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Abstract. Null pointer dereferencing remains one of the major issues in modern object-oriented 
languages. An obvious addition of keywords to distinguish between never null and possibly 
null references appears to be insufficient during object initialization when some fields declared 
as never null may be temporary null before the initialization completes. There are several 
proposals to solve the object initialization problem. How can they be compared in practice? 
Are the implementations sound? This work presents a set of examples distilling out the use 
cases from publications on the subject and open source libraries and explains the criteria 
behind. Then it discusses expected results for a selected set of tools performing null safety 
checks for Eiffel, Java, and Kotlin, and concludes with the actual outcomes demonstrating 
immaturity of the solutions. 
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1. Introduction 
To construct a sound null-safe type system, most solutions of the problem add a notion 
of non-null and maybe-null types, usually expressed with additional type annotations. 
Such annotations would be sufficient to solve the null safety problem if objects could 
be created in an atomic operation, so that all fields marked as non-null were initialized 
with object references. Unfortunately, sequential initialization of the fields breaks the 
solution. Several proposals solving the object initialization issue     suggest extending 
the type systems further to identify objects that are not completely initialized. Another 
group of approaches is based on static analysis   that does not require any additional 
annotations at the expense of more sophisticated checks. 
The theoretical solutions in the cited works specify a subset of an object-oriented 
language rather than a full language. The omission of the real-life language constructs 
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leads to omission of all required checks in the actual implementations. This causes 
the following issues: 

 It is hard to reason about the extended model for a real language because all 
the consequences of such an extension are unclear and difficult to grasp 
when they go beyond intuition and when combination of such features 
requires exhaustive examination of possible interactions. The models used 
in the theoretical frameworks are limited for exactly this reason: they are not 
easily scalable and an addition of a new construct increases the size of the 
associated proofs proportionally, i.e. the factor is multiplicative rather than 
additive. This can be seen on the mechanically checked formalization of the 
null safety in the local context  where a combination of conditional 
expressions, loops and exceptions greatly increased the size of the proofs. 
Moreover, some language features, such as value types, exceptions, 
concurrency or garbage collection may require a complete redesign of the 
model with much higher complexity impact. 

 The model and the real language are decoupled informally – they are 
developed by different people – and formally – the proofs for the model and 
the implementation for the real language are carried out using different tools. 
There is no guarantee that an implementation is correct with respect to its 
model. 

This leads to slow adoption of the total safety guarantees in production. The total 
guarantees are replaced by the “partial” ones. E.g., null safety is guaranteed only when 
the program does not do anything “wrong”. Unfortunately, this defeats the whole 
purpose of the safety guarantees because null dereferencing errors in such “wrong” 
programs may happen at unexpected places, including trusted ones. 
This work is a case study of the null safety guarantees provided by existing 
implementations rather than by the theoretical findings. It presents a set of examples 
that can be used to 

 check if a particular programming pattern is handled by the implementation; 
 perform measurable comparison of different solutions in terms of their 

soundness, expressiveness and verbosity. 
The examples are written in Java, Kotlin, and Eiffel. They are available for 
independent analysis at https://bitbucket.org/kwaxer/null-safety-
benchmark/src/?at=2017-ispras. I evaluate the benchmarks on the Kotlin and Eiffel 
compilers and the Checker Framework for Java. 
The main contributions of this work are: 

 development of execution scenarios of object initialization to benchmark 
different null safety solutions and to provide measurable comparison; 

 evaluation of production solutions with null safety guarantees against the 
benchmarks. 
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The rest of the paper is organized as follows. Section 2 identifies the key reasons of 
the object initialization problem and specifies additional requirements to the 
benchmarks. Section 3 gives an overview of the existing work in the area. Section 4 
classifies scenarios to test implementations with null safety guarantees and reviews 
the structure of the proposed benchmark suite. Section 5 presents the results of the 
evaluation on some production environments. Section 6 provides a quick summary 
and concludes with the directions of future work. 

