Designing variability models for software,
operating systems and their families'

L2E M. Lavrischeva <lavr@jispras.ru>
V.S. Mutilin <mutilin@ispras.ru>
'4.G. Ryzhov <ryzhov@ispras.ru>
!Ivannikov Institute for System Programming of the Russian Academy of Sciences,
25, A. Solzhenitsyn st., Moscow, 109004, Russia
’Moscow Institute of Physics and Technology,
9, Institutskiy per., Dolgoprudny, Moscow region, 141701, Russia

Abstract. The complexity of existing Legacy systems and the difficulty of amending
it led to the development of the new concept of variability of systems specified by a
model of the characteristics of FM (Feature Model). In the paper, we discuss the
approaches to formal definition of FM and creating on its basis variants of program
systems (PS), operating systems (OS) and families of program systems (FPS) for PS
and OS. We give methods of manufacturing of PS in the Product Family/Product Lines,
the conveyor of K.Czarnecki for assembling of artifacts in the space of problems and
solutions, logical-mathematical modeling of PS from the functional and interface
objects by Object-Components Method (OCM), extraction of the functional elements
from OS kernel to FM for the generation of new variants of the OS. We discuss
approaches for formalization of variability of legacy and new PS and their FPS. The
new concept of management of variability systems with help OCM is defined. The
approach to verify models of the FM, PS, FPS and OS and to configuration of
functional and interface objects for obtaining the variants of the resulting product are
proposed. We elaborate the characteristics for the testing process of variants of the PS,
OS and FPS.

Keywords: variability model; software systems; family of systems; configuration;
variant; functional, interface element; requirement; management

DOI:10.15514/ISPRAS-2017-29(5)-6

!The work is supported by RFFI grant N16-01-00352
93

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

For citation: Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability
models for software, operating systems and their families. Trudy ISP RAN/Proc. ISP
RAS, vol. 29, issue 5, 2017, pp. 93-110. DOI: 10.15514/ISPRAS-2017-29(5)-6

1. Introduction

In the recent years, new modeling methods of the program systems (PS) and families
(FPS) appeared in software engineering. The methods are aiming to ensure the
variability of software systems, both legacy and newly produced ones. One of the first
Feature Models (FM) called Product Line/Product Family was developed at the
Software Engineering Institute (sei.cmu.edu) for manufacturing software products
and their families basing on the assets by customers requests. Product line is group of
products or services sharing a common managed set of features that satisfy specific
needs of a selected market or mission. K.Czarnecki proposed a concept of generation
of PS and FPS based on FM from reuses and artifacts. Object-Component Method
(OCM) enables modeling of functional elements with support for variability [1-15].
In the paper, we introduce new models with functional and interface elements and
FM from these elements for generation of variants of PS and their families.

2. The Basic Foundation of the Variability of Systems and
Families

The FM for software products was first proposed by K.Pohl [1, 2] as a basis for
creating variants of software and OS [3-9]:
1) requirements for software are specified by means of the languages — FODA,
RSEB, Forfamel, RequiLine, CBFM , Use Case precedents UML etc.;
2) tools — ConIPF, CONSUL/Pure::Variants, GEARS are used for integrating
the variability of artifacts with special languages, like Koala, xADL, OVM,
VSL etc.;
3) OS mechanisms and functions (e.g. Unix, Linux, etc.), which can be
generated in LEADS, OCM[16-27] with the languages (VSL, ConlPF,
CBFM, Koalish, Pure::Variant, COVAMOF and others) establishing
relationships between characteristics of FM and the variants of PS.
This paper sets out the basic principles of simulation of variability of PS and FPS in
existing approaches of K.Pohl, K.Czarnecki, etc. and proposes the Object Component
Method of presenting FM on four-level design using a functional and interface
objects. We also define configuration management process in accordance with the
Deming cycle [22] to obtain variants of the PS and FPS.

2.1.Variability of Products and Systems

K.Pohl introduced the concept of variability in FM out of existing artifacts, reuses,
etc. Variability is a property of a product (system) for expanding, changing,
adaptation, or configuration for use in a particular context and to ensure its subsequent

94

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

evolution [1, 2]. The FM model includes common functional and non-functional
characteristics of items that can be used by members of the family of FPS for creating
different variants of the PS configured at variation points [1-29].The variation point
is a place in the Legacy-system, which are used for production variant of the big
systems.
FM defines the process of creating a product from existing software elements, which
are called Ready to Use Component (RUC) [11], which includes — reuses, assets,
applications, etc. The FM in Software Product Line Engineering (SPLE) is based on
two processes: engineering of domain and application engineering.
The main aspects of variability of products and systems are:

e model characteristics of the FM with variation points for functional

elements;
e variability of the system architecture with variation points;

® managing variability of RUC.

