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Abstract. Modern automatic devices are more and more equipped with microcontroller units. 
The logic of work of the automatic equipment is supported by a number of various embedded 
software applications, which run under an embedded real-time operating system (OS). The OS 
reliability is extremely important for correct functionality of the whole automatic system. 
Therefore, the embedded OS should be tested thoroughly with an appropriate automated test 
suite. Such test suite for testing of an embedded OS is usually organized as a set of multi-task 
test applications to be executed in a data-driven manner. The paper features a special language 
to define the respective testing task logic and the concept of flat charts to efficiently perform 
an embedded OS execution-based testing. To avoid heavy interpreting of text strings during 
the test run, the respective test presentation is pre-processed in order to convert the initial string 
form into a regular array form and thus to increase its efficiency. 
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1. Introduction  
Software applications, which control various automatic devices, are usually built as a 
set of two kinds of sequential executing threads: tasks and interrupt service routines 
(ISRs). Coordination of execution of these threads is realized by the kernel of the 
embedded real-time operating system (OS). OS reliability is extremely important for 

                                                           
1 This paper is an extended version of a presentation at the Industrial track poster session of 
the 29th IFIP International Conference on Testing Software and Systems (ICTSS-2017), St. 
Petersburg, Russia, October 9-11, 2017. 
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correct functioning of the automatic technical device under software control. 
The variety of requirements for such an OS grows along with the variety of technical 
devices, for which embedded systems are designed, especially for devices built on the 
basis of microcontroller units (MCUs). Each OS for an MCU should be tested 
thoroughly to avoid a crash of an embedded application. Verification of embedded 
real-time software is a well-known problem [1], [2]. Thorough execution-based 
testing [3] of an embedded OS requires significant effort along two axes: full-bodied 
test suite design and test suite execution. 
Effort reduction for test execution may be achieved by designing a highly automated 
test suite. Effort reduction for design of such a test suite may be achieved through 
efficient testing techniques, languages, and tools.  
The paper describes a special language to define the testing task logic based on the 
concept of flat charts to efficiently run embedded OS execution-based testing. 

2. Approach to Testing an Embedded OS 
Usually, an embedded OS provides static and dynamic services for applications to 
run on top of this OS. Static services are used to specify static configuration features 
of the application: the set of its tasks and ISRs, the subset of the used OS functions, 
basic task properties (e.g., task priorities), static resource distribution among the 
application tasks (allocation of memory, stacks and other special structures). Dynamic 
services may be further split into basic and additional ones.  
Basic dynamic services ensure:  

 run-time distribution of resources among the threads (memory, special 
structures, processor time); 

 exchange of data and signals among tasks; 
 passing data and signals from ISRs to tasks; 
 error (fault, exception) handling which provides data on an abnormal 

situation in the application. 
Additional dynamic services support specific functions: 

 run-time generation of threads, tasks, and ISRs; 
 run-time updating of the basic task properties (e.g., the task priority); 
 run-time stack reallocation;  
 mathematical calculations, string processing, etc.  

The problem of basic dynamic services testing will be considered in this paper from 
two points of view: 

 functional testing – checking the correctness of the basic OS directives 
execution logic; and  

 timing testing – measurement of time intervals required for execution of 
basic OS directives. 

Functional testing is aimed at checking the correctness of the OS behavior through 
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finding defects in: 
 execution of basic OS directives invoked from application tasks and ISRs; 
 processor switching among threads; 
 data and signal transactions; 
 error handling routines. 

Timing testing is aimed at obtaining the following timing data on OS execution: 
 execution time of a particular OS directive (local time measurement); 
 total execution time of the whole application (global time measurement); 
 time interval between the moments when the interrupt occurred and when a 

respective ISR started this interrupt processing (latency measurement). 
The described flat chart technique is aimed at both kinds of testing of embedded OS 
basic dynamic services, functional and timing, through a unified approach. 

2.1 Testing Rules 
The following generally established testing rules [4], [5] are usually observed for 
embedded OS testing:  

 focus – each test should check only one OS feature under particular 
conditions with only two possible outcomes: pass or fail; 

 repeatability – the test behavior should be the same at each execution; 
 non-interference – the test should not intrude into OS functioning (no direct 

access to OS variables, command lines, or structures), the test uses the OS 
services as a regular application; 

 black-box approach – each test should be developed with no knowledge or 
assumptions about the OS inner structures, with information at the user’s 
level only. 

