The Study into Cross-Site Request Forgery
Attacks within the Framework of Analysis of
Software Vulnerabilities

' A.V. Barabanov <ab@cnpo.ru>
VAL Lavrov <mail@cnpo.ru>
2 A.S. Markov <a.markov@bmstu.ru>
' A. Polotnyanschikov <mail@cnpo.ru>
2V L. Tsirlov <v.tsirlov@bmstu.ru>
' NPO Echelon, Elektrozavodskaya street, 24, Moscow, 107023, Russia
2 Bauman MSTU, 2 Baumanskaya street, 5, Moscow, 105005 Russia

Abstract. Nowadays, web applications are one of the most popular types of target of evaluation
within the framework of the information security certification. The relevance of the study of
web applications vulnerabilities during information security certification is due to the fact that
web technologies are actively used while producing modern information systems, including
information systems critical from the information security point of view, and on the other hand
carrying out basic attacks on such information systems do not require violators of high technical
competence, since data on typical vulnerabilities and attacks, including the attacking tools are
heavily represented in publicly available sources of information, and the information systems
themselves are usually available from public communication networks. The paper presents the
results of a study of the security of web applications that are target of evaluation within the
framework of certification for information security requirements against cross-site requests
forgery attacks. The results of systematization and generalization of information about the
cross-site requests forgery attacks and security controls used by web application developers are
presented. The results of experimental studies of 10 web applications that have passed
certification tests against information security requirements are presented. The results of
experimental studies have shown that most developers do not pay enough attention to
protection from cross-site request forgery attack - 7 out of 10 web applications tested have been
vulnerable to this type of attack. Based on the results of processing the results of experimental
studies, the distribution of security controls used in web applications and identified
vulnerabilities by programming languages were obtained. Recommendations regarding the
protection of web applications against cross-site request forgery attack for developers planning
to certify their software are formulated.

Keywords: information security; software security; analysis of vulnerabilities; web-
application; CSRF-attack.

DOI: 10.15514/ISPRAS-2017-29(5)-1

Barabanov A.V., Lavrov A.L, Markov A.S., Polotnyanschikov I.A., Tsirlov V.L.. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

For citation: Barabanov A.V., Lavrov A L., Markov A.S., Polotnyanschikov I.A., Tsirlov V.L
The study into cross-site request forgery attacks within the framework of analysis of software
vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017. pp. 7-18. DOI:
10.15514/ISPRAS-2017-29(5)-1

1. Introduction

Software created with the use of web-technologies is currently one of the main
components in automated control system (ACS) design. The designed ACS are, as a
rule, multi-user and can be found on public domain networks (for instance, Internet),
which increases the risk of their successful attack. Various procedures (such as
certification, independent security audit) are currently used to lower probability of
successful attack. They are aimed at identifying vulnerabilities in the software used
to design ACS [1, 2].

Software vulnerabilities are analyzed during certification for compliance with the
requirements to the protection profiles approved by FSTEC of Russia (Federal
Service for Technology and Export Control), which clearly includes requirements of
AVA VAN assurance family “Vulnerability analysis”, and during testing for
compliance with the requirements of the technical specifications and classic
governing documents of FSTEC of Russia. The procedure for vulnerability analysis
recommended by FSTEC of Russia consists in the joint use of approaches specified
in the Common Methodology for Information Technology Security Evaluation and
ISO/IEC TR 20004 [3]. It should be noted that more specific instructions for the test
laboratories (for instance, standard penetration tests) have not yet been developed,
which makes this procedure non-determined [4].

The experience of analysis into vulnerabilities of web-applications within the
framework of the accredited test laboratory showed that Cross-Site Request Forgery
attack, hereinafter — CSRF-attack is currently the most successful attack against
targets of evaluation. The main attention of the developers of web-applications, as a
rule, is concentrated on implementing measures protecting against attacks like SQL-
injections or Cross-site scripting. The situation is aggravated by the fact that measures
protecting against CSRF-attacks are still being actively studied, and best practices
have not been rigidly registered yet [2, 6].

The goal of this work consisted in developing guidelines for the developers of web-
applications, who are planning to certify their solutions as to the information security
requirements. The work solves the following tasks to achieve the set goal:

a) Classification and summary of information about CSRF-attacks and measures of
protection against them;

b) Consolidation of information about vulnerabilities of web-applications identified
within the framework of work of the accredited test laboratories.

