
135

Null safety benchmarks for object
initialization

A.V. Kogtenkov <kwaxer@mail.ru>
Independent scientist,

Podolsk, Russia

Abstract. Null pointer dereferencing remains one of the major issues in modern object-oriented
languages. An obvious addition of keywords to distinguish between never null and possibly
null references appears to be insufficient during object initialization when some fields declared
as never null may be temporary null before the initialization completes. There are several
proposals to solve the object initialization problem. How can they be compared in practice?
Are the implementations sound? This work presents a set of examples distilling out the use
cases from publications on the subject and open source libraries and explains the criteria
behind. Then it discusses expected results for a selected set of tools performing null safety
checks for Eiffel, Java, and Kotlin, and concludes with the actual outcomes demonstrating
immaturity of the solutions.

Keywords: null pointer dereferencing; null safety; void safety; object initialization; static
analysis; null safety benchmarks.

DOI: 10.15514/ISPRAS-2017-29(6)-7

For citation: Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP
RAN/Proc. ISP RAS, vol. 29, issue 6, 2017. pp. 135-150 (in Russian). DOI: 10.15514/ISPRAS-
2017-29(6)-7

1. Introduction
To construct a sound null-safe type system, most solutions of the problem add a notion
of non-null and maybe-null types, usually expressed with additional type annotations.
Such annotations would be sufficient to solve the null safety problem if objects could
be created in an atomic operation, so that all fields marked as non-null were initialized
with object references. Unfortunately, sequential initialization of the fields breaks the
solution. Several proposals solving the object initialization issue suggest extending
the type systems further to identify objects that are not completely initialized. Another
group of approaches is based on static analysis that does not require any additional
annotations at the expense of more sophisticated checks.
The theoretical solutions in the cited works specify a subset of an object-oriented
language rather than a full language. The omission of the real-life language constructs

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

136

leads to omission of all required checks in the actual implementations. This causes
the following issues:

 It is hard to reason about the extended model for a real language because all
the consequences of such an extension are unclear and difficult to grasp
when they go beyond intuition and when combination of such features
requires exhaustive examination of possible interactions. The models used
in the theoretical frameworks are limited for exactly this reason: they are not
easily scalable and an addition of a new construct increases the size of the
associated proofs proportionally, i.e. the factor is multiplicative rather than
additive. This can be seen on the mechanically checked formalization of the
null safety in the local context where a combination of conditional
expressions, loops and exceptions greatly increased the size of the proofs.
Moreover, some language features, such as value types, exceptions,
concurrency or garbage collection may require a complete redesign of the
model with much higher complexity impact.

 The model and the real language are decoupled informally – they are
developed by different people – and formally – the proofs for the model and
the implementation for the real language are carried out using different tools.
There is no guarantee that an implementation is correct with respect to its
model.

This leads to slow adoption of the total safety guarantees in production. The total
guarantees are replaced by the “partial” ones. E.g., null safety is guaranteed only when
the program does not do anything “wrong”. Unfortunately, this defeats the whole
purpose of the safety guarantees because null dereferencing errors in such “wrong”
programs may happen at unexpected places, including trusted ones.
This work is a case study of the null safety guarantees provided by existing
implementations rather than by the theoretical findings. It presents a set of examples
that can be used to

 check if a particular programming pattern is handled by the implementation;
 perform measurable comparison of different solutions in terms of their

soundness, expressiveness and verbosity.
The examples are written in Java, Kotlin, and Eiffel. They are available for
independent analysis at https://bitbucket.org/kwaxer/null-safety-
benchmark/src/?at=2017-ispras. I evaluate the benchmarks on the Kotlin and Eiffel
compilers and the Checker Framework for Java.
The main contributions of this work are:

 development of execution scenarios of object initialization to benchmark
different null safety solutions and to provide measurable comparison;

 evaluation of production solutions with null safety guarantees against the
benchmarks.

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

137

The rest of the paper is organized as follows. Section 2 identifies the key reasons of
the object initialization problem and specifies additional requirements to the
benchmarks. Section 3 gives an overview of the existing work in the area. Section 4
classifies scenarios to test implementations with null safety guarantees and reviews
the structure of the proposed benchmark suite. Section 5 presents the results of the
evaluation on some production environments. Section 6 provides a quick summary
and concludes with the directions of future work.

