
75

A Flat Chart Technique for Embedded OS
Testing1

V.V. Nikiforov<nik@ iias.spb.su>
S.N. Baranov<snbaranov@ iias.spb.su>

St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences,

39, 14 liniya, St. Petersburg, 199178, Russia

Abstract. Modern automatic devices are more and more equipped with microcontroller units.
The logic of work of the automatic equipment is supported by a number of various embedded
software applications, which run under an embedded real-time operating system (OS). The OS
reliability is extremely important for correct functionality of the whole automatic system.
Therefore, the embedded OS should be tested thoroughly with an appropriate automated test
suite. Such test suite for testing of an embedded OS is usually organized as a set of multi-task
test applications to be executed in a data-driven manner. The paper features a special language
to define the respective testing task logic and the concept of flat charts to efficiently perform
an embedded OS execution-based testing. To avoid heavy interpreting of text strings during
the test run, the respective test presentation is pre-processed in order to convert the initial string
form into a regular array form and thus to increase its efficiency.

Keywords: Embedded Applications; Operating Systems; Software Testing; Real-Time
Systems.

DOI:10.15514/ISPRAS-2017-29(5)-5

For citation: Nikiforov V.V., Baranov S.N. A Flat Chart Technique for Embedded OS Testing.
Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92. DOI: 10.15514/ISPRAS-
2017-29(5)-5

1. Introduction
Software applications, which control various automatic devices, are usually built as a
set of two kinds of sequential executing threads: tasks and interrupt service routines
(ISRs). Coordination of execution of these threads is realized by the kernel of the
embedded real-time operating system (OS). OS reliability is extremely important for

1 This paper is an extended version of a presentation at the Industrial track poster session of
the 29th IFIP International Conference on Testing Software and Systems (ICTSS-2017), St.
Petersburg, Russia, October 9-11, 2017.

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

76

correct functioning of the automatic technical device under software control.
The variety of requirements for such an OS grows along with the variety of technical
devices, for which embedded systems are designed, especially for devices built on the
basis of microcontroller units (MCUs). Each OS for an MCU should be tested
thoroughly to avoid a crash of an embedded application. Verification of embedded
real-time software is a well-known problem [1], [2]. Thorough execution-based
testing [3] of an embedded OS requires significant effort along two axes: full-bodied
test suite design and test suite execution.
Effort reduction for test execution may be achieved by designing a highly automated
test suite. Effort reduction for design of such a test suite may be achieved through
efficient testing techniques, languages, and tools.
The paper describes a special language to define the testing task logic based on the
concept of flat charts to efficiently run embedded OS execution-based testing.

2. Approach to Testing an Embedded OS
Usually, an embedded OS provides static and dynamic services for applications to
run on top of this OS. Static services are used to specify static configuration features
of the application: the set of its tasks and ISRs, the subset of the used OS functions,
basic task properties (e.g., task priorities), static resource distribution among the
application tasks (allocation of memory, stacks and other special structures). Dynamic
services may be further split into basic and additional ones.
Basic dynamic services ensure:

 run-time distribution of resources among the threads (memory, special
structures, processor time);

 exchange of data and signals among tasks;
 passing data and signals from ISRs to tasks;
 error (fault, exception) handling which provides data on an abnormal

situation in the application.
Additional dynamic services support specific functions:

 run-time generation of threads, tasks, and ISRs;
 run-time updating of the basic task properties (e.g., the task priority);
 run-time stack reallocation;
 mathematical calculations, string processing, etc.

The problem of basic dynamic services testing will be considered in this paper from
two points of view:

 functional testing – checking the correctness of the basic OS directives
execution logic; and

 timing testing – measurement of time intervals required for execution of
basic OS directives.

Functional testing is aimed at checking the correctness of the OS behavior through

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

77

finding defects in:
 execution of basic OS directives invoked from application tasks and ISRs;
 processor switching among threads;
 data and signal transactions;
 error handling routines.

Timing testing is aimed at obtaining the following timing data on OS execution:
 execution time of a particular OS directive (local time measurement);
 total execution time of the whole application (global time measurement);
 time interval between the moments when the interrupt occurred and when a

respective ISR started this interrupt processing (latency measurement).
The described flat chart technique is aimed at both kinds of testing of embedded OS
basic dynamic services, functional and timing, through a unified approach.

2.1 Testing Rules
The following generally established testing rules [4], [5] are usually observed for
embedded OS testing:

 focus – each test should check only one OS feature under particular
conditions with only two possible outcomes: pass or fail;

 repeatability – the test behavior should be the same at each execution;
 non-interference – the test should not intrude into OS functioning (no direct

access to OS variables, command lines, or structures), the test uses the OS
services as a regular application;

 black-box approach – each test should be developed with no knowledge or
assumptions about the OS inner structures, with information at the user’s
level only.