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonorasaxumkos M.A., Iupnos B.JI.. Uccinenopanue atak tma «Cross-
Site Request Forgery» B pamkax npoBeAeHUs aHAN3a ysi3BUMocTel BeO-npunokenuit. Tpyost UCIT1 PAH, 2017, Tom 29,
BHIN. 5, pp 7-18

2. The results of classification and summary of information
about CSRF-attacks and relevant security measures

A hacker performing a CSRF-attack makes the web-browser used by the legal user,
who has been authenticated in "security measures against " the attacked web-
application, send HTTP-request, which is going to be identified by the application as
a request received from a legal user, to the web-application.

A possible consequence from a successful CSRF-attack implementation is running of
an arbitrary code in the web-application in the name of authenticated user. Thus, the
main causes of CSRF-attacks are vulnerabilities in web-applications related to wrong
implementation of algorithm of HTTP-request authorization. Success of CSRF-attack
is determined by the following factors [7, 8]:

e The browser automatically applies authentication data of the user (for
instance, session cookie-files), when sending HTTP-request to the web-
application;

e Web-application uses the obtained authentication data to authorize the action
required for performance by HTTP-request.

It should be noted that despite difficulties in implementation, there are cases of
successful CSRF-attacks of ‘Login’ and ‘Logout’ type on web-applications [1, 9, 10].
The probability of successful ‘stored” CSRF-attack is higher, because a malicious
code is stored on the side of the attacked web-application, and the hacker does not
have to make the user (for instance, using methods of social engineering) go to a
special resource with a malicious code.

Implementation of the security measures on the client’s side [11-16], represented by
plugins/extensions of the browser or additional software (proxy), has significant
drawbacks [8] and is currently only of academic interest.

There are suggestion on implementing security measures directly with the browser
source code, for instance, using ‘samesite’ properties of the cookie-files, but currently
these measures are experimental and are implemented only in certain browsers.
Integrated measures (measures implemented jointly by the software code on the
client- and the server-sides), as a rule, implement a certain information control policy
[6, 17], which contain critical information (for instance, authentication data), between
the browser and the web-server. It should be noted that effective implementation of
this type of security measures is possible by making changes in the browser source
code. Moreover, essential limitations of these security measures are well-known,
which does not allow their use as a sole measure of protection.

The most popular security measures against CSRF-attacks are tokens (synchronic
tokens or generated using HMAC cryptographic function) that are generated and
checked on the web-application side. This security measure is implemented, as a rule,
by the web-application itself or the framework. It should be noted that the majority of
the most popular frameworks (such as, Ruby on Rails, ASP.NET, Django) implement
this measure, which somewhat decreases the workload for the developer of a certain

9

Barabanov A.V., Lavrov A.L, Markov A.S., Polotnyanschikov I.A., Tsirlov V.L.. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

web-application and reduces the number of errors related to implementation of the
security algorithm by the developer of the web-application.

The main distinctive feature of the token-based security measures is in the token
storage method:

e Generated token may be stored on the web-application side (it is associated
with the user session) and it shall be compared with the token received from
the web-browser;

e Generated token may be stored on the web-browser side (for instance, in the
cookie); when the web-application receives a request from the web-browser,
the web-application compares the values of tokens in the cookie and the
HTTP-request body.

It should be noted that this measure of the web-application security is used correctly,
if it is designed and implemented in a way that HTTP-requests of GET type do not
change the server state, and are used only for request of the necessary information.
AJAX-requests may be protected with tokens inserted in HTTP-header, or custom
HTTP-headers (during implementation of this security measure the web-application
only checks availability of the heading in the received request).

The leading specialists in the web-application security recommend using the defense
in depth principle, when implementing security measures. Thus, specialists of
OWASP community recommend implementing security of the web-application by
combining two types of the security measures —HTTP-headers verification and
tokens.

In some cases, the developers use three or more security measures for critical
information systems (for instance, online banking systems). For example, it can be a
combination of tokens, verification of HTTP-header and security measures that
require actions from the end user, who performs a critical operation (entry of one-
time code/ password).

3. Methods and results of the study

The study into the security level of the web-application was carried out in the
accredited test laboratory of NPO Echelon (study period: January — November 2016).
Brief information about the web-applications that participate in the study is
represented in Table 1.