2. Overview

2.1 Reasons of the object initialization problem
Null safety is complicated for object initialization. To understand why, I suggest to
look at how program execution can lead to the null reference exception. Firstly, the
object that causes the problem should not complete its initialization, i.e., some of its
fields of non-null types should be null. Secondly, this object should be accessible –
either directly or through some variables. Thirdly, the information that its
initialization is incomplete should be lost. Otherwise, it would be easy to report the
error at compile time. Finally, the reference retrieved from the uninitialized field of
the object should be dereferenced to trigger the exception. To summarize, there are
the following roots of the problem:

 Non-atomic initialization of an object leads to the possibility to have fields
with null values even when their type is non-null.

 Aliasing allows for accessing the same object from an arbitrary point of the
program, in particular, from the code that does not expect an incompletely
initialized object.

 Uncontrollable control flow, interrupting the regular one, makes sequential
reasoning about program execution useless.

 Dereferencing of an uninitialized field of the incompletely initialized object
triggers the exception.

The solutions extending the type system with new types limit the operations on
incompletely initialized objects. The solutions based on static analysis, such as
practical void safety , specify the conditions, when dereferencing may be unsafe, and
forbid such dereferencing altogether.

2.2 Restrictions on the benchmarks
In order to focus only on the object initialization problem, I put the following
restrictions on the code in the benchmarks:

 Self-containment – the code should not rely on or assume any null-safe
properties of the classes outside the examples.

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

138

 Limited null safety scope – the code should reflect only issues with object
initialization. Other mechanisms, such as array initialization and
initialization of static fields in Java, companion objects in Kotlin and once
features in Eiffel, as well as general data flow analysis for null safety are out
of scope.

3. Related work
Alexander J. Summers and Peter Müller set the following design goals of the type
system they propose to use for null safety:

1. Modularity: the type system can check each class type separately.

2. Soundness: the type system is safe, i.e., null pointer exceptions are
impossible at run-time.

3. Expressiveness: the type system handles common initialization patterns. In
particular, it allows objects to escape from constructors and supports the
initialization of cyclic structures.

4. Simplicity: the type system is simple and requires little annotation overhead.

I use this list in section 4 as the base for further fine-grained classification of solution
properties. Then, the properties can be evaluated with specific examples, thus
allowing for measurable comparison of different implementations. The detailed
classification of the solution properties is reviewed in the earlier publication . The
review is based on the associated algorithms and descriptions. Compared to this work,
it considers expected behavior of the solutions with wider spectrum of properties,
because it also includes qualitative ones, such as modularity. On the other hand, that
review does not provide actual code to check the tools, nor does it verify that the
proposed test cases can be expressed in a specific language.
Every publication on the problem of object initialization has few examples that
authors use either to demonstrate issues with their approach, or to explain how the
issues are resolved. I collected all the examples from the publications I know about
as well as found in class libraries and divided them into the following groups.

3.1 Polymorphic call from a constructor
When a constructor of a superclass is invoked in C#, a call to a virtual method on
this is considered a bad practice. At this moment, subclass fields of the object are
not initialized yet and using them in the polymorphic call is unsafe. Manuel Fähndrich
and Rustan Leino describe an example of this situation. In a descendant class, before
one of its fields is set, the superclass constructor is called. The constructor invokes a
virtual method. The override of the method in the descendant accesses the
uninitialized field leading to NullReferenceException.

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

139

Xin Qi and Andrew C. Myers give a similar example where they consider a class
Point and its subclass CPoint that adds a color attribute.

3.2 Polymorphic callback from a constructor
Fig. 1 shows a sample object structure taken from the portable GUI library
EiffelVision1 employing a bridge pattern to support different platforms. A client of
the library directly works only with the interface objects. Upon its creation, the
interface object creates an implementation object that, on completion of initialization,
notifies the interface object via a callback. If at this point some non-null fields of the
interface object are unset, access on them causes a null dereferencing error.