2.2. Variability in the Space of Problems and Solutions

K.Czarnecki [3, 6] provides a modeling of the architecture of the PS and FPS in the
problem space and problem solution similar to SPLE approach. The basis of the
approach is the characteristics of RUC that appear in FM implementing requirements
to PS or FPS. Between characteristics (n) and requirements (m) there may be nXm
relations. Each PS is defined by selecting a group of characteristics.

FM consists of the functions that are available to the user of the system and can be in
the spaces of problems and solutions, and describes the domain model by means of

DSL (Domain Specific Language) with a means for increasing the level of abstraction
of FPS.

2.3. Variability of the Functional and Interface Elements in OCM

The Object-component method OCM proposes a four-level design of object model
(OM) of PS and FPS [21]. After design of the OM, we obtain the graph G, which has
the form:

G= (th, Gtz, Gt3, Gm), where

Gy — objects at the synthesis level (t = 1);

Gr,— FM at the characteristics level (t = 2);

G3— functions at the structural level (t = 3);

G — interfaces relationships at the behavioral level (t = 4).

Fig. 1 shows the elements of processing on the levels of design and structure of OCM
objects, their structure, characteristic functions F, =(f,1, ...,fon) and interface elements
of them 1,= (ios,....Iom) [4, 13,21].

These features of functional and interface object of OM are located in the PS and FPS.

95

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

A functional object f, specifies a formal description of application functions PS,
which ensure the solution of problems of a particular domain. This object is given by
a triple: the name, data types and their values.
Interface object i, specifies a formal description of the operations and data of
functional objects. The i, object is a mediator of interacting functional objects and
Lo(fo) equals to In(f,) or Out(fs,) or Inout(f,), where

In(f;) is a set of input interfaces for transferring data from the f, to the other
objects;

Out(f,) is a set of output interfaces for transferring output data back to the object
o

Inout(f,) is an intermediate interface that converts data from/to f,.

I. Resumptive level

Definition of functional (fo) and interface (io)
objects

Il. Structural level
Definition of genus-species relationships of objects fo and io

-

Ill. The characteristic level

Defining predicates for the interaction of objects in the various
environments

(interfaces 7777
} N,

| Out o,
| Inoute

'&‘,}1. \icliﬁrgijfyi g 2\
{2} {2} . - -

IV. Behavioral level

Modeling the behavior of
functional objects using interface
objects

-

Fig. 1. OM of graph G with functional and interface objects

Axiom. For each functional object, the FPS has at least one characteristic (internal or
external) that defines semantics and a unique identification it in the set of F, and
interfaces 7.

Features allow to establish the truth of the matching types with Con; = (P, ..., Pi)
where Py is a condition predicate on F,,.

Four-level mathematical design FPS of functional and interface objects is defined by
the graph: G = (F,, I,, R), where F,— the set of functional objects, /, — the set of
interface objects, R — the set of relations between these objects [13].

96

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

Graph G includes a front-end objects /, (Fig. 2), which call the other object and pass
appropriate data with the required type and size.

Fig. 2. The graph G on the set of functional and interface objects

Nodes of G represent functional elements — f,1, fo2, fo3, fos, fos, fos, fo7, fos and interface
elements — 7,5, 705, io7, io8, and edges correspond to relations R between all types of
objects.

Elements f,; — fos are described in any programming language, and front-end objects
ios —ios are described in IDL. The parameters of the external characteristics of the
interface objects are passed between objects through interfaces, and are marked as /n
(input), Out (output) and /nout (input and output).

The relationship between the functional objects for, for is provided by interface objects,
i.e. for 18 In(for) or Out(for); for 1S In(for) or Out(for):

Jou S = (O“t(fnz)>]n(fok))’

Theorem. The functional interaction between two functional objects is correct, if the
first object fully matches functions and data that are required by another object: In(for)

cOut(fo).
With graph G it is possible to construct individual programs Py - P3 using

mathematical operation U and corresponding /ink operation:
1) Py= (P] UPQUPj);

2) P;= foz Uf05, link P=In i0s Oroz Ufoj);

3) P, :foz Ufog, link P=In io6 002 Ufog);

4) P3 :f04 Uf07, link P3:[I’l i07 O£04 Uf07);
Below we consider the design of models of systems and their variability models.

2.4. The definition of models of the PS, OS and their variability
This section discusses models of PS, FPS, OS and their variability.

97

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

2.4.1 The models of PS, FPS and their variability
Model of PS — M,,- (C;, M My, M;, M,), where

CL —are languages L =1Ly, L, ..., Ln,

My = (fo, fo2, ..., for) — functional objects;

M= (Msin, MSou, Msimou} 1s the set of services — input Ms;,, output Msou:
and server MSinous,

M;— is a set of interfaces in IDL;

M,— data of the PS [9, 13-22].