Table I. Brief information about the study objects

Level of measures for
secure software
development
implementation
(maturity level)

Software No. 1 PHP Russian 2

Software No. 2 Java Foreign 5

Programming Type of

Software identifier
language developer

10

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonorasaxumkos M.A., Iupnos B.JI.. Uccinenopanue atak tma «Cross-
Site Request Forgery» B pamkax npoBeAeHUs aHAN3a ysi3BUMocTel BeO-npunokenuit. Tpyost UCIT1 PAH, 2017, Tom 29,
BHIN. 5, pp 7-18

Software No. 3 PHP Russian 1
Software No. 4 Java Foreign 5
Software No. 5 C# Russian 4
Software No. 6 Java Russian 1
Software No. 7 C# Russian 1
Software No. 8 PHP Russian 1
Software No. 9 Ruby Russian 3
Software No. 10 Ruby Russian 3

Level of measures for secure software development implementation (maturity level)
was assessed by the expert method with account of the scope of measures
implemented by the developer of measures from the basic set of measures for
developing secure software suggested in the National Standard GOST R 56939-2016
Information Protection. Secure Software Development. General Requirements. [4,
18]: 1 - not one measure is implemented, 2 - less than 20% of measures is
implemented, 3 — from 20% to 40% of measures is implemented, 4 - from 40% to
60% of measures is implemented, 5 - from 60% to 80% of measures is implemented,
6 - over 80% of measures is implemented.

Vulnerabilities were analysed using standard tests developed with account of
recommendations and CAPEC resource. Below is the general sequence of the
performed tests.

1) Analysis of parts of web-applications (pages), which allow changing the state of
the web-application (creating/ changing/ deleting user accounts, protected
information, other information etc.).

2) Study of the requests to the identified parts of web-applications: transmission of
the requests from the web-browser to the web-application with further interception
and analysis of the request structure. The expert analyses the intercepted request and
defines the type of security measure against CSRF-attack on a specific page.

3) Generating a mock HTTP-request, which is saved as an HTML-file on the local
computer and is opened in the web-browser, provided that there is a session
authenticated by the target of evaluation (web-application).

4) If the analysis of intercepted request (cl. 2) revealed security measures against
CSRF-attacks, the following actions shall be additionally taken:

a) when tokens are used as a security measure:

e analysis of URL for a presence of token in a plain text;
¢ sending a request without a token;
¢ sending a request with an altered token;

e sending a request using one token for various user accounts;

11

Barabanov A.V., Lavrov A.L, Markov A.S., Polotnyanschikov I.A., Tsirlov V.L.. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

e an attempt to guess /select a token;
b) when using verification of the HTTP-headers as a security measure:

e sending a request with altered HTTP Referer (originally a misspelling of
«referrer»)/Origin fields;

¢ sending a request without HTTP Referrer/Origin fields.
The tests were performed using the following software: BurpSuite software, Scaner-
VS software. The average time spent on testing of one web-application by one expert
of the test laboratory is 8 hours.
The results of the study are specified below.
1) CSRF-attacks were successful in 70% of cases — 7 out of 10 analysed web-
applications turned out to be vulnerable.
2) The majority of CSRF-attacks were successful in relation to web-applications
developed in Russia. It should be noted that the only CSRF-attack that was successful
in relation to the foreign web-application was that of “Logout” type, and the experts
of the test laboratory failed to develop an attack vector that implements information
security threat. Only one web-application initially did not have any security measures
against CSRF-attacks. The other vulnerable web-applications had security measures
based on verification of HTTP-headers or token (Figure 1).

nothing

Fig. 1. Distribution of protection measures used in vulnerable web-applications

3) It has been established that web-applications written in PHP have a few more
vulnerabilities that results in successful CSRF-attacks (Figure 2) [20].

4) The developers upgraded vulnerable web-applications using security measures
based on tokens in all cases.

5) In the majority of cases the upgraded web-application and web-applications, where
the vulnerability has not been identified, used a combination of several security
measures against CSRF-attacks.

12

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonorasaxumkos M.A., Iupnos B.JI.. Uccinenopanue atak tma «Cross-
Site Request Forgery» B pamkax npoBeAeHUs aHAN3a ysi3BUMocTel BeO-npunokenuit. Tpyost UCIT1 PAH, 2017, Tom 29,
BHIN. 5, pp 7-18

Fig. 2. Distribution of identified vulnerabilities as to the programming language

6) The average time required for the web-application developer to correct
vulnerability is 3 weeks.