Fig. 1. Object structure in a portable GUI library.

3.3 Modification of existing structures
The ability to invoke regular procedures inside a creation procedure is convenient,
e.g., for a mediator pattern . This pattern decouples objects so that they do not know
about each other, but still can communicate using an intermediate object, mediator.
Concrete types of the communicating objects are unknown to the mediator, and,
therefore, the mediator cannot create them. A mediator's client is responsible for
creating necessary communicating objects instead.
The communicating objects know about the mediator and can register themselves in
the mediator according to their role. If the registration is done in the constructors of
the communicating objects, the mediator's clients do not need to clutter the code with
calls to a special feature register every time they create a new communicating object.
An assignment like x = new Comm (mediator) should do both actions: the
recording of the mediator object in the new communicating object, and the
registration of the communicating object in the mediator. A chat room adapted from
and shown in Fig. 2 is an example implementing a mediator pattern.

1 https://www.eiffel.org/doc/solutions/EiffelVision%202

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

140

class ROOM create make feature
 users: ARRAYED_LIST [USER]
 make
 do
 create users.make (0)
 end
 join (a: USER)
 do
 users.extend (a)
 end
 send (s: STRING)
 do
 across users as u loop
 u.item.receive (s)
 end
 end
end

 class USER create make feature
 room: ROOM
 make (r: ROOM)
 do
 room := r
 r.join (Current)
 end
 send (s: STRING)
 do
 room.send (s)
 end
 receive (s: STRING)
 do
 io.put_string (s)
 io.put_new_line
 end
end

Fig. 2. Example of a mediator pattern (in Eiffel).

When the feature join is called in the creation procedure make of a USER object, all
fields of the object should be set.
The need to register a newly created object in an existing one is also present in the
earlier example with the GUI library in Fig. 1 where the newly created
implementation object has to register itself in the existing GUI toolkit object to
dispatch events from the underlying GUI toolkit to the implementation object and
then to the interface object.

3.4 Circular references
An issue arises when two objects reference each other. If the corresponding fields
have non-null types, access to them should be protected to avoid retrieving null by
the code that relies on the field types and, therefore, expects non-null values. Manuel
Fähndrich and Songtao Xia demonstrate the problem on a linked list example with a
sentinel.
When a new list is constructed, a special sentinel node is created. The sentinel should
reference the original list object. In other words, an incompletely initialized list object
has to be passed to the sentinel node constructor as an argument. An attempt to access
the field that is expected to reference the sentinel node inside the sentinel constructor
would compromise null safety. Therefore, there should be means to prevent such
accesses or to make them safe (e.g., by treating field values as possibly null and as
referring to uninitialized objects).

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

141

There are similar circular references in the classes included in the library Gobo2 to
model XML documents. According to the XML specification , every document has
one root element and every XML element has one parent, coinciding with the
document node for the root element.

3.5 Self-referencing
A particular case of circular references concerns an object that references itself rather
than another object. Xin Qi and Andrew C. Myers give the example of a binary tree
where every node has a parent, and the root is a parent to itself. At a binary node
creation, left and right nodes should get a new parent and the parent should reference
itself. With any initialization order there are states where the new binary node should
be used to initialize either its own field or the field parent of its left or right nodes
before it is completely initialized. Therefore, arbitrary accesses to this node should be
protected.

3.5 Safety violations
In addition to valid cases, authors usually mention examples that should trigger a
compiler error. This aims at the original goal: a sound solution should catch potential
null dereferencing at compile time.