2. Overview 

2.1 Reasons of the object initialization problem 
Null safety is complicated for object initialization. To understand why, I suggest to 
look at how program execution can lead to the null reference exception. Firstly, the 
object that causes the problem should not complete its initialization, i.e., some of its 
fields of non-null types should be null. Secondly, this object should be accessible – 
either directly or through some variables. Thirdly, the information that its 
initialization is incomplete should be lost. Otherwise, it would be easy to report the 
error at compile time. Finally, the reference retrieved from the uninitialized field of 
the object should be dereferenced to trigger the exception. To summarize, there are 
the following roots of the problem: 

 Non-atomic initialization of an object leads to the possibility to have fields 
with null values even when their type is non-null. 

 Aliasing allows for accessing the same object from an arbitrary point of the 
program, in particular, from the code that does not expect an incompletely 
initialized object. 

 Uncontrollable control flow, interrupting the regular one, makes sequential 
reasoning about program execution useless. 

 Dereferencing of an uninitialized field of the incompletely initialized object 
triggers the exception. 

The solutions extending the type system with new types limit the operations on 
incompletely initialized objects. The solutions based on static analysis, such as 
practical void safety , specify the conditions, when dereferencing may be unsafe, and 
forbid such dereferencing altogether. 

2.2 Restrictions on the benchmarks 
In order to focus only on the object initialization problem, I put the following 
restrictions on the code in the benchmarks: 

 Self-containment – the code should not rely on or assume any null-safe 
properties of the classes outside the examples. 
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 Limited null safety scope – the code should reflect only issues with object 
initialization. Other mechanisms, such as array initialization and 
initialization of static fields in Java, companion objects in Kotlin and once 
features in Eiffel, as well as general data flow analysis for null safety are out 
of scope. 

3. Related work 
Alexander J. Summers and Peter Müller  set the following design goals of the type 
system they propose to use for null safety: 

1. Modularity: the type system can check each class type separately. 

2. Soundness: the type system is safe, i.e., null pointer exceptions are 
impossible at run-time. 

3. Expressiveness: the type system handles common initialization patterns. In 
particular, it allows objects to escape from constructors and supports the 
initialization of cyclic structures. 

4. Simplicity: the type system is simple and requires little annotation overhead. 

I use this list in section 4 as the base for further fine-grained classification of solution 
properties. Then, the properties can be evaluated with specific examples, thus 
allowing for measurable comparison of different implementations. The detailed 
classification of the solution properties is reviewed in the earlier publication . The 
review is based on the associated algorithms and descriptions. Compared to this work, 
it considers expected behavior of the solutions with wider spectrum of properties, 
because it also includes qualitative ones, such as modularity. On the other hand, that 
review does not provide actual code to check the tools, nor does it verify that the 
proposed test cases can be expressed in a specific language. 
Every publication on the problem of object initialization has few examples that 
authors use either to demonstrate issues with their approach, or to explain how the 
issues are resolved. I collected all the examples from the publications I know about 
as well as found in class libraries and divided them into the following groups. 

3.1 Polymorphic call from a constructor 
When a constructor of a superclass is invoked in C#, a call to a virtual method on 
this is considered a bad practice. At this moment, subclass fields of the object are 
not initialized yet and using them in the polymorphic call is unsafe. Manuel Fähndrich 
and Rustan Leino  describe an example of this situation. In a descendant class, before 
one of its fields is set, the superclass constructor is called. The constructor invokes a 
virtual method. The override of the method in the descendant accesses the 
uninitialized field leading to NullReferenceException. 
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Xin Qi and Andrew C. Myers  give a similar example where they consider a class 
Point and its subclass CPoint that adds a color attribute. 

3.2 Polymorphic callback from a constructor 
Fig. 1 shows a sample object structure taken from the portable GUI library 
EiffelVision1 employing a bridge pattern to support different platforms. A client of 
the library directly works only with the interface objects. Upon its creation, the 
interface object creates an implementation object that, on completion of initialization, 
notifies the interface object via a callback. If at this point some non-null fields of the 
interface object are unset, access on them causes a null dereferencing error. 