7) One of the results of the study was a deduced empirical rule, in accordance with
which the number of vulnerabilities identified in the software is in inverse proportion
to the maturity level of the secure software development processes implemented by
the developer.

4. Recommendations to developers on increasing the
security level of web-applications

Based on the results of the study the following recommendations were provided for
the developers of web-applications that are planning to hold certification tests as to
information safety requirements.

1) It is advisable that the developers implement measures for secure software
development in the software lifecycle processes. At the very least, it is recommended
to implement measures related to testing penetration of web-application prior to their
submission to the test laboratory. To minimize time for such testing, the developers
should generate sets of standard tests, which may be developed with account of
guidelines represented in the works [17, 19]. The developers are advised against
limiting their tests to the standard test only, and are recommended to run additional
tests aimed at performing CSRF-attacks, like ‘Login’ and ‘Logout’, and verify that
the selected security measure is correctly implemented.

2) The developers are recommended using the defense in depth principle — combine
two or more security measures (as a rule, verification of token and HTTP-headers),
when implementing security measures against CSRF-attacks in the web-application.

3) When implementing security measures against CSRF-attacks in the web-
application, the developers are, first of all, recommended to use security measures
that are already implemented in the operational environment, for instance,
frameworks.

13

Barabanov A.V., Lavrov A.L, Markov A.S., Polotnyanschikov I.A., Tsirlov V.L.. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

5. Conclusions

This work consisted in the study into security of web-applications, which are the test
targets within the framework of certification as to information security requirements,
against cross-site request forgery attacks. The result showed that the majority of the
developers (around 70%) do not pay due attention to implementing security measures
against such attacks. Resulting from the study, we defined recommendations for the
developers, the main of them being recommendations on the use of defense in depth
principle and the use of token-based security measures that had already been
implemented by the framework developers. We deduced empirical rule, in
accordance with which the number of vulnerabilities identified in the software is in
inverse proportion to the maturity level of the secure software development processes
implemented by the developer. Further studies are intended into the issues of the web-
application protection against SQL-injection attacks and cross-site scripting attack
and defining general guidelines for the developers of web-applications, who are
planning certification.

References

[1]. H. Selim, S. Tayeb, Y. Kim, J. Zhan, and M. Pirouz. Vulnerability Analysis of Iframe
Attacks on Websites. In Proceedings of the The 3rd Multidisciplinary International Social
Networks Conference on Sociallnformatics 2016, Data Science 2016 (MISNC, SI, DS
2016). ACM, New York, NY, USA, Article 45, pp. 1-6, August 2016. DOI:
10.1145/2955129.2955180.

[2]. W. Du, K. Jayaraman, X. Tan, T. Luo, and S. Chapin. Position paper: why are there so
many vulnerabilities in web applications? In Proceedings of the 2011 New Security
Paradigms Workshop (NSPW '11). ACM, New York, NY, USA, pp. 83-94. 2011. DOI:
10.1145/2073276.2073285.

[3]. A. Barabanov, A. Markov, A. Fadin, V. Tsirlov, I. Shakhalov. Synthesis of Secure
Software Development Controls. In Proceedings of the 8th International Conference on
Security of Information and Networks (Sochi, Russia, September 8-10, 2015). SIN '15.
ACM, New York, NY, USA, pp. 93-97. 2015. DOI: 10.1145/2799979.2799998.

[4]. A.V.Barabanov, A.S. Markov, V.L. Tsirlov. Methodological Framework for Analysis and
Synthesis of a Set of Secure Software Development Controls. Journal of Theoretical and
Applied Information Technology. 2016. V. 88. No 1, pp. 77-88.

[5]. N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In
the IEEE International Conference on Security and Privacy for Emerging Areas in
Communication Networks (Securecomm) , pp. 1-10, September 2006.

[6]. A. Czeskis, A. Moshchuk, T. Kohno, and H.J. Wang. Lightweight server support for
browser-based CSRF protection. In Proceedings of the 22nd international conference on
World Wide Web (WWW '13). ACM, New York, NY, USA, 2013, pp. 273-284. DOI:
10.1145/2488388.2488413.

[7]. K. Jayaraman, P. G. Talaga, G. Lewandowski, S.J. Chapin, and M. Hafiz. Modeling user
interactions for (fun and) profit: preventing request forgery attacks on web applications.
In Proceedings of the 16th Conference on Pattern Languages of Programs (PLoP '09).
ACM, New York, NY, USA, Article 16, pp. 1-9. August 2009. DOI:
10.1145/1943226.1943246.