The above rules for focus and repeatability impose structural constraints for tests
because with these rules each single test should be a multi-task application which
starts from a known inital state. The most reliable way to bring the system under test
into this state is system restart with re-initialization. Therefore, the size of each test
for an embedded OS is that of a multi-task application, and the test execution time
includes the time required for system initialization.
The repeatability rule requires special solutions to ensure it. Regular real-time
applications running under an embedded OS usually lack repeatability: their tasks and
ISRs work asynchronously without any pre-defined order. Test applications should
be built in such a way as to avoid such indetermination.

2.2 Repeatability of Testing
The test scheme in Fig. 1 shows how variations of the test behavior may occur. The
test DelayCoEnd below is related to the most basic service of an embedded OS – the
delay service. The operator Delay(N) holds up the task execution for N ticks where

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

78

‘tick’ is an atomic time interval, usually part of a millisecond. The test DelayCoEnd
checks the correctness of OS behavior when delay intervals of two tasks come to a
completion simultaneously. The scheme uses a C-like notation. A digit in the name
of the task starting point corresponds to the task priority. The task that starts at the
point Task_1 has higher priority than the task labeled Task_2.

Fig. 1. Variations of the test behavior

Step numbers shown in comments indicate the expected order of execution. At
Step_01 execution of Task_1 is held up for 50 tics, the processor switches to Task_2,
and the ‘for’-operator of Task_2 (Step_02) starts. The value of WAIT_CONST should
ensure a simultaneous completion of the two delay intervals. While both intervals
have not been completed, the ‘for’-operator of Task_3 (Step_04) is executed. The idea
of the whole scheme is in selection of a WAIT_CONST value which ensures
simultaneous completion of both delay intervals, so that if OS correctly handles this,
then the actual sequence of steps follows that of the step numbers (additional steps
may appear between them).
For automatic registration of the sequence of executed steps, the Trace(i) operator
should be substituted for each comment Step_i. The procedure Trace(i) checks
whether its parameter i corresponds to the current step in the expected step sequence
and signals an error otherwise. This trace operator should be inserted at each point
where the execution sequence should be checked.
At looking at these three tasks, one may decide that the only issue for checking the
correctness of the OS delay function is an appropriate selection of the WAIT_CONST
value which ensures simultaneous completion of the two delay intervals and
therefore, DelayCoEnd repeatability. However, this is not true at a closer
consideration.
Non-repeatability of such test execution is caused by the fact, that Step_01 may start
either at the beginning of an atomic tic interval or closer to its end and the required
value of WAIT_CONST is different for these two situations. To make the test
consistently correct, the operator Step_01 should be shifted to the end of an atomic
tic by inserting an additional delay operator before Step_01.
The requirement for repeatability is specific for a test application, which differs from

// ----- “DelayCoEnd” test application ------
 Task_1: Task_2:
/* Step_01 */ Delay(50); /* Step_02 */ for(i = 0; i == WAIT_CONST; i++);
/* Step_05 */ GlobFlag = 1; /* Step_03 */ Delay(30);
/* Step_06 */ TaskEnd(); /* Step_07 */ GlobFlag = 1;
 /* Step_08 */ TaskEnd();
 Task_3:
/* Step_04 */ for(GlobFlag = 0; GlobFlag == 0 ;);
/* Step_09 */ End_of_Test();

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

79

the real one with asynchronous execution of application tasks where the order of
operators from parallel tasks may vary from one execution to another.
Test applications require special efforts for strict task synchronization. As a result,
the sequence of operations from parallel tasks in test execution becomes strictly
determined as if it were from a sequential process.
In the listing in Fig. 2 the flag synchronization method with WaitFlag() and SetFlag()
procedures ensures test repeatability:

Fig. 2. Flag synchronization method ensures test repeatability

Here GlobFlag is a global variable and LONG_WAIT is a constant, which limits the
time of waiting to avoid an infinite execution of the loop. A simple procedure in Fig.
3 prevents any task to gain access to the processor during the time interval specified
with the CycleNum value.

Fig 3. A simple procedure to prevent gaining access to the processor

3. Flat Charts
The straightforward multi-task test description presented above has a weak point.
When a test designer follows the test logic step by step, his attention jumps from one
task to another across the text description. In spite of a clear execution order, it is too
difficult to recognize the test logic even for very short and simple tests. And this is
much more difficult for tests of the length of dozens of operators and more. A more
suitable form for test description, the flat chart form, was developed by the authors
and later was improved with creation of a number of real test suites for various
embedded OSs.
The simplest flat chart form is based on the following assumptions:

 repeatability of the test execution order is maintained;
 test utilities in the test application are simple and small in number;
 tests contain invocations of only OS services and test utilities;
 all tasks are generated statically;
 task priorities are static;
 no two tasks have the same priority.