4. Benchmark criteria and null safety suite
The most important goal of the null safety design is soundness. It limits the
possibilities to write arbitrary code that is still null safe. The general problem of safe
object initialization is undecidable. Therefore, the code can be checked in finite time
only when some restrictions are imposed on it.
Soundness and expressiveness work against each other: the simpler the language
rules, the less code can be written without violating them. If the rules are too strict,
some scenarios found in real software can become extinct. E.g., according to the
theory, the raw types do not allow for creation of circular structures, the free and
committed types rule out registration of objects in existing object structures inside
constructors, and practical void safety disallows any qualified calls, including
potentially safe ones, as soon as there are some incompletely initialized objects in the
current execution context.
The proposed benchmark suite ignores some important properties of the solutions.
Measuring such properties requires significantly different code with tight dependency
on the underlying language and involved tools. Consequently, it would be difficult to
do the comparison. The ignored criteria include

 Modularity, including scope, telling whether it is sufficient to analyze
(recursively) ancestors and suppliers of the class to be checked, and

2 http://www.gobosoft.com/eiffel/gobo/xml/

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

142

incrementality, telling whether changes to previously checked code require
a partial recheck rather than a complete one;

 Simplicity, including ease of use, telling whether few new simple rules are
added to the language to make object initialization null safe, and
performance, telling the resource consumption (algorithmic space and time
complexity) to support the additional checks.

The assessment of different solutions from the theoretical point of view, based on the
analysis of the corresponding algorithms, is given in the earlier paper that, in
particular, elaborates on the criteria listed above. The current work focuses on the
behavior of the actual implementations instead. The benchmarks are applicable only
to existing tools and allow for measuring the number of additional type marks that
need to be specified besides the marks “non-null” and “maybe-null”.
The test suite consists of two main parts: one for soundness examples and one for
expressiveness examples. Because there are certain differences between languages in
syntax and semantics, every example is equipped with an accompanying document
describing the execution scenario. The document also lists possible variations of the
example if present. In the text below, the names of the examples are underlined.

4.1 Soundness
Authors of all the solutions mentioned in section claim them to be sound.
Unfortunately, not all aspects of a real programming environment are usually
reflected in a formal model. In particular, none of the null safety formalizations
reflects garbage collection that is an important channel to compromise safety
guarantees.
The roots of the object initialization problem, mentioned in section , are mapped to
the programming language constructs as follows:

 Non-atomic initialization corresponds to the order of initialization of the
object fields intermingled with other computations. This work does not
consider languages that support atomic (transactional) object initialization.

 Explicit aliasing becomes possible when an object is assigned to a field of
an existing object, either passed to the constructor as an argument or directly
reachable from the current context, or when the new object is thrown as an
exception. Implicit aliasing happens when the class declares a finalizer that
gets access to the object.

 Uncontrollable control flow can be caused by concurrent execution,
preemptive execution (with exception and signal handlers), cooperative
execution (coroutines).

 Dereferencing is done by a qualified call of the form target.access
where access stands for a field or method name and target is a name of
a reference corresponding to one of uninitialized fields of the object.

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

143

The soundness examples demonstrate potential scenarios where execution can lead to
a null dereference error at run-time. The language tools should be able to detect and
to report the possible error at compile time – this constitutes the null safety guarantees.
If the error is not detected, the corresponding implementation is unsound.
If a program context does not expect an uninitialized object, there should be no
channels that allow for the object to escape to this context. The following language
mechanisms can make such escaping unexpected:

 exceptions;
 concurrency;
 cooperative execution.

These mechanisms are used in the examples in an attempt to demonstrate
unsoundness of implementations. This is done by performing an unsafe dereferencing
using either unqualified calls (of the form field_name) that access fields of the
current object, or qualified calls (of the form expression.field_name), that
access fields of the current or some other object. The values of the fields may be null
or (recursively) have null values in non-null fields of referenced objects.
The escaping channels depend on the programming language. The most common ones
are discussed next.

4.1.1 Registration in an existing object
A program can register a new object in an existing one. When this is done before the
new object is completely initialized, there is a problem: the incompletely initialized
object can be accessed via the exiting object because of aliasing. Thus, such
registration should be disallowed or no accesses to the fields can assume that they are
non-null. The scenario can be further classified by

1) the source of the reference to the existing object that can be either (a) passed
as an argument to the constructor with a variant that the passed reference
could correspond to the newly created (fresh) object rather than a fully
initialized one, (b) retrieved from the current execution context (static fields,
companion and singleton objects, once functions);

2) the type of the object in which the new one is registered: it can be (a) a user-
defined one or (b) a built-in one (e.g., an array, a tuple, etc.).