The above rules for focus and repeatability impose structural constraints for tests 
because with these rules each single test should be a multi-task application which 
starts from a known inital state. The most reliable way to bring the system under test 
into this state is system restart with re-initialization. Therefore, the size of each test 
for an embedded OS is that of a multi-task application, and the test execution time 
includes the time required for system initialization. 
The repeatability rule requires special solutions to ensure it. Regular real-time 
applications running under an embedded OS usually lack repeatability: their tasks and 
ISRs work asynchronously without any pre-defined order. Test applications should 
be built in such a way as to avoid such indetermination. 

2.2 Repeatability of Testing 
The test scheme in Fig. 1 shows how variations of the test behavior may occur. The 
test DelayCoEnd below is related to the most basic service of an embedded OS – the 
delay service. The operator Delay(N) holds up the task execution for N ticks where 
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‘tick’ is an atomic time interval, usually part of a millisecond. The test DelayCoEnd 
checks the correctness of OS behavior when delay intervals of two tasks come to a 
completion simultaneously. The scheme uses a C-like notation. A digit in the name 
of the task starting point corresponds to the task priority. The task that starts at the 
point Task_1 has higher priority than the task labeled Task_2. 

 
Fig. 1. Variations of the test behavior 

Step numbers shown in comments indicate the expected order of execution. At 
Step_01 execution of Task_1 is held up for 50 tics, the processor switches to Task_2, 
and the ‘for’-operator of Task_2 (Step_02) starts. The value of WAIT_CONST should 
ensure a simultaneous completion of the two delay intervals. While both intervals 
have not been completed, the ‘for’-operator of Task_3 (Step_04) is executed. The idea 
of the whole scheme is in selection of a WAIT_CONST value which ensures 
simultaneous completion of both delay intervals, so that if OS correctly handles this, 
then the actual sequence of steps follows that of the step numbers (additional steps 
may appear between them). 
For automatic registration of the sequence of executed steps, the Trace(i) operator 
should be substituted for each comment Step_i. The procedure Trace(i) checks 
whether its parameter i corresponds to the current step in the expected step sequence 
and signals an error otherwise. This trace operator should be inserted at each point 
where the execution sequence should be checked.  
At looking at these three tasks, one may decide that the only issue for checking the 
correctness of the OS delay function is an appropriate selection of the WAIT_CONST 
value which ensures simultaneous completion of the two delay intervals and 
therefore, DelayCoEnd repeatability. However, this is not true at a closer 
consideration. 
Non-repeatability of such test execution is caused by the fact, that Step_01 may start 
either at the beginning of an atomic tic interval or closer to its end and the required 
value of WAIT_CONST is different for these two situations. To make the test 
consistently correct, the operator Step_01 should be shifted to the end of an atomic 
tic by inserting an additional delay operator before Step_01.  
The requirement for repeatability is specific for a test application, which differs from 

//   -----    “DelayCoEnd”  test  application   ------ 
 Task_1:        Task_2: 
/* Step_01 */ Delay(50);     /* Step_02 */ for(i = 0;  i == WAIT_CONST;  i++ ); 
/* Step_05 */ GlobFlag = 1;    /* Step_03 */  Delay(30); 
/* Step_06 */ TaskEnd( );    /* Step_07 */  GlobFlag = 1; 
            /* Step_08 */       TaskEnd( ); 
 Task_3: 
/* Step_04 */ for(GlobFlag = 0; GlobFlag == 0 ; ); 
/* Step_09 */ End_of_Test( ); 
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the real one with asynchronous execution of application tasks where the order of 
operators from parallel tasks may vary from one execution to another.  
Test applications require special efforts for strict task synchronization. As a result, 
the sequence of operations from parallel tasks in test execution becomes strictly 
determined as if it were from a sequential process. 
In the listing in Fig. 2 the flag synchronization method with WaitFlag( ) and SetFlag() 
procedures ensures test repeatability: 

 
Fig. 2. Flag synchronization method ensures test repeatability 

Here GlobFlag is a global variable and LONG_WAIT is a constant, which limits the 
time of waiting to avoid an infinite execution of the loop. A simple procedure in Fig. 
3 prevents any task to gain access to the processor during the time interval specified 
with the CycleNum value. 
 

 
Fig 3. A simple procedure to prevent gaining access to the processor 

3. Flat Charts 
The straightforward multi-task test description presented above has a weak point. 
When a test designer follows the test logic step by step, his attention jumps from one 
task to another across the text description. In spite of a clear execution order, it is too 
difficult to recognize the test logic even for very short and simple tests. And this is 
much more difficult for tests of the length of dozens of operators and more. A more 
suitable form for test description, the flat chart form, was developed by the authors 
and later was improved with creation of a number of real test suites for various 
embedded OSs. 
The simplest flat chart form is based on the following assumptions: 

 repeatability of the test execution order is maintained; 
 test utilities in the test application are simple and small in number; 
 tests contain invocations of only OS services and test utilities; 
 all tasks are generated statically; 
 task priorities are static; 
 no two tasks have the same priority. 