A sequence of actions performed by the test application consists of two kinds of

void WaitFlag () {
 int i; void SetFlag () {
 for(GlobFlag = 0; GlobFlag == 0 ;) GlobFlag = 1; }
 if (i++ > LONG_WAIT) break; }

void HoldTime (int CycleNum) {
 int i;
 for(i = 0; i++; i < CycleNum); }

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

80

operations: OS service operations (for DelayCoEnd these are Delay() and TaskEnd()
operators) and special testing utility operations (like HoldTime(), SetFlag(),
WaitFlag(), and End_of_Test() operators). This structure is typical for any embedded
OS test suite. Each OS service and testing utility has a limited number of parameters.
With such assumptions, information about each test step may be described with the
data structure shown in Fig 4.

Fig. 4. Information about each test step

where TaskId identifies the task that performs the operation. The field UtilServ stores
a pointer to a procedure which either performs some actions with the test application
variables (a procedure from the test utility library), or performs an OS service call.
The fields Arg_1 and Arg_2 are used to represent the procedural parameters of the
test utility or the OS service. As the type of arguments may vary from one operator
to another, a union type StepArg in this C-like notation is defined, where ... denotes
other types of parameters used in service or utility calls.
Now the operator sequence of the test DelayCoEnd steps from subsection 2.2 may be
described as an array of the TestStep type (Fig. 5; steps 01, 05, and 07 were added to
ensure repeatability of the test as explained above):

Fig. 5. Operator sequence of the test DelayCoEnd steps

typedef struct Test_Step { union StepArg {
 int TaskId; int IntArg;
 void (* UtilServ) (); char* StringArg;
 StepArg Arg_1; void (* FunArg) ();
 StepArg Arg_2; } TestStep; ... };

TestStep DelayCoEnd [] = {
 1,&CallDelay, 5, 0 , // Step_01
 2,&WaitFlag, 0, 0, // Step_02
 1,&SetFlag, 0, 0, // Step_03
 1, &CallDelay, 50, 0, // Step_04
 2,&HoldTime, 0, 0, // Step_05
 2,&CallDelay, 30, 0, // Step_06
 3,&WaitFlag, 0, 0, // Step_07
 1,&SetFlag, 0, 0, // Step_08
 1, &CallTaskEnd, 0, 0, // Step_09
 2,&SetFlag, 0, 0, // Step_10
 2, &CallTaskEnd, 0, 0, // Step_11
 3,&End_of_Test, 0, 0, // Step_12
 0,&End_of_scheme, 0, 0 };

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

81

where the item <0,&End_of_scheme,0,0 > terminates the test description. There is no
task with the number 0; therefore, a zero in the Task_Id field means that this item
does not describe an application step, but is an auxiliary one.
Representing a test scheme in form of a single entity (flat chart) is convenient for
visual analysis of the test logic as well as for realization of the flat chart interpreter
because this simplifies control over the correctness of the order, which steps of the
application tasks are executed in.
This DelayCoEnd array provides a complete specification of the test application logic.
Two important features in this form of test presentation are worth mentioning. First,
the order of the TestStep structure items is that, which they should be executed in.
There's no need to specify step numbers as they are determined by ordering of the
DelayCoEnd array elements.
The second feature relates to the starting position of each line in the DelayCoEnd
array description. The test description may be regarded as a table of 12 rows and 3
columns. Columns correspond to tasks. If the line describes an operation to be
performed by Task_i, then its description shall start in the i-th column. Thus, the
column order reflects the task priorities and the order of rows reflects the execution
sequence.
The authors’ experience with test suites design proves the efficiency of this table form
called a flat chart for describing multi-task test applications. It turned out to be an
effective tool for test logic design, understanding, and updating. Moreover, it allows
for automation of test suite development for testing embedded real-time operating
systems.

4. Data-Driven Test Applications
Automatic processing of flat charts is performed through a corresponding interpreter.
An instance of the interpreter is initialized for each task and all such instances run
concurrently. Each interpreter instance scans the flat chart specification line by line.
Suppose, that each instance has its own variable

,
which points to the flat chart element being analyzed or interpreted.
The i-th instance of the interpreter executes only those lines of the flat chart which
correspond to the i-th task. All others lines are skipped as they are executed by other
interpreter instances. When the next line for execution is found, its number is checked
– it should be the first line number in the whole flat chart not yet executed by any
interpreter instance.
The number of interpreter instances equals to the total number of tasks, which use the
same interpreter body parameterized with the task number at the respective interpreter
instance initialization.
Such data-driven organization of the test suite has an important advantage: the test
application calls the OS under test at only one point, where the test interpreter invokes

TestStep* CurrentStep;

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

82

a service procedure or a utility pointed to by the flat chart line being interpreted. This
simplifies realization of local time measurements (subsection 6.1).
A flat chart description for the DelayCoEnd test application in section 4 is represented
as an array of TestStep structures. Such a form may be used directly for developing a
test suite in C. OS services like CallDelay() may look as Fig 6 shows.