14

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonorasaxumkos M.A., Iupnos B.JI.. Uccinenopanue atak tma «Cross-
Site Request Forgery» B pamkax npoBeAeHUs aHAN3a ysi3BUMocTel BeO-npunokenuit. Tpyost UCIT1 PAH, 2017, Tom 29,
BHIN. 5, pp 7-18

[8]. A. Barth, C. Jackson, and J.C. Mitchell. Robust defenses for cross-site request forgery. In
Proceedings of the 15th ACM conference on Computer and communications security
(CCS '08). ACM, New York, NY, USA, pp. 75-88. October 2008. DOI:
10.1145/1455770.1455782.

[9]. M. Zhou, P. Bisht, and V.N. Venkatakrishnan. Strengthening XSRF defenses for legacy
web applications using whitebox analysis and transformation. In Proceedings of the 6th
international conference on Information systems security (ICISS'10), pp. 96-110. 2010.

[10]. E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler. More Guidelines Than Rules:
CSRF Vulnerabilities from Noncompliant OAuth 2.0 Implementations. In Proceedings of
the 12th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2015), pp. 239-260, June 2015. DOI: 10.1007/978-3-
319-20550-2_13

[11]. H. Shahriar and M. Zulkernine. Client-Side Detection of Cross-Site Request Forgery
Attacks. In Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE '10). IEEE Computer Society, Washington, DC, USA, pp.
358-367. November 2010. DOI: 10.1109/ISSRE.2010.12.

[12]. P.D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. CsFire: transparent client-
side mitigation of malicious cross-domain requests. In Proceedings of the Second
international conference on Engineering Secure Software and Systems (ESSo0S'10), pp.
18-34.2010. DOTI: 10.1007/978-3-642-11747-3_2.

[13]. R. Pelizzi and R. Sekar. A server- and browser-transparent CSRF defense for web 2.0
applications. In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC '11). ACM, New York, NY, USA, pp. 257-266. December 2011.
DOI: 10.1145/2076732.2076768.

[14]. L. Xing, Y. Zhang, and S. Chen. A client-based and server-enhanced defense mechanism
for cross-site request forgery. In Proceedings of the 13th international conference on
Recent advances in intrusion detection (RAID'10), pp. 484-485. 2010.

[15]. N. Gelernter and A. Herzberg. Cross-Site Search Attacks. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS '15). ACM,
New York, NY, USA, pp. 1394-1405. October 2015. DOI: 10.1145/2810103.2813688.

[16]. E. Z. Yang, D. Stefan, J. Mitchell, D. Maziéres, P. Marchenko, and B. Karp. Toward
principled browser security. In Proceedings of the 14th USENIX conference on Hot
Topics in Operating Systems (HotOS'13). USENIX Association, Berkeley, CA, USA, pp.
17-17.2013.

[17]. W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser protection against cross-site
request forgery. In Proceedings of the first ACM workshop on Secure execution of
untrusted code (SecuCode '09). ACM, New York, NY, USA, pp. 3-10. November 2009.
DOI: 10.1145/1655077.1655081.

[18]. A. Barabanov, A. Markov, V. Tsirlov. Procedure for substantiated development of
measures to design secure software for automated process control systems. In Proceedings
of the International Siberian Conference on Control and Communications, SIBCON 2016,
IEEE, 1-4. June 2016. DOI: 10.1109/SIBCON.2016.7491660.

[19]. X. Liand Y.Xue. A survey on server-side approaches to securing web applications. ACM
Comput. Surv., 46, 4, Article 54 (March 2014), 29 pages. April 2014. DOI:
10.1145/2541315

[20]. A.S. Markov, V.L. Tsirlov. Experience in identifying vulnerabilities in foreign software
products. Voprosy kiberbezopasnosti [Cybersecurity Issues]. 2013. No 1(1), pp. 42-48.
(In Russian).