A sequence of actions performed by the test application consists of two kinds of 

void WaitFlag ( )      { 
 int i;              void  SetFlag ( ) { 
 for(GlobFlag = 0; GlobFlag == 0 ; )      GlobFlag = 1; } 
  if (i++ > LONG_WAIT) break;  } 

void HoldTime (int CycleNum)  {  
 int i;    
 for(i = 0;   i++;   i <  CycleNum); } 
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operations: OS service operations (for DelayCoEnd these are Delay() and TaskEnd() 
operators) and special testing utility operations (like HoldTime(), SetFlag(), 
WaitFlag(), and End_of_Test() operators). This structure is typical for any embedded 
OS test suite. Each OS service and testing utility has a limited number of parameters. 
With such assumptions, information about each test step may be described with the 
data structure shown in Fig 4. 

 
Fig. 4. Information about each test step 

where TaskId identifies the task that performs the operation. The field UtilServ stores 
a pointer to a procedure which either performs some actions with the test application 
variables (a procedure from the test utility library), or performs an OS service call. 
The fields Arg_1 and Arg_2 are used to represent the procedural parameters of the 
test utility or the OS service. As the type of arguments may vary from one operator 
to another, a union type StepArg in this C-like notation is defined, where ... denotes 
other types of parameters used in service or utility calls. 
Now the operator sequence of the test DelayCoEnd steps from subsection 2.2 may be 
described as an array of the TestStep type (Fig. 5; steps 01, 05, and 07 were added to 
ensure repeatability of the test as explained above): 

 
Fig. 5. Operator sequence of the test DelayCoEnd steps 

typedef struct Test_Step {    union StepArg    { 
  int TaskId;            int IntArg; 
  void (* UtilServ) (  );       char* StringArg; 
  StepArg Arg_1;        void (* FunArg) ( ); 
  StepArg Arg_2;  } TestStep;      ...      }; 

TestStep DelayCoEnd  [   ]  =  { 
  1,&CallDelay, 5, 0 ,      //  Step_01 
    2,&WaitFlag,  0,  0,    //  Step_02 
  1,&SetFlag,  0,  0,       //  Step_03 
  1, &CallDelay, 50,  0,      //  Step_04 
    2,&HoldTime,  0,  0,    //  Step_05 
    2,&CallDelay, 30,  0,    //  Step_06 
      3,&WaitFlag,  0,  0,  //  Step_07 
  1,&SetFlag,  0,  0,       //  Step_08 
  1, &CallTaskEnd,  0,  0,     //  Step_09 
    2,&SetFlag,  0,  0,     //  Step_10 
    2, &CallTaskEnd,  0,  0,   //  Step_11 
      3,&End_of_Test,  0,  0, //  Step_12 
 0,&End_of_scheme,  0, 0  }; 
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where the item <0,&End_of_scheme,0,0 > terminates the test description. There is no 
task with the number 0; therefore, a zero in the Task_Id field means that this item 
does not describe an application step, but is an auxiliary one. 
Representing a test scheme in form of a single entity (flat chart) is convenient for 
visual analysis of the test logic as well as for realization of the flat chart interpreter 
because this simplifies control over the correctness of the order, which steps of the 
application tasks are executed in.  
This DelayCoEnd array provides a complete specification of the test application logic. 
Two important features in this form of test presentation are worth mentioning. First, 
the order of the TestStep structure items is that, which they should be executed in. 
There's no need to specify step numbers as they are determined by ordering of the 
DelayCoEnd array elements. 
The second feature relates to the starting position of each line in the DelayCoEnd 
array description. The test description may be regarded as a table of 12 rows and 3 
columns. Columns correspond to tasks. If the line describes an operation to be 
performed by Task_i, then its description shall start in the i-th column. Thus, the 
column order reflects the task priorities and the order of rows reflects the execution 
sequence. 
The authors’ experience with test suites design proves the efficiency of this table form 
called a flat chart for describing multi-task test applications. It turned out to be an 
effective tool for test logic design, understanding, and updating. Moreover, it allows 
for automation of test suite development for testing embedded real-time operating 
systems. 