Fig. 6. OS services CallDelay()

To avoid heavy line interpreting during test runs in real-time, a Forth-like method
based on threaded code [6] may be used: the test representation shall be pre-processed
in order to convert the initial form into a regular array which elements store the task
number, a pointer to the procedure to be called, and the procedure parameters.

5. Developing Scenario Tests with Flat Charts
In accordance with the focus rule (subsection 2.1) each functional test such as
DelayCoEnd checks a particular OS feature under specific conditions. In this respect,
functional tests are not like regular applications. A complete test suite should include
also a set of scenario tests, which are much closer to regular applications. Each
scenario test realizes a sequence of actions, which is based on some underlying idea
and uses the OS in a way close enough to real functioning. The flat chart technique is
suitable to describe them. The following array (Fig. 7) describes a scenario test for
message passing between four threads – three tasks and an ISR.

Fig. 7. A scenario test for message passing between four threads

void CallDelay () {
 /* Global test variables */
 Delay ((CurrentStep->Arg_1).IntArg); }

// ----- Flat chart for message passing test application ------
TestStep MsgTravel [] = {
 1,&CallGetMsg, &mes1_ptr, 0, // No msg, TASK_1 is waiting
 2,&ResumeIsr, 0, 0, // Interrupt is simulated
 -1,&CallPutMsg, TASK_3, TEST_MSG, // Send msg to TASK_3
 2,&CallGetMsg, &mes2_ptr, 0, // No msg, TASK_2 is waiting
 3,&CallGetMsg, &mes3_ptr, 0, // TASK_3 received Msg
 3,&CallPutMsg, TASK_1, &mes3_ptr, // Activate TASK_1
 1,&CallPutMsg, TASK_2, &mes1_ptr, // TASK_2 becomes ready
 1,&CallTaskEnd, 0, 0 , // Activate TASK_2
 2,&Check_Equal, &mes2_ptr, TEST_MSG, // Is msg the same
 2,&End_of_Test, 0, 0, // as TEST_MSG?
 0,&End_of_scheme, , 0 }

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

83

A negative number in the TaskId field corresponds to an operator to be executed by
an ISR. Its absolute value specifies the nesting level of the interrupt, which this
particular line of the flat chart is interpreted at, rather than a particular ISR.
The scheme MsgTravel was designed to check the message exchange mechanism,
which provides message pointer passing from an ISR to a task or from one task to
another. Variables mes1_ptr, mes2_ptr, and mes3_ptr are message pointers. The value
of the constant TEST_MSG is a pointer to some initialized message instance.
The scenario of message passing between tasks consists of the following events:

 Task_1 tries to receive a message and becomes suspended because there's no
message for it yet (Step_01);

 the ISR passes the message TEST_MSG to Task_3 which is not ready yet to
receive it (Step_02, Step_03);

 Task_2 tries to receive a message which is absent and therefore becomes
suspended (Step_04);

 Task_3 receives the message TEST_MSG sent previously by the ISR and
resends it to suspended Task_1 waiting for it (Step_05, Step_06);

 Task_1 resends the message to Task_2 and frees the processor through
invoking the service procedure TaskEnd() (Step_07, Step_08);

 upon termination of Task_1 the message received by Task_2 is compared to
TEST_MSG – the two message pointers should coincide (Step_09).

The utility procedure ResumeIsr() initializes ISR invocation. The simplest way to do
this is to throw a software interrupt. Each ISR scans the flat chart line after line,
similar to a task. Therefore, an instance of the same common flow chart interpreter is
generated for this ISR. Its configuring is performed by just a few operators executed
by ISR before entering the common interpreter body. Hence, the same unified flat
chart interpreter is used by tasks and by ISRs.

5.1. Loops in Flat Charts
Auxiliary items, such as the terminator End_of_scheme mentioned in previous
sections are used to build flat charts. Two other kinds of auxiliary items are described
below: a flat chart loop delimiter (this subsection) and an error checking operator
(subsection 5.2).
The flat chart loop mechanism allows to prevent construction of a long scheme with
repeated fragments. The test MessQueue checks the message queue mechanism: a
queue of 10 messages is formed for Task_2, which then consumes these messages
from the queue one after another.

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

84

Fig. 8. Flat chart with single loop

The variable cycle_var is used as the loop control variable. Nested loops may by
designed, each with its own control variable; e.g., cycle1_var for an outward loop and
cycle2_var for an inner loop.
For each loop a boundary condition shall be satisfied: the task state at the LoopEnd
delimiter shall be the same as its state when the corresponding LoopStart was
encountered.