Model of variability PS — M., = (SV, AV) [14, 15], where

SV — submodel of variable architecture PS;

AV — submodel of variability of artifacts FPS or RUC.

M, enables variability of products and reduces development costs with the
help of RUC.
The submodel AV determines the structure of the PS from RUC, which are
stored in the repository. This submodel displays the characteristics of FPS, as
well as aspects of the relationship (through the interfaces) between different
levels of the OM. Variation points are handled by the configurator and
replaced by some other RUC (correct ones or new).
The submodel SV = ((G, tr:), Con, Dep), where

G, = (F}, LF;) —is a graph of artifacts on level #

tr; — connection between artifacts on level ¢;

Con, Dep — the predicates of the sets of artifacts that define the constraints
and dependencies among the functional elements and their indicators of
quality.

The concept of a family of programs introduced Dijkstra (1970), which is
based on "family" which can be derived from different versions of programs,
and can be adjusted and replaced according to requirements [11-24]. Family
of program systems — FPS is a set of systems with a common set of concepts,
specific data, and functional and interface characteristics that are inherent to
every member of the family.

Model of FPS family has the form:
Meps = {Mow, My, Myar, MC}, where
Moy — OM;
Mpy— FM;
M4 — variability model of FPS;
MC — model of configuration assemblies;

98

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

Model of variability of the FPS has the form [18]:

SVers= ((CF; (DR, TC); (CM, FR, TS, TA); (ER, TF)); Con, Dep), where

CF — characteristics of the system,

DR — detailed characteristics related to requirements of PS;

TC — relations between the requirements of PS and consumer properties;

CM - the set of formally described software elements of the set of
functions FR;

TS — the set of formally described tests;

TA — interfaces between elements of FPS;

ER and TF — database for processing elements of CM;

Con — are domain constraints;

Dep — are dependencies between artifacts of FPS.

To assess the variability of the FPS an orthogonal variability model (OVM)
is created [15, 16]. It coordinates the composition and interrelation of the
family elements and artifacts of the assembly processes of the PS and FPS.
The evaluation model is included in the integrated model of variability of the
OVM. It is used to assess the level of variability, taking into account the
requirements for artifacts.

The model OVM has the form:

OVM = (EVM, VP), where

EVM = (VL, VR),

VL — model for estimating the level of variability, taking into account the
requirements to the components of the architecture, artifacts and data;

VR — model for estimating the level of variability in the FPS, taking into
account the requirements, the architecture, artifacts, and data.

VP — the sets of variation points in the FPS structure that specify

individual characteristics of the PS, including the constraints Con and Dep
dependencies;
The OVM model defines two types of assessments of the FPS variability —
level and relevance to the consumer needs. The assessment of the level of
variability and the degree to which it meets the needs is carried out using the
value tree and the parameters VL and VR, which take into account the costs
and the frequency of producing new variants for the customer.

2.4.2. Model of operating system kernel and its variability
Model of OS kernel is a collection of individual program fragments
implementing the functions of the OS, e.g. Linux [3, 23, 25, 26].
Model of OS kernel is a set of artifacts and interfaces between them:
Mos = (S, My M,, M;), where
99

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

S;— a set of fragments of OS code;

Mjy— a set of features;

M, — a set of dependencies between features,
M; — a set of interface features (subset of M)).

The variability model of the OS is identical to the PS model [25].

The OS defines a set of functions and their features. To generate some variant
of OS we define the required set of functions and specify the set of interface
features.

3. Managing variability of systems

Variability of systems depends on requirements, FM, architecture,
documentation, tests, etc. In general, the variability can be implemented in
both PS and FPS. In the case of PS variability includes documentation,
functions and elements of any type. In FPS, the variability includes the sets
of individual products.
The variability of the FPS is managed with:

- variation points;

- versions of the artifacts;

- predicate constraints for variation points.
The wvariability is managed by method of E.Deming, determined by the
functions F1 - F4 (Fig.3) of the development of FPS [22-27]:

~—

S \
Plan
—how to improve - how to do
the next time -what to do
- at which stage |
of the plan |
‘a
\ Check Do ‘_
/
- productively - doing what
- effectively is planned 4

.
N /

Fig. 3. Functions in the Deming cycle
F1 — operations and actions for preparation of artifacts (Act) [23];
F2 — planning of system construction from the artifacts (Plan at the levels

100

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

of domain engineering and application engineering);

F3 — testing and verification of changes (Check);

F4 —update system FPS (Do).
Managing variability of FPS in accordance with the requirements R is
performed by:

1) justification of the solution F/ (requirement R7);

2) agreement on the implementation approach (requirement R2);

3) validating the correctness implementation (requirement R3);

4) tracking relationships between system characteristics at all
development stages (requirement R4).