4. Data-Driven Test Applications 
Automatic processing of flat charts is performed through a corresponding interpreter. 
An instance of the interpreter is initialized for each task and all such instances run 
concurrently. Each interpreter instance scans the flat chart specification line by line. 
Suppose, that each instance has its own variable  

, 
which points to the flat chart element being analyzed or interpreted. 
The i-th instance of the interpreter executes only those lines of the flat chart which 
correspond to the i-th task. All others lines are skipped as they are executed by other 
interpreter instances. When the next line for execution is found, its number is checked 
– it should be the first line number in the whole flat chart not yet executed by any 
interpreter instance.  
The number of interpreter instances equals to the total number of tasks, which use the 
same interpreter body parameterized with the task number at the respective interpreter 
instance initialization. 
Such data-driven organization of the test suite has an important advantage: the test 
application calls the OS under test at only one point, where the test interpreter invokes 

TestStep*  CurrentStep; 

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92 

82 

a service procedure or a utility pointed to by the flat chart line being interpreted. This 
simplifies realization of local time measurements (subsection 6.1). 
A flat chart description for the DelayCoEnd test application in section 4 is represented 
as an array of TestStep structures. Such a form may be used directly for developing a 
test suite in C. OS services like CallDelay() may look as Fig 6 shows. 

 
Fig. 6. OS services CallDelay() 

To avoid heavy line interpreting during test runs in real-time, a Forth-like method 
based on threaded code [6] may be used: the test representation shall be pre-processed 
in order to convert the initial form into a regular array which elements store the task 
number, a pointer to the procedure to be called, and the procedure parameters. 

5. Developing Scenario Tests with Flat Charts 
In accordance with the focus rule (subsection 2.1) each functional test such as 
DelayCoEnd checks a particular OS feature under specific conditions. In this respect, 
functional tests are not like regular applications. A complete test suite should include 
also a set of scenario tests, which are much closer to regular applications. Each 
scenario test realizes a sequence of actions, which is based on some underlying idea 
and uses the OS in a way close enough to real functioning. The flat chart technique is 
suitable to describe them. The following array (Fig. 7) describes a scenario test for 
message passing between four threads – three tasks and an ISR. 

 
Fig. 7. A scenario test for message passing between four threads 

void CallDelay ( )        {  
   /* Global test variables */ 
 Delay  ( (CurrentStep->Arg_1).IntArg );  } 

//   -----    Flat chart for message passing test application   ------ 
TestStep MsgTravel [  ] = { 
 1,&CallGetMsg, &mes1_ptr,  0,    // No msg, TASK_1 is waiting 
  2,&ResumeIsr,  0,  0,      //  Interrupt is  simulated 
 -1,&CallPutMsg, TASK_3, TEST_MSG,   // Send msg to TASK_3 
  2,&CallGetMsg,  &mes2_ptr,  0,    //  No msg, TASK_2 is waiting 
   3,&CallGetMsg,  &mes3_ptr,  0,    //  TASK_3 received Msg 
     3,&CallPutMsg,  TASK_1, &mes3_ptr, //  Activate TASK_1 
 1,&CallPutMsg,  TASK_2, &mes1_ptr,    // TASK_2 becomes ready 
 1,&CallTaskEnd,   0,  0 ,      //  Activate TASK_2 
  2,&Check_Equal,  &mes2_ptr, TEST_MSG,  //  Is msg the same 
  2,&End_of_Test,   0,   0,       // as TEST_MSG? 
 0,&End_of_scheme,  , 0 } 
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A negative number in the TaskId field corresponds to an operator to be executed by 
an ISR. Its absolute value specifies the nesting level of the interrupt, which this 
particular line of the flat chart is interpreted at, rather than a particular ISR. 
The scheme MsgTravel was designed to check the message exchange mechanism, 
which provides message pointer passing from an ISR to a task or from one task to 
another. Variables mes1_ptr, mes2_ptr, and mes3_ptr are message pointers. The value 
of the constant TEST_MSG is a pointer to some initialized message instance. 
The scenario of message passing between tasks consists of the following events: 

 Task_1 tries to receive a message and becomes suspended because there's no 
message for it yet (Step_01); 

 the ISR passes the message TEST_MSG to Task_3 which is not ready yet to 
receive it (Step_02, Step_03); 

 Task_2 tries to receive a message which is absent and therefore becomes 
suspended (Step_04); 

 Task_3 receives the message TEST_MSG sent previously by the ISR and 
resends it to suspended Task_1 waiting for it (Step_05, Step_06); 

 Task_1 resends the message to Task_2 and frees the processor through 
invoking the service procedure TaskEnd() (Step_07, Step_08); 

 upon termination of Task_1 the message received by Task_2 is compared to 
TEST_MSG – the two message pointers should coincide (Step_09). 