15

Barabanov A.V., Lavrov A.L, Markov A.S., Polotnyanschikov I.A., Tsirlov V.L.. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

UccnepoBaHue aTtak Tuna «Cross-Site Request Forgery» B
pamKax npoBeAeHUs aHanu3a yasBumocteun Be6-
NPUINOXeHUNn

YA.B. Bapabanos < ab@cnpo.ru>
Y A.U. Jlaspos < mail@cnpo.ru>
2A.C. Mapxoe < a.markov@bmstu.ru>
YU A. HHonomuamuuros < mail@cnpo.ru>
2 BJI Lupnos <v.tsirlov@bmstu.ru>
VHIIO «Bwenony, 107023, Poccus, 2. Mockea, yn. Dnexmposagodckasn, 0.24
SMITY um. H.D. Baymana,
105005, Poccus, e. Mockea, 2-s Baymanckas ya., 0. 5, cmp. 1

AHHOTanus. BeO-npunoxxeHns SBISIIOTCS OJHUM U3 HamOoJiee PaclpOCTPAaHEHHBIX THIIOB
OOBEKTOB HCCIEHOBAHHS B pPaMKaX pPabOTBI CHCTEMBI CEPTH(MHUKAMH CPEJCTB 3aIlHTHI
nHpopManuy. AKTYaIbHOCTh HCCIICIOBAaHUS YS3BUMOCTEH B BEO-NIPHIIOKEHUSIX B paMKax
cepTudUKaIMU 1Mo TpeOOBaHMAM 0e30MacHOCTH MH(OPMAIUK O0YCIOBJICHA TEM, YTO BeO-
TEXHOJIOTHH, C OJHOH CTOPOHBI, aKTUBHO HCHOJB3YIOTCS IPH pealn3alil COBPEMEHHBIX
MH(OPMAIMOHHBIX CHCTEM, B TOM 4YHCIE KPUTHYHBIX C TOYKHM 3PEHUS MH(POPMALUOHHON
Oe3omacHOCTH, a, C JpPYrod CTOpPOHBI, IpOBeAECHHE O0a30BBIX aTak Ha MONOOHbBIE
UH(OPMAIMOHHbIE CHUCTEMbl HE TPeOYyIOT OT HapylIUTeNdeld BBICOKOH TEXHHYECKOU
KOMIIETEHTHOCTH, TIOCKOJbKY JAHHBIC O THIIOBBIX YSA3BUMOCTSIX M aTakax, BKIIOUas
HWHCTPYMCHTAIbHBIE CPEACTBA IPOBEICHHS aTak, B OOJBIIOM OOBEME IPEACTABICHBI B
OOILIEJOCTYTHBIX HCTOYHUKAX HH(POpPMAanWH, a caMu HH(OPMAIMOHHBIE CHUCTEMBI, Kak
NPaBHJIO, JOCTYNHBI M3 CeTel CBS3M OOWIero Nosb30BaHWS. B paboTe mpencTaBiiCHEI
pe3yJIbTaThl MCCIISOBAHUS 3aIIUIIEHHOCTH BEO-IIPUIIOKEHHH, SBISIIOLIMXCS OOBEKTaMH
UCIIBITAHUH B paMKax cepTU(HKAILMU 110 TpeOOBaHUSIM 0e30I1aCHOCTH MH(POPMALMHY, OT aTakK
THNA «MEKCAlUTOBas MOJJENKa 3ampocoB». lIpuBeneHbl pe3ynbTaThl CHCTEMATH3ALUH H
00001IeHNs CBEICHH 00 aTake THIIA «MEeXCcaiToBas MoJIIesKa 3apOCOB» M Mepax 3aIluThl,
HCTIONB3YeMBIX pazpaboTumkamu BeO-mpuiokeHui. [IpencTraBieHBl pe3ynbTaThl
OKCHEPUMEHTAIBHBIX ~ HcchenoBaHuii 10 BeO-MpWIOKEHUH, KOTOpPBIE MPOXOIMIIH
cepTU(UKAIIMOHHBIE UCIBITAaHMS 110 TpeOOBaHMSAM Oe30MacHOCTH MHpopManun. Pe3ynbrarsl
SKCIIEPUMEHTAIBHBIX HCCIIEOBAaHWI MOKa3ajid, 4YTO OOJBIIMHCTBO pa3pabOTIMKOB He
YACNAIOT JOJKHOTO BHMMAHMS 3alUTe OT MEXKCAaUTOBOM MOJAENKH 3ampocoB — 7 u3 10
UCCIICIOBAaHHBIX BEO-TIPWIOKEHUH OKa3alM ysSI3BUMBIMH K JaHHOMY Ty aTaku. Ilo
pe3yibTaTaM 00pa0OTKM pPe3yJbTaTOB OIKCIIEPUMEHTAIBHBIX HCCICJOBAHUMA IOTYYECHBI
pacnpeneneHus Mep 3allUThl, HCIONb3yeMBIX B BeO-TNIPUIOXKEHHUSX, U BBIIBICHHBIX
ysI3BUMOCTell 1Mo si3pIKaM IporpaMmupoBanus. ChopMyIupoBaHbl PEKOMEHIAMU B YaCTH
3aIIUTHl BEO-TPUIIOKEHUH OT MEKCAMTOBOM MOINENKH 3alpoCOB ISl pa3paOOTYHKOB,
IUTAHAPYIOLIUX IPOBEICHUE CEPTU(PHUKAIINN CBOETO IIPOTPAMMHOTO 00ECIICUESHIS.