4. Verification of the model variability

The object of verification is a model of the characteristics of the FM and
requirements for the development of a new system. Properties of objects,
subject to verification of FM are described by means of Linear Temporal
Logic (LTL) or a Computational Tree Logic (CTL). Main approaches to
formal verification of object are based on deductive verification and model
checking [22-29].

Model checking is only applicable to models with a finite number of states
and consists in checking that the model conforms to its formal specifications.
The specifications are described using the language of temporal logic and
assertions. If there is a mismatch between the model and specifications then
the counterexample is produced.
The model checking involves execution of the following actions:

1) Build a model of the functional and interface objects, which must have
a small number of states.

2) The specification of the requirements in terms of temporal logic.

3) Verification of the model.

5. Assembling artifacts and RUC in FPS

The assembly of artifacts includes steps F1-F4 using the RUC, and storing
them in the repository according to requirements and predicates for RUC [13-
15]. The configuration management of the PS in the FPS includes:

e identification of configuration items and data;
e managing the process of changes of artifacts and products;

e changing the models of variability under the new requirements;
101

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

e assessment of the variability of the PS and the FPS.

For managing artifacts and their variability in the PS and FPS, so-called model
configuration environment is created, which includes:

— building process of RUC and artifacts of the system;

— schema description of artifacts and database of requirements;

architecture, a set of basic RUC and PS in repository.
— Configurator, combining the artifacts in PS and FPS

Managing of configuration environment includes collecting data for such
standard operations like reporting and audit.

Reporting configuration — collecting and reporting all necessary information
about the state of the development process of the PS.

Audit configuration — guarantee that the PS contains the functionality planned
in accordance with the specifications including requirements, architecture and
user documentation.

In the development of PS the term "assembly" refers to the process of source
code transformation from artifacts or RUC, which can be done on a computer
and converted into code to run. One of the steps of Configurator is compilation
of the source code into intermediate code or into the machine code. Then the
linking process replaces the addresses of functions by real addresses used in
the program at run time.

Configuration build is based on (Fig.4):

- the engineering model for the development of elements,
components, assemblies, reuses, assets, services, product, FPS,
and development management to plan and coordinate this
activity [25];

- the process model under development "to ensure re-use" (for
reuse) and develop "the use of RUC" (with reuse); the model
for controlling variability in the process of configuring the
product from RUC.

102

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

IR

Interface AppFabric

\% *

*.dll

—

Eelipce / TFS

j@

*doc/ *xls *es/* xoml* dIl/* exe/* jre,

Developer

Fig. 4. General model of configurator in .Net

Organization of the development of the PS and FPS is based on the
following axioms.

Axiom 1. The technology defines a cyclic sequence of software development
processes and updating FPS.

Axiom 2. Each terminal characterization of OM is implemented by one and

only one RUC.

6. Testing of FPS products

The structure of FPS includes RUC and test products (plans, test suite, test
data, etc.) [25-28]. Test code is generated for testing individual PS and form
a set of tests for the FPS. Testing method of FPS is based on requirements-
based testing. It specifies the actions to manage testing on the basis of
"requirements" with the help of tests to verify functional and interface objects.
It determines the control degree of test objects and interfaces, and also the
evaluation criterion for the quality of the FPS for the variants of the PS family
of FPS. The scheme of testing of the FPS is given in Table 1.

103

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

Table 1. Basic schema of testing PS families

Types of testing test

Testing objects

Testing of software system
architecture

All products, individual
products, and functional
elements

A set of tests of the family, adaptation
as a set of FM to a specific product

All products are individual
products of the family

Testing requirements (ScrenTED)

Products of the FPS self-test

Self-testing

Functional objects and interface

The application of metadata

Functional objects and interface

"Test print components" "testable

Functional objects and interface

beans" (improving productivity)

Orientation to the service security and | Separate objects and interfaces
reliability (e.g. for Web applications)

Automatic test generation for | All products of the family
specifications in Boolean form

FCTA (Fault Contribution Tree | Family products
Analysis)

Thus, this technique of testing of FPS [28] consists of three steps:
1) Testing artifacts, applications, PS, RUC and reducing the defects in the
FPS.
2) Testing of FPS by means of tests.
3) Checking the degree of testing functional and interface objects of the
FPS.
The test used offline and is common to test individual elements of the FPS.
In the last step the degree is defined by the quality of testing metric K7~
KT =1, if tested operations are independent from each another;
KT =0, if tested operations depend on the execution path and
interoperability.
KT belongs to the segment [0; 1] and is calculated according to the
following formula: KT = lz": KTi

n

i=1

The final value KT of the FPS specifies the level of examination: K7'= 1 if
all objects are controlled and K7 = 0 if not all objects are controlled and
0<KT < 1 means that the objects of FPS partially controlled.