5.2. Testing the Error Handling Service
Test applications DelayCoEnd and MessTravel demonstrate the suitability of the flat
chart technique for testing most of the OS basic services. Each one checks the order
of processor switching among threads of actions. MessTravel checks correctness of
data passing between tasks and from an ISR to a task. Allocation of memory and of
special data structures may be checked in a similar way.
 Flat chart forms may be further extended to cover testing of the error handling service
as well. The following flat chart sample illustrates this possibility (Fig. 9).

Fig. 9. Flat chart for error service testing

Task_1 requires 30 memory blocks, which causes an error because the memory
resource becomes exhausted. The proposed technique of testing the error handling

// ----- Flat chart with single loop ------
TestStep MessQueue [] = {
// ---- The message queue with 10 messages is formed for Task_2
0, &LoopStart, &cycle_var, 10,
 1,&CallPutMessage, Task_2, &mes1_ptr, // Repeat msg send
0, &LoopEnd, &cycle_var, 0,
 1, &CallTaskEnd, 0, 0, // Task_1 terminates
 // ---- The message queue of 10 messages is consumed by Task_2
0, &LoopStart, &cycle_var, 10,
 2,&CallGetMessage, &mes2_ptr, 0, // Repeat msg receive
0, &LoopEnd, &cycle_var, 0,
0,&End_of_scheme, , 0 }

// ----- Flat chart for error service testing ------
 TestStep MemReqErr [] = {
//Steps from Step_01 to Step_i exhaust all memory resource
 1,&GetMemory, 30, &mem_ptr, // Step_i+1
 0, &CheckErrData, NO_MEMORY, 0,
 // Remaining elements of the MemReqErr array
 0,&End_of_scheme, , 0 }

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

85

service is based on the same interrupt simulation technique as in the ResetIsr() utility.
An error invokes a special thread of actions, which the flat scheme interpreter body
enters. The interpreter finds the respective auxiliary line in the flat chart and performs
the CheckErrData() utility assuming that the OS reports the NO_MEMORY error
code into the error handling block.
Thus, auxiliary items extend the flat chart technique and allow to build tests for
checking the OS error handling service.

6. Automated Test-Run Sessions
A test suite for an embedded OS shall include automated means for building a test
application, for loading it into the target device, for test run, and for producing test-
run reports with analysis of the test-run session. Automation tools are intended to
organize a specified test session. The test session specification describes an action list
for building, loading, running test applications, and analyzing the results.
Scalability is one of the most important requirements for an embedded OS testing
application. The user may configure its options to achieve the needed level of
efficiency in terms of speed, memory usage, and the needed inventory of services to
be used. The number of such OS clones grows exponentially with the number of
options. A dozen of binary options correspond to a thousand and more of different
OS clones to be tested. A wide set of tests should be built, loaded, run, and analyzed
for each such clone, their total number may be a million and more. This results in the
need for automation of test sessions with tools to specify them.
Beyond OS scalability there are at least two more reasons for test session automation:
OS projected enhancements and OS porting to other MCUs.
When an OS is ported to a different MCU, the test suite should be ported as well and
such porting should take much less effort than initial development. The flat chart
technique and automated test sessions allow to save porting efforts .

6.1. Local Time Measurement
There are three basic points in the flat chart interpreter body executed by every thread
in the test application. They are:

 the main interpreter loop start point;
 the main interpreter loop end point;
 points of invocation of an OS service or utility.

These points split the body of the interpreter FlatChartInterpreter() into the following
three sections:

 Section 1 – thread configuring to prepare the thread to enter the main
interpreter loop: initialize local variables, determine the TaskId or the ISR
nested level, set CurrentStep to point at the top of the TestStep array, and
specify the start point of the main interpreter loop;

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

86

 Section 2 – organize interpretation of the flat chart through a search of the
appropriate item in the TestStep array: set CurrentStep at the appropriate
value, check correctness of the operation sequence, and perform actions
prior to invocation of a respective service or utility;

 Section 3 – perform a call of the UtilServ utility: (A) for local time
measurement read the timer register, (B) call the UtilServ utility, (C) for local
time measurement read the timer register again, (D) perform log operations.

The flat chart technique simplifies realization of local time measurements. Calling an
OS service or a utility in the point B is performed through indirect addressing of the
called procedure. All time measurement actions are around the point B (in points A
and C). Storing the result of time measurement is performed in point D.
In case of a context switch resulting from performing operator D, operator A may be
performed in a thread other than that, which operator C was performed in.

6.2. Global Time Measurement
The OS time service directives are not appropriate for local time measurements. Their
precision is not adequate and a direct access to the hardware time register is needed.
In contrast, global time measurements are less precise; therefore, the OS time service
may be used for them. The structure of a flat chart for global measurements may look
as Fig. 10 shows.