The utility procedure ResumeIsr() initializes ISR invocation. The simplest way to do 
this is to throw a software interrupt. Each ISR scans the flat chart line after line, 
similar to a task. Therefore, an instance of the same common flow chart interpreter is 
generated for this ISR. Its configuring is performed by just a few operators executed 
by ISR before entering the common interpreter body. Hence, the same unified flat 
chart interpreter is used by tasks and by ISRs. 

5.1. Loops in Flat Charts 
Auxiliary items, such as the terminator End_of_scheme mentioned in previous 
sections are used to build flat charts. Two other kinds of auxiliary items are described 
below: a flat chart loop delimiter (this subsection) and an error checking operator 
(subsection 5.2). 
The flat chart loop mechanism allows to prevent construction of a long scheme with 
repeated fragments. The test MessQueue checks the message queue mechanism: a 
queue of 10 messages is formed for Task_2, which then consumes these messages 
from the queue one after another.  
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Fig. 8. Flat chart with single loop 

The variable cycle_var is used as the loop control variable. Nested loops may by 
designed, each with its own control variable; e.g., cycle1_var for an outward loop and 
cycle2_var for an inner loop.  
For each loop a boundary condition shall be satisfied: the task state at the LoopEnd 
delimiter shall be the same as its state when the corresponding LoopStart was 
encountered. 

5.2. Testing the Error Handling Service 
Test applications DelayCoEnd and MessTravel demonstrate the suitability of the flat 
chart technique for testing most of the OS basic services. Each one checks the order 
of processor switching among threads of actions. MessTravel checks correctness of 
data passing between tasks and from an ISR to a task. Allocation of memory and of 
special data structures may be checked in a similar way. 
 Flat chart forms may be further extended to cover testing of the error handling service 
as well. The following flat chart sample illustrates this possibility (Fig. 9). 

 
Fig. 9. Flat chart for error service testing 

Task_1 requires 30 memory blocks, which causes an error because the memory 
resource becomes exhausted. The proposed technique of testing the error handling 

//   -----    Flat chart with single loop   ------ 
TestStep MessQueue [  ] = { 
// ----  The message queue with 10 messages is formed for Task_2 
0, &LoopStart, &cycle_var,  10, 
 1,&CallPutMessage, Task_2, &mes1_ptr, // Repeat msg send 
0, &LoopEnd, &cycle_var,  0, 
 1, &CallTaskEnd,  0,  0,      // Task_1 terminates 
 // ---- The message queue of 10 messages is consumed by Task_2 
0, &LoopStart, &cycle_var,  10, 
   2,&CallGetMessage,  &mes2_ptr, 0, // Repeat msg receive  
0, &LoopEnd, &cycle_var,  0, 
0,&End_of_scheme,  , 0  } 

//   -----    Flat chart for error service testing   ------ 
 TestStep MemReqErr [  ] = { 
// .......Steps from Step_01 to Step_i exhaust all memory resource  
  1,&GetMemory,  30, &mem_ptr,   //  Step_i+1 
  0, &CheckErrData, NO_MEMORY,  0, 
 // ...................... Remaining elements of the MemReqErr array 
  0,&End_of_scheme,  , 0 } 
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service is based on the same interrupt simulation technique as in the ResetIsr() utility. 
An error invokes a special thread of actions, which the flat scheme interpreter body 
enters. The interpreter finds the respective auxiliary line in the flat chart and performs 
the CheckErrData() utility assuming that the OS reports the NO_MEMORY error 
code into the error handling block. 
Thus, auxiliary items extend the flat chart technique and allow to build tests for 
checking the OS error handling service. 

6. Automated Test-Run Sessions 
A test suite for an embedded OS shall include automated means for building a test 
application, for loading it into the target device, for test run, and for producing test-
run reports with analysis of the test-run session. Automation tools are intended to 
organize a specified test session. The test session specification describes an action list 
for building, loading, running test applications, and analyzing the results.  
Scalability is one of the most important requirements for an embedded OS testing 
application. The user may configure its options to achieve the needed level of 
efficiency in terms of speed, memory usage, and the needed inventory of services to 
be used. The number of such OS clones grows exponentially with the number of 
options. A dozen of binary options correspond to a thousand and more of different 
OS clones to be tested. A wide set of tests should be built, loaded, run, and analyzed 
for each such clone, their total number may be a million and more. This results in the 
need for automation of test sessions with tools to specify them.  
Beyond OS scalability there are at least two more reasons for test session automation: 
OS projected enhancements and OS porting to other MCUs. 
When an OS is ported to a different MCU, the test suite should be ported as well and 
such porting should take much less effort than initial development. The flat chart 
technique and automated test sessions allow to save porting efforts . 