KnwueBbie cJI0BA: I/IH(i)OpMaIII/IOHHaﬂ 6C3OHaCHOCTb; Oe3omacHoe IporpaMMHOC
06ecnequI/Ie; aHaJm3 yH3BHMOCTeﬁ; Be6-HpI/IHO)KeHI/Ie; MEXXCaUTOBast MOAACINIKa 3ampoca.

DOI: 10.15514/ISPRAS-2017-29(5)-1

16

Bapabanos A.B., JlaBpos A.H., Mapkos A.C., [Tonorasaxumkos M.A., Iupnos B.JI.. Uccinenopanue atak tma «Cross-
Site Request Forgery» B pamkax npoBeAeHUs aHAN3a ysi3BUMocTel BeO-npunokenuit. Tpyost UCIT1 PAH, 2017, Tom 29,
BHIN. 5, pp 7-18

Jas uutupoBanus: bapabanos A.B., Jlaspos A.U., MapkoB A.C., [lonotasnmukos U.A.,
Hupnos B.JI. UccnenoBanue atak tuna «Cross-Site Request Forgery» B pamMkax mpoBeaeHUst
aHanm3a ys3Bumoctelt BeO-npunoxenuit. Tpynst UCIT PAH, Tom 29, Bem. 5, 2017 1., cTp. 7-
18 (na anrmmiickoM s3bike). DOI: 10.15514/ISPRAS-2017-29(5)-1

Cnucok nutepaTtypbl

[1].

[9].

[10].

H. Selim, S. Tayeb, Y. Kim, J. Zhan, and M. Pirouz. Vulnerability Analysis of Iframe
Attacks on Websites. In Proceedings of the The 3rd Multidisciplinary International Social
Networks Conference on Sociallnformatics 2016, Data Science 2016 (MISNC, SI, DS
2016). ACM, New York, NY, USA, Article 45, pp. 1-6, August 2016. DOI:
10.1145/2955129.2955180.

. W. Du, K. Jayaraman, X. Tan, T. Luo, and S. Chapin. Position paper: why are there so

many vulnerabilities in web applications? In Proceedings of the 2011 New Security
Paradigms Workshop (NSPW '11). ACM, New York, NY, USA, pp. 83-94. 2011. DOI:
10.1145/2073276.2073285.

. A. Barabanov, A. Markov, A. Fadin, V. Tsirlov, I. Shakhalov. Synthesis of Secure

Software Development Controls. In Proceedings of the 8th International Conference on
Security of Information and Networks (Sochi, Russia, September 8-10, 2015). SIN '15.
ACM, New York, NY, USA, pp. 93-97. 2015. DOI: 10.1145/2799979.2799998.

. A.V.Barabanov, A.S. Markov, V.L. Tsirlov. Methodological Framework for Analysis and

Synthesis of a Set of Secure Software Development Controls. Journal of Theoretical and
Applied Information Technology. 2016. V. 88. No 1, pp. 77-88.

. N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In

the IEEE International Conference on Security and Privacy for Emerging Areas in
Communication Networks (Securecomm) , pp. 1-10, September 2006.

. A. Czeskis, A. Moshchuk, T. Kohno, and H.J. Wang. Lightweight server support for

browser-based CSRF protection. In Proceedings of the 22nd international conference on
World Wide Web (WWW '13). ACM, New York, NY, USA, 2013, pp. 273-284. DOLI:
10.1145/2488388.2488413.