 

Fig. 1. Object structure in a portable GUI library. 

3.3 Modification of existing structures 
The ability to invoke regular procedures inside a creation procedure is convenient, 
e.g., for a mediator pattern . This pattern decouples objects so that they do not know 
about each other, but still can communicate using an intermediate object, mediator. 
Concrete types of the communicating objects are unknown to the mediator, and, 
therefore, the mediator cannot create them. A mediator's client is responsible for 
creating necessary communicating objects instead. 
The communicating objects know about the mediator and can register themselves in 
the mediator according to their role. If the registration is done in the constructors of 
the communicating objects, the mediator's clients do not need to clutter the code with 
calls to a special feature register every time they create a new communicating object. 
An assignment like x = new Comm (mediator) should do both actions: the 
recording of the mediator object in the new communicating object, and the 
registration of the communicating object in the mediator. A chat room adapted from  
and shown in Fig. 2 is an example implementing a mediator pattern. 

                                                           
1 https://www.eiffel.org/doc/solutions/EiffelVision%202 
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class ROOM create make feature 
 users: ARRAYED_LIST [USER] 
 make 
  do 
   create users.make (0) 
  end 
 join (a: USER) 
  do 
   users.extend (a) 
  end 
 send (s: STRING) 
  do 
   across users as u loop 
    u.item.receive (s) 
   end 
  end 
end 

 class USER create make feature 
 room: ROOM 
 make (r: ROOM) 
  do 
   room := r 
   r.join (Current) 
  end 
 send (s: STRING) 
  do 
   room.send (s) 
  end 
 receive (s: STRING) 
  do 
   io.put_string (s) 
   io.put_new_line 
  end 
end 

Fig. 2. Example of a mediator pattern (in Eiffel). 

When the feature join is called in the creation procedure make of a USER object, all 
fields of the object should be set. 
The need to register a newly created object in an existing one is also present in the 
earlier example with the GUI library in Fig. 1 where the newly created 
implementation object has to register itself in the existing GUI toolkit object to 
dispatch events from the underlying GUI toolkit to the implementation object and 
then to the interface object. 

3.4 Circular references 
An issue arises when two objects reference each other. If the corresponding fields 
have non-null types, access to them should be protected to avoid retrieving null by 
the code that relies on the field types and, therefore, expects non-null values. Manuel 
Fähndrich and Songtao Xia  demonstrate the problem on a linked list example with a 
sentinel. 
When a new list is constructed, a special sentinel node is created. The sentinel should 
reference the original list object. In other words, an incompletely initialized list object 
has to be passed to the sentinel node constructor as an argument. An attempt to access 
the field that is expected to reference the sentinel node inside the sentinel constructor 
would compromise null safety. Therefore, there should be means to prevent such 
accesses or to make them safe (e.g., by treating field values as possibly null and as 
referring to uninitialized objects). 
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There are similar circular references in the classes included in the library Gobo2 to 
model XML documents. According to the XML specification , every document has 
one root element and every XML element has one parent, coinciding with the 
document node for the root element. 

3.5 Self-referencing 
A particular case of circular references concerns an object that references itself rather 
than another object. Xin Qi and Andrew C. Myers  give the example of a binary tree 
where every node has a parent, and the root is a parent to itself. At a binary node 
creation, left and right nodes should get a new parent and the parent should reference 
itself. With any initialization order there are states where the new binary node should 
be used to initialize either its own field or the field parent of its left or right nodes 
before it is completely initialized. Therefore, arbitrary accesses to this node should be 
protected. 

3.5 Safety violations 
In addition to valid cases, authors usually mention examples that should trigger a 
compiler error. This aims at the original goal: a sound solution should catch potential 
null dereferencing at compile time. 