6.1. Local Time Measurement 
There are three basic points in the flat chart interpreter body executed by every thread 
in the test application. They are:  

 the main interpreter loop start point; 
 the main interpreter loop end point; 
 points of invocation of an OS service or utility. 

These points split the body of the interpreter FlatChartInterpreter() into the following 
three sections: 

  Section 1 – thread configuring to prepare the thread to enter the main 
interpreter loop: initialize local variables, determine the TaskId or the ISR 
nested level, set CurrentStep to point at the top of the TestStep array, and 
specify the start point of the main interpreter loop;  
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  Section 2 – organize interpretation of the flat chart through a search of the 
appropriate item in the TestStep array: set CurrentStep at the appropriate 
value, check correctness of the operation sequence, and perform actions 
prior to invocation of a respective service or utility; 

  Section 3 – perform a call of the UtilServ utility: (A) for local time 
measurement read the timer register, (B) call the UtilServ utility, (C) for local 
time measurement read the timer register again, (D) perform log operations. 

The flat chart technique simplifies realization of local time measurements. Calling an 
OS service or a utility in the point B is performed through indirect addressing of the 
called procedure. All time measurement actions are around the point B (in points A 
and C). Storing the result of time measurement is performed in point D. 
In case of a context switch resulting from performing operator D, operator A may be 
performed in a thread other than that, which operator C was performed in. 

6.2. Global Time Measurement 
The OS time service directives are not appropriate for local time measurements. Their 
precision is not adequate and a direct access to the hardware time register is needed. 
In contrast, global time measurements are less precise; therefore, the OS time service 
may be used for them. The structure of a flat chart for global measurements may look 
as Fig. 10 shows. 

 
Fig. 10. Structure of a flat chart for global measurements 

The number N of cycles required for measurement depends on the relation between 
the precision ΔTm of the SysTime() mechanism and the duration Tc of one application 
cycle. Another factor is the duration Tp of the LoopStart() and LoopEnd() operations 
(assuming they are equal). The larger the value of N⨉(Tc/(ΔTm+Tp)), the more precise 
measurement results will be obtained. 
Global measurements provide an answer the question: “Does the time of context 
switching depend on the task priority?” To answer this question, compare the result 
of the HighPriorTaskSwitching test with the result of the test shown in Fig. 11. 

TestStep HighPriorTaskSwitching [  ] =  { 
 1,&CallSysTime, &start_time,  0,   // Store the start time 
 0, &LoopStart, &cycle_var,  1000,   // Initialize the loop 
//  ------ The set of operations for measurements  ------ 
 1,&CallGetMessage, &mes1_ptr,  0,  //  Suspend Task_1 
  2,&CallPutMessage, &mes1_ptr,  0, // Send msg to Task_1 
 0, &LoopEnd, &cycle_var,  0,    // Terminate loop operations 
 1,&CallSysTime, &finish_time,  0,   // Store the end time 
 0,&LogGlobalTime,  0,  0,     // Store the result 
 0,&End_of_scheme,  , 0     } // End of scheme 
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Fig. 11. The test, in which a set of high priority tasks is suspended prior to entering 

the flat chart loop 
The only difference between flat chart loops in the tests HighPriorTaskSwitching and 
LowPriorTaskSwitching is in the task priority. In the second test, a set of high priority 
tasks was suspended prior to entering the flat chart loop. If the OS context switching 
is performed at the same time for tasks with different priorities, then the measurement 
results will be the same for both tests. 
The considered two tests are a particular case of a round-robin processor switching 
among tasks. Such a scheme may include an arbitrary number of tasks with different 
priorities. Changing the number of operating tasks allows to establish the dependency 
between OS performance and its load while changing the task priorities may impact 
the speed of task scheduling. 

6.3. Latency Testing 
For a multi-threaded application executed on a single processor, the tasks and ISRs 
operations are executed in a quasi-parallel mode. Flat charts are convenient for 
specifying such quasi-asynchronous processes. From the OS point of view, all threads 
are asynchronous, but the test logical structure guarantees strong synchronization of 
all operations in different threads. 
However, a true asynchronous mode of operation is needed for measuring the 
application latency w.r.t. external interrupts. The simplest statistical way of latency 
measurement assumes simultaneous execution of two logically isolated components: 

 a benchmark application with a set of interacting tasks; 
 a special measurement ISR to calculate time difference between the moment 

of the measurement interrupt and the moment when its processing started. 
The benchmark application determines conditions for measuring the latency value. It 
is built in form of a flat chart within a loop with a large number of iterations, which 
ensures the repeatability of the conditions of latency measurement.  
With this approach, a single result Lm of measuring the latency value will be less than 