The metrics of the control interface CI; is calculated according to the formula:
104

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuadeabHOCTH TS IPOrPaAMMHBIX,
OIEPALMOHHBIX CHCTEM U uX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., cTp.93-110

c1-1/n¥ o,

Where CI; — the degree of correctness of data type conversion in the i-th
interface object.
If CI; = 1, the interface is fully controlled, C/; = 0, the interface is not
completely controlled;
CIi= (0, 1) — the interface is partially controlled.
The metric value of C/ means: 1 — control of C/; interface is complete; O -
otherwise.
The test used offline and is common to test elements of the FPS.

testing for compliance with specified requirements to individual family
members PS and the entire family FPS checks the degree of product testing.
If this degree is high, then the manufactured product is delivered to the
customer.

7. Conclusion

The basic fundamental concepts of modeling variability of PS and FPS are
given in the original methods of K.Pohl according to FM in Product Family,
K.Czarnecki in the space of problems and solutions with ready resources
(reuses, assets, artifacts, RUC, etc.) and logic-algebraic approach OCM for
modeling the FPS from functional and interface elements. We developed the
theory of model definition of FPS from the ready resources for software for
FM. The proposed variability model of FPS is based on the specified
requirements of the FPS for solving optimization problems of planning of
development processes and for evaluation of variability model. Methods for
verification, testing, and executing of variants of PS and FPS were proposed.

References

[1]. Pohl K., Bockle G., van der LindenF.J. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005. DOI: 10.1007/3-540-
28901-1.

[2]. Bachmann F., Clements P. Variability in software product lines. CMU/SEI Technical
Report CMU/SEI-2005-TR-012, 2005.

[3]. Lotufo R., She S., Berger T., Czarnecki K., Wasowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[4]. Lavrischeva E.M., Grischenko V.N. Methods and tools for object-component
programming // Cybernetics and System Analyses, 2003, Nel, pp.39-55.

105

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

[5]. Kang K., Cohen S., Hess J., Novak W., Peterson S. Feature-oriented domain analysis
(FODA) feasibility study. CMU/SEI Technical Report CMU/SEI-90-TR-21, 1990.

[6]. Berger T., She S., Lotufo R., Wasowski A., Czarnecki K. A study of variability models
and languages in the systems software domain. IEEE Transactions on Software
Engineering, 39(12):1611-1640, 2013. DOI: 10.1109/TSE.2013.34.

[7]. Zippel R. et al. Kconfig language. https://www.kernel.org/doc/Documentation/kbuild/
kconfig-language.txt.

[8]. Wang H., Li Y., Sun J., Zhang H., Pan J. A semantic web approach to feature modeling
and verification. Proc. of Workshop on Semantic Web Enabled Software Engineering
(SWESE’05), p. 44, 2005.

[9]. Lavrischeva E.M., Slabospitskaya O.0., Koval G.I., Kolesnik A.L. Theoretical Aspects
of Variability Management in Product Lines Families. Vesnik KNU, series on maths and
physics (1):151-158, 2011 (in Ukrainian).

[10]. Berger T. Variability mining with LEADT. DOI TSE 2014.

[11]. Lavrischeva, E.: Formal Fundamentals of Component Interoperability in Programming.
In: Cybernetics and Systems Analysis, vol. 46, no. 4, pp. 639-652. Springer, Heidelberg
(2010) http://link.springer.com/article/10.1007/s10559-010-9240-z

[12]. Lavrischeva E.M., Grischenko V.N. Assembling programming. K.: Basic foundation
industry Software Products. - K.: Nauk.dumka, 2009.-372 p.

[13]. Ekaterina Lavrischeva, Andrey Stenyashin, AndriyKolesnyk, Object-Component
Development of Application and Systems. Theory and Practice, Journal of Software
Engineering and Applications, 2014, 7, Published Online August 2014 in
SciReshttp://www.scirp.org/journal/jsea

[14]. Kolesnyk A., Slabospitskaya O. Tested Approach for Variability Management Enhancing
in Software Product Line. — In: ICT in Education, Research and Industrial Applications:
Integration and Knowledge, Proc. 8 —th Int. Conf. ICTERI 2012, CEUR —WS.org/Vol —
848, ISSN 1613 —0073, urn:nbn:de:0074 —848-8. — P. 125 —133.

[15]. Kolesnyk A.L. Model and methods development families of variants of systems. —
Autoref. Disser, KNU, 2013. —22p. (ukr.)