Fig. 10. Structure of a flat chart for global measurements

The number N of cycles required for measurement depends on the relation between
the precision ΔTm of the SysTime() mechanism and the duration Tc of one application
cycle. Another factor is the duration Tp of the LoopStart() and LoopEnd() operations
(assuming they are equal). The larger the value of N⨉(Tc/(ΔTm+Tp)), the more precise
measurement results will be obtained.
Global measurements provide an answer the question: “Does the time of context
switching depend on the task priority?” To answer this question, compare the result
of the HighPriorTaskSwitching test with the result of the test shown in Fig. 11.

TestStep HighPriorTaskSwitching [] = {
 1,&CallSysTime, &start_time, 0, // Store the start time
 0, &LoopStart, &cycle_var, 1000, // Initialize the loop
// ------ The set of operations for measurements ------
 1,&CallGetMessage, &mes1_ptr, 0, // Suspend Task_1
 2,&CallPutMessage, &mes1_ptr, 0, // Send msg to Task_1
 0, &LoopEnd, &cycle_var, 0, // Terminate loop operations
 1,&CallSysTime, &finish_time, 0, // Store the end time
 0,&LogGlobalTime, 0, 0, // Store the result
 0,&End_of_scheme, , 0 } // End of scheme

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

87

Fig. 11. The test, in which a set of high priority tasks is suspended prior to entering

the flat chart loop
The only difference between flat chart loops in the tests HighPriorTaskSwitching and
LowPriorTaskSwitching is in the task priority. In the second test, a set of high priority
tasks was suspended prior to entering the flat chart loop. If the OS context switching
is performed at the same time for tasks with different priorities, then the measurement
results will be the same for both tests.
The considered two tests are a particular case of a round-robin processor switching
among tasks. Such a scheme may include an arbitrary number of tasks with different
priorities. Changing the number of operating tasks allows to establish the dependency
between OS performance and its load while changing the task priorities may impact
the speed of task scheduling.

6.3. Latency Testing
For a multi-threaded application executed on a single processor, the tasks and ISRs
operations are executed in a quasi-parallel mode. Flat charts are convenient for
specifying such quasi-asynchronous processes. From the OS point of view, all threads
are asynchronous, but the test logical structure guarantees strong synchronization of
all operations in different threads.
However, a true asynchronous mode of operation is needed for measuring the
application latency w.r.t. external interrupts. The simplest statistical way of latency
measurement assumes simultaneous execution of two logically isolated components:

 a benchmark application with a set of interacting tasks;
 a special measurement ISR to calculate time difference between the moment

of the measurement interrupt and the moment when its processing started.
The benchmark application determines conditions for measuring the latency value. It
is built in form of a flat chart within a loop with a large number of iterations, which
ensures the repeatability of the conditions of latency measurement.
With this approach, a single result Lm of measuring the latency value will be less than

TestStep LowPriorTaskSwitching [] = {
// Suspend the set of 100 tasks with high priorities
 101,&CallSysTime, &start_time, 0, // Store the start time
 0, &LoopStart, &cycle_var, 1000, // Initialize the loop
// ------ The set of operations for measurements ------
 101,&CallGetMessage, &mes1_ptr, 0, // Suspend Task_101
 102,&CallPutMessage, &mes1_ptr, 0, // Msg to Task_101
 0, &LoopEnd, &cycle_var, 0, // Terminate the loop
 101,&CallSysTime, &finish_time, 0, // Store the end time
 0,&LogGlobalTime, 0 0, // Store the result
 0,&End_of_scheme, , 0 } // End of scheme

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

88

or equal to the maximal possible latency value Lr: Lr ≤ Lm. The difference d=Lr–Lm
represents the inaccuracy a single latency measurement. Let the acceptable
inaccuracy Δt of the final result of measurement and the time interval T of time
measurement interrupts be greater than the duration of one iteration of the benchmark
application. Then the probability P that the required accuracy of measurement is
achieved (d<Δt) is greater than or equal to Δt/T: P ≥Δt/T. To achieve higher accuracy
of the latency measurements, single measurements are performed n times and the
maximum of the values Lm is considered as the final result. The required accuracy of
the final result is achieved with the probability P not less than 1–(1–Δt/T)n: P ≥1–(1–
Δt/T)n.

6.4. Measuring Code Coverage
A straightforward technique to measure code coverage of the OS under test by a given
test suite is based on direct tracing of the OS code control flow supported with
designated software-hardware means. It’s hardware component should have a
mechanism of trace interrupts with a designated vector (TRAP-interrupts). This
software component is composed by a handler of step-wise interrupts which performs
the role of the tracing program. Execution of each OS instruction is preceded by an
interrupt on the TRAP-vector, which results in the next activation of the tracing
program.
This technique of direct tracing matches the rule for non-interference (subsection 2.1).
However, it may be inapplicable for embedded systems because an embedded
application under test may work much slower when running in parallel with the
tracing program. Some operators covered in a real run may be unreachable in the
mode of coverage measuring.
A more appropriate technique of measuring code coverage is based on using codes of
prohibited TRAP instructions. This mechanism is realized with another designated
vector of TRAP-interrupts. In this case, the respective interrupt handler plays the role
of the tracing program and the coverage measurement process consists of the
following steps:

