite to the evolution of the specification-
based approach. Our goal is to create an open-source, extensible and reconfigurable 
TPG framework [13], [14]. Different versions of MicroTESK, including the one 
described in [10], have been applied to several industrial microprocessors and allowed 
to reveal a large number of critical bugs, which had not been detected by randomly 
generated TPs. 
The proposed solution is based on ISA specifications in nML [8] and MMU 
specifications in MMUSL. ISA specifications formally describe microprocessor 
instructions, while MMU specifications define memory segments and buffers. 
MicroTESK is able to automatically extract testing knowledge from the specifications 
and to exploit it for TPG. TTs are created with the help of Ruby [12]. To generate 
TD, symbolic execution and constraint solving techniques are intensively used. 
The work is still in progress, and a number of things need to be done. The most 
priority task is a performance optimization of the constraint solving. Another task is 
to extend the approach to multicore designs and multiprocessor systems. The main 
challenge here is to create a unified technology that would include formal verification 
of cache coherence protocols, unit-level verification of MMUs, and system-level 
TPG. 
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109004, Россия, г. Москва, ул. А. Солженицына, д. 25 

Аннотация. В данной работе описан инструмент автоматической генерации тестовых 
программ для подсистем управления памятью микропроцессоров с архитектурой 
MIPS64. Предлагаемое средство базируется на среде MicroTESK, разрабатываемой в 
Институте системного программирования РАН. Инструмент состоит из двух частей: 
архитектурно независимого ядра генерации тестовых программ и спецификации 
подсистемы памяти MIPS64. Такое разделение не является новым — аналогичный 
подход применяется в промышленных генераторах, в том числе в Genesys-Pro, 
разрабатываемом в исследовательском подразделении компании IBM. Основные 
различия между инструментами состоят в форме представления спецификаций, типе 
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извлекаемой из них информации и способах использования этой информации для 
построения тестов. В предлагаемом подходе спецификации включают в себя описания 
инструкций доступа к памяти (инструкций чтения и записи) и описания механизмов 
управления памятью, таких как буфер трансляции адресов, таблица страниц, устройство 
аппаратного поиска по таблице страниц, кэш-память. Для спецификации такого рода 
механизмов (устройств) разработан проблемно-ориентированный язык, названный 
MMUSL. Инструмент анализирует MMUSL-спецификации и извлекает все возможные 
пути исполнения инструкций (варианты обработки запросов к подсистеме памяти) и все 
возможные зависимости между этими путями (конфликты использования устройств). 
Извлеченная информация используется для систематического перебора тестовых 
программ для заданного пользователем тестового шаблона и позволяет исчерпывающим 
образом исследовать совместное исполнение группы инструкций, включая разного рода 
граничные случаи. Тестовые данные для тестовых программ (значения адресов, 
содержимое буферов и т.п.) генерируются с использованием техник символического 
исполнения и решения ограничений. 

Ключевые слова: микропроцессор, подсистема памяти, кэширование, трансляция 
адресов, формальная спецификация, тестовая программа, генератор тестовых программ, 
MIPS64. 
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