4. Benchmark criteria and null safety suite 
The most important goal of the null safety design is soundness. It limits the 
possibilities to write arbitrary code that is still null safe. The general problem of safe 
object initialization is undecidable. Therefore, the code can be checked in finite time 
only when some restrictions are imposed on it. 
Soundness and expressiveness work against each other: the simpler the language 
rules, the less code can be written without violating them. If the rules are too strict, 
some scenarios found in real software can become extinct. E.g., according to the 
theory, the raw types  do not allow for creation of circular structures, the free and 
committed types  rule out registration of objects in existing object structures inside 
constructors, and practical void safety  disallows any qualified calls, including 
potentially safe ones, as soon as there are some incompletely initialized objects in the 
current execution context. 
The proposed benchmark suite ignores some important properties of the solutions. 
Measuring such properties requires significantly different code with tight dependency 
on the underlying language and involved tools. Consequently, it would be difficult to 
do the comparison. The ignored criteria include 

 Modularity, including scope, telling whether it is sufficient to analyze 
(recursively) ancestors and suppliers of the class to be checked, and 

                                                           
2 http://www.gobosoft.com/eiffel/gobo/xml/ 
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incrementality, telling whether changes to previously checked code require 
a partial recheck rather than a complete one; 

 Simplicity, including ease of use, telling whether few new simple rules are 
added to the language to make object initialization null safe, and 
performance, telling the resource consumption (algorithmic space and time 
complexity) to support the additional checks. 

The assessment of different solutions from the theoretical point of view, based on the 
analysis of the corresponding algorithms, is given in the earlier paper  that, in 
particular, elaborates on the criteria listed above. The current work focuses on the 
behavior of the actual implementations instead. The benchmarks are applicable only 
to existing tools and allow for measuring the number of additional type marks that 
need to be specified besides the marks “non-null” and “maybe-null”.  
The test suite consists of two main parts: one for soundness examples and one for 
expressiveness examples. Because there are certain differences between languages in 
syntax and semantics, every example is equipped with an accompanying document 
describing the execution scenario. The document also lists possible variations of the 
example if present. In the text below, the names of the examples are underlined. 

4.1 Soundness 
Authors of all the solutions      mentioned in  section  claim them to be sound. 
Unfortunately, not all aspects of a real programming environment are usually 
reflected in a formal model. In particular, none of the null safety formalizations 
reflects garbage collection that is an important channel to compromise safety 
guarantees. 
The roots of the object initialization problem, mentioned in section , are mapped to 
the programming language constructs as follows: 

 Non-atomic initialization corresponds to the order of initialization of the 
object fields intermingled with other computations. This work does not 
consider languages that support atomic (transactional) object initialization. 

 Explicit aliasing becomes possible when an object is assigned to a field of 
an existing object, either passed to the constructor as an argument or directly 
reachable from the current context, or when the new object is thrown as an 
exception. Implicit aliasing happens when the class declares a finalizer that 
gets access to the object. 

 Uncontrollable control flow can be caused by concurrent execution, 
preemptive execution (with exception and signal handlers), cooperative 
execution (coroutines). 

 Dereferencing is done by a qualified call of the form target.access 
where access stands for a field or method name and target is a name of 
a reference corresponding to one of uninitialized fields of the object. 
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The soundness examples demonstrate potential scenarios where execution can lead to 
a null dereference error at run-time. The language tools should be able to detect and 
to report the possible error at compile time – this constitutes the null safety guarantees. 
If the error is not detected, the corresponding implementation is unsound. 
If a program context does not expect an uninitialized object, there should be no 
channels that allow for the object to escape to this context. The following language 
mechanisms can make such escaping unexpected: 

 exceptions; 
 concurrency; 
 cooperative execution. 

These mechanisms are used in the examples in an attempt to demonstrate 
unsoundness of implementations. This is done by performing an unsafe dereferencing 
using either unqualified calls (of the form field_name) that access fields of the 
current object, or qualified calls (of the form expression.field_name), that 
access fields of the current or some other object. The values of the fields may be null 
or (recursively) have null values in non-null fields of referenced objects. 
The escaping channels depend on the programming language. The most common ones 
are discussed next. 