[16]. Cohen M.B., Gibbons P.B., Mugridge W.B., Colbourn C.J. Constructing test suites for
interaction testing. Proc. of 25-th Intl. Conf. on Software Engineering, pp. 38-48. IEEE,
2003. DOI: 10.1109/ICSE.2003.1201186.

[17]. Lotufo R., She S., Berger T., Czarnecki K., Wasowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[18]. C.Kister, A. Dreiling and K. Ostermann’s ,Variability Mining with LEADT/- work is
supported by ERC grant #203099

[19]. Grindal M., Offutt A.J., Andler S.F. Combination testing strategies: a survey. Software
Testing, Verification, and Reliability, 15(3):167-199, 2005. DOI: 10.1002/stvr.319.

[20]. Lavrischeva E.M. Slabospitskya O.A. Approach to development object-component model
family systems software products. Problems of Programming, 2013, Ne3, pp.14-26 (ukr.)

[21]. Lavrischeva E.M. Theory of object-components modeling of the programs systems.
Preprint ISP RAS Ne 29, 2016, www.ispras.ru/preprints/docs/prep_29 2016.pdf.

[22]. Deming E. New economics for manufactures, governments and education, 1993.

[23]. Gruler A., Leucker M., Scheidemann K. Modeling and model checking software product
lines. Proc. of IFIP Intl. Conf. on Formal Methods for Open Object-based Distributed
Systems (FMOODS), pp. 113-131. Springer, 2008. DOI: 10.1007/978-3-540-68863-1_8.

106

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

[24]. Ekaterina M. Lavrischeva. Assemblling Paradigms of Programming in Software
Engineering, 2016, 9, pp-296-317, http://www .scrip.org/journal/jsea,
http://dx.do.org/10.4236/ jsea.96021

[25]. Kuliamin V.V., Lavrischeva E.M., Mutilin V.S., Petrenko A.K. Verification and analysis
of variable operating Systems.Trudy ISP RAN/Proc. ISP RAS, 23:359-370, 2012 (in
Russian) Vol 28, Iss.3, pp.189-209. DOI: 10.15514/ISPRAS-2016-28(3)-12

[26]. Lavrischeva E.M., Petrenko A.K. Software Product Lines Modeling. Trudy ISP
RAN/Proc. ISP RAS, 2016, vol 28. Iss. 6, pp. 180 -190. DOI: 10.15514/ISPRAS-2016-
28(6)-4

[27]. C.Késtner, A. Dreiling, K. Ostermann, Variability Mining with LEADT, In Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE), pp. 157-166.
2009.

[28]. Korotun T.M. Methods and tools testing families system in resource-limited settings
(ukr.), 2005, Autoref. Dis. IC NANU, 22 pages.

[29]. Lavrischeva E.M. Software Engineering. Paradigms, Technology, CASE-tools —M: Urait,
2016. —280 p.

NMpoekTupoBaHne mogenen BapmabenbHOCTU Ans
nporpamMMHbIX, ONepauMoHHbIX CACTEM U NX CEMENCTB

12E M. Jlaspuwesa <lavr@ispras.ru>
'B.C. Mymunun <mutilin@ispras.ru>

TA.T. Poioicoe <ryzhov@ispras.ru>
Uncmumym cucmemnozo npozpammuposanus um. B.I1. Heannuxosa PAH,
2. Mockea, 109004, yn. A. Conocenuyvina, 25
’Mocko6ckuii (husuKo-mexuuueckuii uncmumynt,
Mockosckas 00x., 2. [loneonpyonuwiii, 141701, yn. Hucmumymckas, 9

AnHoTanms. CII0)KHOCTb CYIIECTBYIOLIMX CHCTEM M HX COIPOBOKICHUS IIPUBEJIA K CO3aHHIO
HOBOH KOHLENIMU BapUaOEIbHOCTH CHUCTEM, ONPEIEIAeMOHl ¢ IIOMOIIBIO MOJCIH
xapakTepucTik (MX). B craTbe MBI paccMaTpuBaeM MoaX0ab! K (popMaTbHOMY ONpPEAETICHUI0
MX u co3maHuio Ha UX OCHOBe BapuaHTOB mporpamMmubix cucteMm (IIC), omepannoHHBIX
cucreM (OC) u ux cemericTB. MbI paccMoTpuM MeToas! co3nanus [1C B nuHelike TpoIyKTOB
(ProductFamily/ProductLines), xouBeitepe K.UapHeukn mns cOopku apTedakToB B
MIPOCTPAHCTBE NPOOJIEM WU pEIIeHUH, JOTHKO-MareMaTHieckoe MopenupoBanue I[IC n3
(YHKIMOHATIBHBIX U HHTEP(EHCHBIX 2JIEMEHTOB B 00BbEKTHO-KOMIIOHEHTHOM Metone (OKM),
BhIJeIeHHe QyHKIMOHAIBHEIX dneMeHToB B OC B MX ju1s reHepanuy HOBBIX BapUAHTOB TOMH
cucreMbl. OOCyKIaroTCsl MOAXO0ABI opManu3anuy BapuadeIbHOCTH CYIECTBYIOIIHX, HOBBIX
[IC m ux cemeiictB. OmpexneneHa HOBas KOHLENIHMS YIIPaBICHUS BapHaOEIbHOCTBIO C
nomousio OKM. IIpennoxkens! noaxons! k Bepuduxauun MX mns IIC, OC, ux cemelcTs u
KOHQHUTYpHUpOBaHUS (PYHKIMOHAIBHBIX U MHTEP(EHCHBIX OOBEKTOB IJIS MOJTYYCHHS HOBBIX
BapHaHTOB CHUCTEMBI. I3ydeHBl XapakTepHcTHKH mpomecca TectupoBanus [IC, OC u ux
CEMEHCTB.