 the contents of the memory area with the OS body (its code) is saved in a
special array and then is filled with the codes of TRAP instructions;

 execution of the test application is started and a software TRAP-interrupt
occurs when any OS service is invoked;

 the tracing program is invoked as the interrupt handler, it restores the original
OS instruction from the special array and passes control to it;

 the restored original OS instruction is executed;
 if the next instruction to be executed is from the OS body, then it may be

either restored through previous executions or still replaced with a TRAP
instruction and then another TRAP-interrupt occurs which restores the
original OS instruction so that more and more OS instructions are restored.

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

89

Upon termination of the test application all OS instructions needed for this application
will be restored and their number equals to the number of invocations of the tracing
program.
This technique of code coverage measurement with TRAP instructions decreases the
time of the test application execution if compared to technique with direct tracing.
Each OS instruction corresponds to at most one invocation of the tracing program and
therefore the overall execution pace becomes close to that of a regular execution
without tracing. A complete match of these two paces is achieved when only one OS
instruction, which we'd like to find whether it's covered or not is replaced:

 this one OS instruction is saved and replaced with a TRAP instruction;
 the test application runs to termination and if the instruction is not restored

then it was not covered.
This technique with single instruction replacing requires much more processor time
because complete measurement of code coverage assumes iterative runs of the test
application as many times as there are instructions in the OS body.

6.5. Enhancements of the Flat Chart Technique
As noted in subsection 6.3, the flat chart technique allows to describe a quasi-
asynchronous order of test application runs only. To represent true asynchronous
threads of actions (as required for latency measurements), methods beyond the flat
chart scheme should be used.
The quasi-asynchronous order fits well for testing OS kernel services. However, for
testing services related to peripheral devices an extension of the flat chart technique
is needed which allows to specify real asynchronous action flows. This may be done
through introducing new forms, which specify alternatives in the action flow similar
to loop forms in subsection 5.1.
The flat chart technique may be further extended to distributed OS testing. In this
case, a test application is a program with true parallelism and if quasi-asynchronous
execution turns out to be suitable for particular testing, then the only extension needed
is refinement of action flows naming. Otherwise, a separate flat chart should be
developed for each physical processor with additional means for cross-referencing
among elements of these flow charts.
Flat charts form representations considered above are suitable for usage in C-
programs. Similar syntax forms, which require no any special pre-processing, may be
developed for other programming languages. However, when moving from one
language to another flat charts should be completely reworked which is effort
consuming as the total size of flat charts in a test suite may reach hundreds of
thousands lines. Thus, it is reasonable to develop a language independent unified
syntax for flat chart forms. Then porting a test suite to another platform requires only
to develop a pre-processor of several hundred lines of code. Development of a
universal syntax forms for test representation opens the opportunity to build

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

90

standardized test suites for embedded OS testing. A universal language for OS test
applications could be a step forward in development of an automatic test generator
[7], [8].

7. Results of Experiments
Experimental data provided below come from authors' experience in developing and
testing a particular software product – a compact embedded OS for real-time
applications with specific features requested by the customer. The overall approach
to developing this OS follows the classical one [9] initially designed for 16-bit single
board controllers manufactured by DEC since early 1980-ies. To emphasize the
compactness and specifics of such OSs they are usually named "kernals" or
"executives". The usual size of such an OS developed within this approach is about
several thousand lines of code in C plus several hundred lines in assembler.
The MCUexec (MicroController Unit EXECutive) product, which development the
authors participated in, supported execution of software applications on
microcontrollers HC-11 and HC-12 originally manufactured by Motorola, Inc. and
since 2015 by NXP Semiconductors. To test the MCUexec functional features, 9
groups of flat charts were developed with the described technique.
For integration testing of MCUexec additional 234 flat charts split in 17 groups were
developed, the total number of the developed flat charts being 378. Running all these
test suites resulted in 8 detected defects in different versions of MCUexec, each of
about 5 KLOCs in assembler. The overall effort for developing these flat charts,
running the test suites, and analyzing test run results was 6 staff-months.
Table 1. Nine groups of flat charts for testing the MCUexec functional features

Test group
identifier Brief description Number of

flat charts
Basic Task delay, system configuration and

reconfiguration
10

TaskId Getting the task Id 3
Task Task suspending/resuming 12
EventU Updating and checking of events 21
EventW Waiting for an event to be set or cleared 30
Slice Time-slicing features 6
Buf Buffer manipulating 23
MesS Message sending and receiving 20
MesR Reply features 19
 TOTAL: 144

8. Conclusion
The flat chart technique gives an efficient way to develop test suites for embedded
OS execution-based testing. Flat chart forms allow to build well-structured and
understandable descriptions of test applications with specifications of tasks and ISRs

Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП РАН, том 29, вып. 5, 2017 г., стр. 75-92

91

for parallel execution. The flat chat technique is suitable for checking the correctness
of implementation of basic OS mechanisms – data and signal exchange among action
threads, run-time allocations of memory, special structures, and processor’s time. Flat
charts are efficient not only for developing functional tests but for local and global
time measurements, for measuring the OS latency and code coverage. Standardized
test suites for embedded OS testing may be built with the described flat chart
technique.