4.1.1 Registration in an existing object 
A program can register a new object in an existing one. When this is done before the 
new object is completely initialized, there is a problem: the incompletely initialized 
object can be accessed via the exiting object because of aliasing. Thus, such 
registration should be disallowed or no accesses to the fields can assume that they are 
non-null. The scenario can be further classified by 

1) the source of the reference to the existing object that can be either (a) passed 
as an argument to the constructor with a variant that the passed reference 
could correspond to the newly created (fresh) object rather than a fully 
initialized one, (b) retrieved from the current execution context (static fields, 
companion and singleton objects, once functions); 

2) the type of the object in which the new one is registered: it can be (a) a user-
defined one or (b) a built-in one (e.g., an array, a tuple, etc.). 

4.1.2 Reclamation of incompletely initialized objects 
Finalizers are the methods called before object's memory is reused. The finalizers are 
registered for calling by the run-time after object's memory is allocated and before 
the constructor is invoked. If the object initialization does not complete (due to an 
uncaught exception in the constructor), the finalizer is invoked on the incompletely 
initialized object. Unless a programmer keeps track of object initialization, there is 
no way to figure out what state the object is in. Therefore, the current object in a 
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finalizer should be treated like at the beginning of a constructor. The reclamation 
example accesses non-null fields that are not initialized and, therefore, should be 
flagged as erroneous. 

4.1.3 Out-of-order object transfer 
Most programming languages allow for transferring references to objects bypassing 
regular control flow. The most familiar mechanism is exceptions. If a new exception 
object referencing an incompletely initialized one is thrown, the reference to the 
incompletely initialized object becomes accessible in the code that relies on the type 
system rules and does not expect uninitialized fields. The transfer example attempts 
to throw such an exception object. 

4.2 Expressiveness 
The examples in this group do not lead to null pointer exceptions and can be accepted 
as valid by the tools performing null safety checks. If the checks are too strict, they 
can rule out legitimate use cases. 

4.2.1 Access to an initialized object 
As soon as an object is completely initialized, it can be safely accessed even when it 
is used inside its constructor. In particular, it is safe to perform 

 a callback on this object from the code to where it is passed. This pattern is 
discussed in section . 

 registration of any form (argument, context, fresh) listed in the section about 
soundness. (See also section .) 

 out-of-order transfer as soon as the exception object refers to the completely 
initialized one. Because the object is completely initialized, it does not cause 
a problem in the exception handling context. 

4.2.2 Access to an uninitialized object 
Calls on incompletely initialized objects require special precaution. They may enable 
somewhat higher code reuse, but are “viral”, because any reference obtained from an 
incompletely initialized object should be considered as maybe-null and incompletely 
initialized according to the rule Field Read . Therefore, the usability of this coding 
technique is limited, and the example “uninitialized” is included in the suite merely 
for completeness. 

4.2.3 Circular references 
Object structures with references that make a cycle appear to be a common design 
pattern (see section ). The corresponding benchmark checks whether the rules are 
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flexible enough to allow for self-referencing of one object or mutual-referencing of 
two objects. 

5. Evaluation results 
The examples listed in section 4 are used to check the following language tools: 

 Checker Framework version 2.2.1 from September 29, 2017 
 EiffelStudio compiler version 17.05 from May 29, 2017 
 Kotlin compiler version 1.1.50 from September 22, 2017 

At the time of writing, the benchmark contains 6 expressiveness examples and 8 
soundness examples (registration examples have 2 variants each: one with exceptions 
and one with threads), all in 3 programming languages, 2574 total lines of code. 