Kiaw4eBble cioBa: Mojelb BapPIa6eJ'ILHOCTI/I; nporpaMMHasl CUCTEMaA, CEMEHCTBO CUCTEM;

107

Lavrischeva E.M., Mutilin V.S., Ryzhov A.G. Designing variability models for software, operating systems and their
families. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 5, 2017, pp. 93-110

KOH(MUrypanys; BapuaHT, (QYHKINOHAIBHBIA, WHTEpQEHCHBIH »IEMEHT, TpeOOBaHUE;
yTpaBJIeHHE.

DOI: 10.15514/ISPRAS-2017-29(5)-6

For citation: Jlappumesa E.M., Mytunun B.C., PeokoB A.I'.. IlpoektupoBanue mojeneit
BapuabebHOCTH JUISL TIPOTPAMMHBIX, OIEPAIMOHHBIX CHCTEM M ux cemencts. Tpyovt UCIT
PAH, tom 29, Bem. 5, 2017 1., ctp. 93-110 (Ha aHrIHiicKOM s3bike). DOL:
10.15514/ISPRAS-2017-29(5)-6

Jlureparypa

[1]. Pohl K., Bockle G., van der LindenF.J. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, 2005. DOIL: 10.1007/3-540-
28901-1.

[2]. Bachmann F., Clements P. Variability in software product lines. CMU/SEI Technical
Report CMU/SEI-2005-TR-012, 2005.

[3]. Lotufo R., She S., Berger T., Czarnecki K., Wasowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

[4]. Jlappumesa E.M., I'pumenko B.H. Meronsl u cpenctBa 0OBEKTHO-KOMIIOHCHTHOTO
nporpammupoBanus. Kubepaernka u cucremustit anamms. 2003.-Nel, c. 39-55.

[5]. Kang K., Cohen S., Hess J., Novak W., Peterson S. Feature-oriented domain analysis
(FODA) feasibility study. CMU/SEI Technical Report CMU/SEI-90-TR-21, 1990.

[6]. Berger T., She S., Lotufo R., Wasowski A., Czarnecki K. A study of variability models
and languages in the systems software domain. IEEE Transactions on Software
Engineering, 39(12):1611-1640, 2013. DOI: 10.1109/TSE.2013.34.

[7]. Zippel R. et al. Kconfig language. https://www.kernel.org/doc/Documentation/kbuild/
kconfig-language.txt.

[8]. Wang H., Li Y., Sun J., Zhang H., Pan J. A semantic web approach to feature modeling
and verification. Proc. of Workshop on Semantic Web Enabled Software Engineering
(SWESE’05), p. 44, 2005.

[9]. JlaBpumesa E.M., Crabocnuupkas O.A., Kosans I'1., Konecuuk A.A. Teopernueckue
aCIeKThl yIpaBieHus BapuabeapHOCThI0 B cemeiicTBax [IC. Becunk KHY, cepust pusz.—
MarT. Hayk, 2011, Ne 1, ctp. 151-158.

[10]. Berger T. Variability mining with LEADT. DOI TSE 2014.

11]. Lavrischeva, E.: Formal Fundamentals of Component Interoperability in Programming.
In: Cybernetics and Systems Analysis, vol. 46, no. 4, pp. 639—652. Springer, Heidelberg
(2010) http://link.springer.com/article/10.1007/s10559-010-9240-z

[12]. JlaBpumesa E.M., I'punienko B.H. Coopounoe nporpammupoBanne. OCHOBBI HHIY CTPHH
nporpammubIx npoaykros. K.: Hayk. [lymka, 2009, 371 c.