. K. Jayaraman, P. G. Talaga, G. Lewandowski, S.J. Chapin, and M. Hafiz. Modeling user

interactions for (fun and) profit: preventing request forgery attacks on web applications.
In Proceedings of the 16th Conference on Pattern Languages of Programs (PLoP '09).
ACM, New York, NY, USA, Article 16, pp. 1-9. August 2009. DOI:
10.1145/1943226.1943246.

. A. Barth, C. Jackson, and J.C. Mitchell. Robust defenses for cross-site request forgery. In

Proceedings of the 15th ACM conference on Computer and communications security
(CCS '08). ACM, New York, NY, USA, pp. 75-88. October 2008. DOI:
10.1145/1455770.1455782.

M. Zhou, P. Bisht, and V.N. Venkatakrishnan. Strengthening XSRF defenses for legacy
web applications using whitebox analysis and transformation. In Proceedings of the 6th
international conference on Information systems security (ICISS'10), pp. 96-110. 2010.
E. Shernan, H. Carter, D. Tian, P. Traynor, and K. Butler. More Guidelines Than Rules:
CSRF Vulnerabilities from Noncompliant OAuth 2.0 Implementations. In Proceedings of
the 12th International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA 2015), pp. 239-260, June 2015. DOI: 10.1007/978-3-
319-20550-2_13

17

Barabanov A.V., Lavrov A.L, Markov A.S., Polotnyanschikov I.A., Tsirlov V.L.. The study into cross-site request
forgery attacks within the framework of analysis of software vulnerabilities. Trudy ISP RAN/Proc. ISP RAS, vol. 29,
issue 5, 2017, pp. 7-18

[11].

[12].

[13].

[17].

18

H. Shahriar and M. Zulkernine. Client-Side Detection of Cross-Site Request Forgery
Attacks. In Proceedings of the 2010 IEEE 21st International Symposium on Software
Reliability Engineering (ISSRE '10). IEEE Computer Society, Washington, DC, USA, pp.
358-367. November 2010. DOI: 10.1109/ISSRE.2010.12.

P.D. Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. CsFire: transparent client-
side mitigation of malicious cross-domain requests. In Proceedings of the Second
international conference on Engineering Secure Software and Systems (ESSo0S'10), pp.
18-34.2010. DOI: 10.1007/978-3-642-11747-3_2.

R. Pelizzi and R. Sekar. A server- and browser-transparent CSRF defense for web 2.0
applications. In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC '11). ACM, New York, NY, USA, pp. 257-266. December 2011.
DOI: 10.1145/2076732.2076768.

. L. Xing, Y. Zhang, and S. Chen. A client-based and server-enhanced defense mechanism

for cross-site request forgery. In Proceedings of the 13th international conference on
Recent advances in intrusion detection (RAID'10), pp. 484-485. 2010.

. N. Gelernter and A. Herzberg. Cross-Site Search Attacks. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security (CCS '15). ACM,
New York, NY, USA, pp. 1394-1405. October 2015. DOI: 10.1145/2810103.2813688.

. E. Z. Yang, D. Stefan, J. Mitchell, D. Mazi¢res, P. Marchenko, and B. Karp. Toward

principled browser security. In Proceedings of the 14th USENIX conference on Hot
Topics in Operating Systems (HotOS'13). USENIX Association, Berkeley, CA, USA, pp.
17-17.2013.

W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser protection against cross-site
request forgery. In Proceedings of the first ACM workshop on Secure execution of
untrusted code (SecuCode '09). ACM, New York, NY, USA, pp. 3-10. November 2009.
DOI: 10.1145/1655077.1655081.

. A. Barabanov, A. Markov, V. Tsirlov. Procedure for substantiated development of

measures to design secure software for automated process control systems. In Proceedings
of the International Siberian Conference on Control and Communications, SIBCON 2016,
IEEE, 1-4. June 2016. DOI: 10.1109/SIBCON.2016.7491660.

. X. Liand Y.Xue. A survey on server-side approaches to securing web applications. ACM

Comput. Surv., 46, 4, Article 54 (March 2014), 29 pages. April 2014. DOI:
10.1145/2541315

. MapkoB. A.C., Hupno B.JI. OnsIT BBIABICHUS YA3BUMOCTEH B 3apyOeXHBIX

TIPOTpaMMHBIX poAyKTax. Bonpockr kubepbeszonacuoctu, 2013, Ne 1 (1), ctp. 42-48