TestStep LowPriorTaskSwitching [  ] = { 
//    .................... Suspend the set of 100 tasks with high priorities  
  101,&CallSysTime, &start_time,  0,   //  Store the start time 
  0, &LoopStart, &cycle_var,  1000,   //  Initialize the loop  
//  ------ The set of operations for measurements  ------ 
  101,&CallGetMessage, &mes1_ptr,  0,  // Suspend Task_101 
             102,&CallPutMessage, &mes1_ptr,  0, // Msg to Task_101 
  0, &LoopEnd, &cycle_var,  0,    // Terminate the loop  
  101,&CallSysTime, &finish_time,  0,  // Store the end time 
   0,&LogGlobalTime,  0  0,      // Store the result 
  0,&End_of_scheme,  , 0   }    // End of scheme 
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or equal to the maximal possible latency value Lr: Lr ≤ Lm. The difference d=Lr–Lm 
represents the inaccuracy a single latency measurement. Let the acceptable 
inaccuracy Δt of the final result of measurement and the time interval T of time 
measurement interrupts be greater than the duration of one iteration of the benchmark 
application. Then the probability P that the required accuracy of measurement is 
achieved (d<Δt) is greater than or equal to Δt/T: P ≥Δt/T. To achieve higher accuracy 
of the latency measurements, single measurements are performed n times and the 
maximum of the values Lm is considered as the final result. The required accuracy of 
the final result is achieved with the probability P not less than 1–(1–Δt/T)n: P ≥1–(1–
Δt/T)n. 

6.4. Measuring Code Coverage 
A straightforward technique to measure code coverage of the OS under test by a given 
test suite is based on direct tracing of the OS code control flow supported with 
designated software-hardware means. It’s hardware component should have a 
mechanism of trace interrupts with a designated vector (TRAP-interrupts). This 
software component is composed by a handler of step-wise interrupts which performs 
the role of the tracing program. Execution of each OS instruction is preceded by an 
interrupt on the TRAP-vector, which results in the next activation of the tracing 
program.  
This technique of direct tracing matches the rule for non-interference (subsection 2.1). 
However, it may be inapplicable for embedded systems because an embedded 
application under test may work much slower when running in parallel with the 
tracing program. Some operators covered in a real run may be unreachable in the 
mode of coverage measuring.  
A more appropriate technique of measuring code coverage is based on using codes of 
prohibited TRAP instructions. This mechanism is realized with another designated 
vector of TRAP-interrupts. In this case, the respective interrupt handler plays the role 
of the tracing program and the coverage measurement process consists of the 
following steps: 

 the contents of the memory area with the OS body (its code) is saved in a 
special array and then is filled with the codes of TRAP instructions; 

 execution of the test application is started and a software TRAP-interrupt 
occurs when any OS service is invoked;  

 the tracing program is invoked as the interrupt handler, it restores the original 
OS instruction from the special array and passes control to it; 

 the restored original OS instruction is executed; 
 if the next instruction to be executed is from the OS body, then it may be 

either restored through previous executions or still replaced with a TRAP 
instruction and then another TRAP-interrupt occurs which restores the 
original OS instruction so that more and more OS instructions are restored. 
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Upon termination of the test application all OS instructions needed for this application 
will be restored and their number equals to the number of invocations of the tracing 
program. 
This technique of code coverage measurement with TRAP instructions decreases the 
time of the test application execution if compared to technique with direct tracing. 
Each OS instruction corresponds to at most one invocation of the tracing program and 
therefore the overall execution pace becomes close to that of a regular execution 
without tracing. A complete match of these two paces is achieved when only one OS 
instruction, which we'd like to find whether it's covered or not is replaced: 

 this one OS instruction is saved and replaced with a TRAP instruction; 
 the test application runs to termination and if the instruction is not restored 

then it was not covered. 
This technique with single instruction replacing requires much more processor time 
because complete measurement of code coverage assumes iterative runs of the test 
application as many times as there are instructions in the OS body. 