[13]. Ekaterina Lavrischeva, Andrey Stenyashin, Andriy Kolesnyk, Object-Component
Development of Application and Systems. Theory and Practice, Journal of Software
Engineering and Applications, 2014, 7, Published Online August 2014 in
SciReshttp://www.scirp.org/journal/jsea

[14]. Kolesnyk A., Slabospitskaya O. Tested Approach for Variability Management Enhancing
in Software Product Line. — In: ICT in Education, Research and Industrial Applications:

108

JlaBpumesa E.M., Mytunun B.C., PepkoB A.T. TIpoektupoBaHue Mozieneil BapuabeabHOCTH TS HPOTrPaMMHBIX,
OIEPALMOHHBIX CHCTEM U UX ceMe#cTB. Tpyost UCII PAH, Tom 29, Bein. 5,2017 1., ctp.93-110

[15].

[16].

[17].

[18].
[19].

[20].

[21].

[22].
[23].

[24].

[25].

[26].

[27].

[28].

[29].

Integration and Knowledge, Proc. 8 —th Int. Conf. ICTERI 2012, CEUR —WS.org/Vol —
848, ISSN 1613 —0073, urn:nbn:de:0074 —848-8. — P. 125 —133.

Konecuuk A.JI. Monenu u MeTobl pa3paboTKU CEMEHCTB BapHaHTHBIX IPOrPaMMHBIX
cucreM.-ABroped.- KHY .- 2013. 22 c.

Cohen M.B., Gibbons P.B., Mugridge W.B., Colbourn C.J. Constructing test suites for
interaction testing. Proc. of 25-th Intl. Conf. on Software Engineering, pp. 38-48. IEEE,
2003. DOI: 10.1109/ICSE.2003.1201186.

Lotufo R., She S., Berger T., Czarnecki K., Wasowski A. Evolution of the Linux kernel
variability model. Proc. of SPLC’10, LNCS 6287:136-150, Springer, 2010. DOI:
10.1007/978-3-642-15579-6_10.

C.Kaister, A. Dreiling and K. Ostermann’s ,Variability Mining with LEADT/- work is
supported by ERC grant #203099

Grindal M., Offutt A.J., Andler S.F. Combination testing strategies: a survey. Software
Testing, Verification, and Reliability, 15(3):167-199, 2005. DOI: 10.1002/stvr.319.
Jlappumea E.M., Cnabocrunkas O.A. Tlogxomq K TOCTPOEHHIO OOBEKTHO-
KOMIIOHEHTHOH MOJIeNu ceMelcTBa MPOTPaMMHBIX ~ MPOAYKTOB. [Ipobmembr
nporpammupoBanust, 2013, Ne3, ctp. 14-26 (yxp.).

JlaBpuiueBa E.M. Teopust 00BEKTHO-KOMIIOHEHTHOTO MOJCIMPOBAHUS POrPAMMHBIX
CHCTEM. IIpenpunt HCII PAH Ne 29, 2016.
http://www.ispras.ru/preprints/docs/prep 29 2016.pdf.

Deming E. New economics for manufactures, governments and education, 1993.

Gruler A., Leucker M., Scheidemann K. Modeling and model checking software product
lines. Proc. of IFIP Intl. Conf. on Formal Methods for Open Object-based Distributed
Systems (FMOODS), pp. 113-131. Springer, 2008. DOI: 10.1007/978-3-540-68863-1_8.
Ekaterina M. Lavrischeva. Assemblling Paradigms of Programming in Software
Engineering, 2016, 9, pp-296-317, http://www.scrip.org/journal/jsea,
http://dx.do.org/10.4236/ jsea.96021

Kynsamun B.B. JlaBpumesa E.M., Myrunun B.C., Tlerpenko A.K. Bepudukanus u
aHanu3 BaprabenbHbIX onepanroHHbIX cucteM. Tpynast UCIT PAH. Tom 28. Beim. 3, c1p.
189-209. DOI: 10.15514/ISPRAS-2016-28(3)-12

Jlappumesa E.M. Ilerpenxo A.K. MozaenupoBaHne CeMEHCTB MPOTPaMMHBIX CHCTEM.
Tpynet UCIT PAH, 2016, Tom 28. Beim. 6, cTp. 180 -190. DOI: 10.15514/ISPRAS-2016-
28(6)-4

C. Késtner, A. Dreiling, K. Ostermann, Variability Mining with LEADT, In Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE), pp. 157-166.
2009.

Korotun T.M. Methods and tools testing families system in resource-limited settings
(ukr.), 2005, Autoref. Dis. ICNANU, 22 pages.

JlaBpumesa E.M. [Iporpammuas umxenepus. [lapagurmsl, Texnonoruu, CASE-cpencta
nporpamMmupoBanus.2 uza. M: HOpaiit, 2016, 280 c.

109