Table 1. Evaluation results 

(a) Results of expressiveness tests 

 
(b) Results of soundness tests 

 
Legend: 

+ passed as expected � passed unexpectedly  m/ number of different additional annotations 

− failed as expected � failed unexpectedly /n total number of additional annotations 

The results for the expressiveness examples are summarized in Table 1(a). The 
Checker Framework employs the theory of free and committed types, and requires 
additional annotations to support the scenarios when this is passed from within the 
constructor as an argument to another constructor or method. 
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The theory states that all the registration examples should fail with compile-time 
errors, i.e., only 4 out of 6 tests should pass. However, the Checker Framework 
unexpectedly allows for assigning a non-completely initialized object to a field of a 
completely initialized one either received as an argument or retrieved from a static 
field. This deviation from the original set of rules  might be the reason of the analysis 
unsoundness as discussed below. 
The practical void safety, implemented in the EiffelStudio compiler, does not handle 
access on incompletely initialized objects, therefore, as expected, the example 
“uninitialized” does not pass. The expected score of 5 passing tests out of 6 tests 
matches the one obtained from the actual runs. Kotlin, on the other hand, has no 
special restrictions on uses of this, so all the expressiveness examples can be 
compiled. 
The results for the soundness examples are presented in Table 1(b). In accordance 
with the documentation, the Kotlin compiler does not detect any invalid uses of the 
reference this in any of the examples and is unsound with respect to null safety. 
As pointed out in section, object reclamation has not been mentioned in theoretical 
works as a potential source of null dereferencing caused by incomplete object 
initialization. Therefore, none of the tested tools applies special rules to finalizers. 
Therefore, all tested tools are unsound in this case. 
The failure of the Checker Framework to catch errors in all other tests is surprising. 
Most probably, one bug is caused by missing language constructs in the simplified 
model language used to prove the soundness of the type system. Indeed, it has no 
equivalent of the statement throw. In order to preserve soundness, the statement 
should not satisfy the typing rules as soon as its argument is not of a committed type. 
The origin of the Checker Framework bugs in the registration examples is unclear 
and demonstrates a gap between the typing rules specified in the proposed solution 
and the actual implementation. As a result, instead of 6 or 7 passing tests out of 8 
tests, the Checker Framework fails in all soundness tests. 
The EiffelStudio compiler passes 7 out of 8 soundness tests that matches the expected 
ratio of the practical void safety  mechanism. 

6. Conclusion and future work 
None of the tested solutions guarantee complete null safety. It should be possible to 
fix the implementations of the Checker Framework and the EiffelStudio compiler, but 
at the time of writing the Kotlin compiler has no provisions for fixing the object 
initialization issue and can be thought of as “null safety aware”, rather than “null 
safety complete” product. 
The gap between theoretical works and practical implementations is caused by a 
simplified model of the target language and absence of verification of the 
implementations against the models. 
The work reveals the following areas of future development: 
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 application of the proposed benchmark to other frameworks claiming null 
safety guarantees; 

 collaboration with tool developers to eliminate the deficiencies found in the 
tools; 

 extension of the suite with new examples to cover more coding patterns 
found in the field. 
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Эталонные тесты безопасности нулевых ссылок при 
инициализации объекта 

А.В. Когтенков <kwaxer@mail.ru> 
Независимый учёный, 
Россия, г. Подольск 

Аннотация. Разыменование нулевого указателя остаётся одной из основных проблем в 
современных объектно-ориентированных языках. Очевидное добавление ключевых 
слов, чтобы различать между всегда ненулевыми и возможно нулевыми ссылками, 
оказывается недостаточным во время инициализации объекта, когда некоторые поля, 
объявленные всегда ненулевыми, могут временно быть нулевыми до окончания 
инициализации. Существует несколько подходов к решению проблемы инициализации 
объекта. Каким образом их можно сравнить практически? Являются ли реализации 
обоснованными? Данная работа представляет набор примеров, выделяя сценарии 
использования из публикаций по теме и библиотек с открытым кодом, и объясняет 
стоящие за ними критерии. Затем она обсуждает ожидаемые результаты для выбранного 
набора инструментов, производящих проверки безопасности нулевых ссылок для Eiffel, 
Java и Kotlin, и завершается фактическими результатами, демонстрирующими 
незрелость решений. 

Ключевые слова: разыменование нулевого указателя; безопасность нулевых ссылок; 
безопасность пустых ссылок; инициализация объектов; статический анализ; эталонные 
тесты безопасности нулевых ссылок. 
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