6.5. Enhancements of the Flat Chart Technique 
As noted in subsection 6.3, the flat chart technique allows to describe a quasi-
asynchronous order of test application runs only. To represent true asynchronous 
threads of actions (as required for latency measurements), methods beyond the flat 
chart scheme should be used.  
The quasi-asynchronous order fits well for testing OS kernel services. However, for 
testing services related to peripheral devices an extension of the flat chart technique 
is needed which allows to specify real asynchronous action flows. This may be done 
through introducing new forms, which specify alternatives in the action flow similar 
to loop forms in subsection 5.1.  
The flat chart technique may be further extended to distributed OS testing. In this 
case, a test application is a program with true parallelism and if quasi-asynchronous 
execution turns out to be suitable for particular testing, then the only extension needed 
is refinement of action flows naming. Otherwise, a separate flat chart should be 
developed for each physical processor with additional means for cross-referencing 
among elements of these flow charts.  
Flat charts form representations considered above are suitable for usage in C-
programs. Similar syntax forms, which require no any special pre-processing, may be 
developed for other programming languages. However, when moving from one 
language to another flat charts should be completely reworked which is effort 
consuming as the total size of flat charts in a test suite may reach hundreds of 
thousands lines. Thus, it is reasonable to develop a language independent unified 
syntax for flat chart forms. Then porting a test suite to another platform requires only 
to develop a pre-processor of several hundred lines of code. Development of a 
universal syntax forms for test representation opens the opportunity to build 
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standardized test suites for embedded OS testing. A universal language for OS test 
applications could be a step forward in development of an automatic test generator 
[7], [8].  

7. Results of Experiments 
Experimental data provided below come from authors' experience in developing and 
testing a particular software product – a compact embedded OS for real-time 
applications with specific features requested by the customer. The overall approach 
to developing this OS follows the classical one [9] initially designed for 16-bit single 
board controllers manufactured by DEC since early 1980-ies. To emphasize the 
compactness and specifics of such OSs they are usually named "kernals" or 
"executives". The usual size of such an OS developed within this approach is about 
several thousand lines of code in C plus several hundred lines in assembler. 
The MCUexec (MicroController Unit EXECutive) product, which development the 
authors participated in, supported execution of software applications on 
microcontrollers HC-11 and HC-12 originally manufactured by Motorola, Inc. and 
since 2015 by NXP Semiconductors. To test the MCUexec functional features, 9 
groups of flat charts were developed with the described technique. 
For integration testing of MCUexec additional 234 flat charts split in 17 groups were 
developed, the total number of the developed flat charts being 378. Running all these 
test suites resulted in 8 detected defects in different versions of MCUexec, each of 
about 5 KLOCs in assembler. The overall effort for developing these flat charts, 
running the test suites, and analyzing test run results was 6 staff-months.  
Table 1. Nine groups of flat charts for testing the MCUexec functional features 

Test group 
identifier Brief description Number of 

flat charts 
Basic Task delay, system configuration and 

reconfiguration 
10 

TaskId Getting the task Id 3 
Task Task suspending/resuming 12 
EventU Updating and checking of events 21 
EventW Waiting for an event to be set or cleared 30 
Slice Time-slicing features 6 
Buf Buffer manipulating 23 
MesS Message sending and receiving 20 
MesR Reply features 19 
 TOTAL: 144 

8. Conclusion 
The flat chart technique gives an efficient way to develop test suites for embedded 
OS execution-based testing. Flat chart forms allow to build well-structured and 
understandable descriptions of test applications with specifications of tasks and ISRs 
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for parallel execution. The flat chat technique is suitable for checking the correctness 
of implementation of basic OS mechanisms – data and signal exchange among action 
threads, run-time allocations of memory, special structures, and processor’s time. Flat 
charts are efficient not only for developing functional tests but for local and global 
time measurements, for measuring the OS latency and code coverage. Standardized 
test suites for embedded OS testing may be built with the described flat chart 
technique.  
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Аннотация. Современные автоматические устройства все чаще оснащаются 
микроконтроллерами. Логика работы автоматического оборудования поддерживается 
рядом различных встроенных программных приложений, которые выполняются под 
управлением встроенной операционной системы реального времени (ОС). Надежность 
ОС чрезвычайно важна для правильной работы всей автоматической системы. Поэтому 
встроенную ОС следует тщательно тестировать с помощью соответствующего набора 
автоматических тестов. Такой набор тестов для тестирования встроенной ОС обычно 
организуется как набор многозадачных тестовых приложений, которые должны 
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выполняться под управлением данных. В статье представлены специальный язык для 
определения соответствующей логики задачи тестирования и концепция плоских съем 
для эффективного выполнения тестирования встроенной ОС. Чтобы избежать 
интенсивной интерпретации текстовых строк во время тестового прогона, 
предварительно образуется специальное представление теста, в котором исходная 
строковая форма преобразуется в форму регулярного массива и, таким образом, 
повышается эффективность тестирования. 
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