References
[1]. Li Q., Yao C. Real-time concepts for embedded systems. CRC Press (2003).
[2]. Thane H., Hansson H. Testing distributed real-time systems. Microprocessors and Mi-

crosystems 24(9), 463–478 (2001).
[3]. Desikan S. Software testing: principles and practice. Pearson Education India (2006).
[4]. Myers G.J., Sandler C., Badgett T. The art of software testing. 3rd Edition. John Wiley &

Sons, New York (2011).
[5]. Hailpern B., Santhanam P. Software debugging, testing, and verification. IBM Systems

Journal 41(1), 4–12 (2002).
[6]. Brodie L. Thinking Forth. Punchy Pub (2004).
[7]. Biswal B. N. Pragyan N., Durga P. M. A novel approach for scenario-based test case

generation. In: International Conference on Information Technology 2008 (ICIT'08).
IEEE, (2008).

[8]. Lefticaru R., Florentin I. Automatic state-based test generation using genetic algorithms.
In: International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC 2007)

[9]. Comer D. Operating System Design: The Xinu Approach, 2nd Edition. – Boca Raton:
CRC Press, Taylor & Francis Group, 668 p. (2015).

Техника плоских схем для тестирования встроенных
операционных систем

В.В. Никифоров <nik@ iias.spb.su>
С.Н. Баранов <snbaranov@ iias.spb.su>

Санкт-Петербургский институт информатики и автоматизации
Российской академии наук,

199178, Россия, Санкт-Петербург, 14 линия, 39

Аннотация. Современные автоматические устройства все чаще оснащаются
микроконтроллерами. Логика работы автоматического оборудования поддерживается
рядом различных встроенных программных приложений, которые выполняются под
управлением встроенной операционной системы реального времени (ОС). Надежность
ОС чрезвычайно важна для правильной работы всей автоматической системы. Поэтому
встроенную ОС следует тщательно тестировать с помощью соответствующего набора
автоматических тестов. Такой набор тестов для тестирования встроенной ОС обычно
организуется как набор многозадачных тестовых приложений, которые должны

Nikiforov V.V., Baranov S.N. A Flat Chart Technique. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 75-92

92

выполняться под управлением данных. В статье представлены специальный язык для
определения соответствующей логики задачи тестирования и концепция плоских съем
для эффективного выполнения тестирования встроенной ОС. Чтобы избежать
интенсивной интерпретации текстовых строк во время тестового прогона,
предварительно образуется специальное представление теста, в котором исходная
строковая форма преобразуется в форму регулярного массива и, таким образом,
повышается эффективность тестирования.

Ключевые слова: встроенные приложения; операционные системы; тестирование
программного обеспечения; системы реального времени

DOI: 10.15514/ISPRAS-2017-29(5)-5

Для цитирования: Никифоров В.В., Баранов С.Н. Метод плоских схем. Труды ИСП
РАН, том 29, вып. 5, 2017 г., стр. 75-92 (на английском языке). DOI: 10.15514/ISPRAS-
2017-29(5)-5

Список литературы
[1]. Li Q., Yao C. Real-time concepts for embedded systems. CRC Press (2003).
[2]. Thane H., Hansson H. Testing distributed real-time systems. Microprocessors and Mi-

crosystems 24(9), 463–478 (2001).
[3]. Desikan S. Software testing: principles and practice. Pearson Education India (2006).
[4]. Myers G.J., Sandler C., Badgett T. The art of software testing. 3rd Edition. John Wiley &

Sons, New York (2011).
[5]. Hailpern B., Santhanam P. Software debugging, testing, and verification. IBM Systems

Journal 41(1), 4–12 (2002).
[6]. Brodie L. Thinking Forth. Punchy Pub (2004).
[7]. Biswal B. N. Pragyan N., Durga P. M. A novel approach for scenario-based test case

generation. In: International Conference on Information Technology 2008 (ICIT'08).
IEEE, (2008).

[8]. Lefticaru R., Florentin I. Automatic state-based test generation using genetic algorithms.
In: International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC 2007)

[9]. Comer D. Operating System Design: The Xinu Approach, 2nd Edition. – Boca Raton:
CRC Press, Taylor & Francis Group, 668 p. (2015).