4.1.2 Reclamation of incompletely initialized objects
Finalizers are the methods called before object's memory is reused. The finalizers are
registered for calling by the run-time after object's memory is allocated and before
the constructor is invoked. If the object initialization does not complete (due to an
uncaught exception in the constructor), the finalizer is invoked on the incompletely
initialized object. Unless a programmer keeps track of object initialization, there is
no way to figure out what state the object is in. Therefore, the current object in a

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

144

finalizer should be treated like at the beginning of a constructor. The reclamation
example accesses non-null fields that are not initialized and, therefore, should be
flagged as erroneous.

4.1.3 Out-of-order object transfer
Most programming languages allow for transferring references to objects bypassing
regular control flow. The most familiar mechanism is exceptions. If a new exception
object referencing an incompletely initialized one is thrown, the reference to the
incompletely initialized object becomes accessible in the code that relies on the type
system rules and does not expect uninitialized fields. The transfer example attempts
to throw such an exception object.

4.2 Expressiveness
The examples in this group do not lead to null pointer exceptions and can be accepted
as valid by the tools performing null safety checks. If the checks are too strict, they
can rule out legitimate use cases.

4.2.1 Access to an initialized object
As soon as an object is completely initialized, it can be safely accessed even when it
is used inside its constructor. In particular, it is safe to perform

 a callback on this object from the code to where it is passed. This pattern is
discussed in section .

 registration of any form (argument, context, fresh) listed in the section about
soundness. (See also section .)

 out-of-order transfer as soon as the exception object refers to the completely
initialized one. Because the object is completely initialized, it does not cause
a problem in the exception handling context.

4.2.2 Access to an uninitialized object
Calls on incompletely initialized objects require special precaution. They may enable
somewhat higher code reuse, but are “viral”, because any reference obtained from an
incompletely initialized object should be considered as maybe-null and incompletely
initialized according to the rule Field Read . Therefore, the usability of this coding
technique is limited, and the example “uninitialized” is included in the suite merely
for completeness.

4.2.3 Circular references
Object structures with references that make a cycle appear to be a common design
pattern (see section). The corresponding benchmark checks whether the rules are

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

145

flexible enough to allow for self-referencing of one object or mutual-referencing of
two objects.

5. Evaluation results
The examples listed in section 4 are used to check the following language tools:

 Checker Framework version 2.2.1 from September 29, 2017
 EiffelStudio compiler version 17.05 from May 29, 2017
 Kotlin compiler version 1.1.50 from September 22, 2017

At the time of writing, the benchmark contains 6 expressiveness examples and 8
soundness examples (registration examples have 2 variants each: one with exceptions
and one with threads), all in 3 programming languages, 2574 total lines of code.

Table 1. Evaluation results

(a) Results of expressiveness tests

(b) Results of soundness tests

Legend:

+ passed as expected � passed unexpectedly m/ number of different additional annotations

− failed as expected � failed unexpectedly /n total number of additional annotations

The results for the expressiveness examples are summarized in Table 1(a). The
Checker Framework employs the theory of free and committed types, and requires
additional annotations to support the scenarios when this is passed from within the
constructor as an argument to another constructor or method.

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

146

The theory states that all the registration examples should fail with compile-time
errors, i.e., only 4 out of 6 tests should pass. However, the Checker Framework
unexpectedly allows for assigning a non-completely initialized object to a field of a
completely initialized one either received as an argument or retrieved from a static
field. This deviation from the original set of rules might be the reason of the analysis
unsoundness as discussed below.
The practical void safety, implemented in the EiffelStudio compiler, does not handle
access on incompletely initialized objects, therefore, as expected, the example
“uninitialized” does not pass. The expected score of 5 passing tests out of 6 tests
matches the one obtained from the actual runs. Kotlin, on the other hand, has no
special restrictions on uses of this, so all the expressiveness examples can be
compiled.
The results for the soundness examples are presented in Table 1(b). In accordance
with the documentation, the Kotlin compiler does not detect any invalid uses of the
reference this in any of the examples and is unsound with respect to null safety.
As pointed out in section, object reclamation has not been mentioned in theoretical
works as a potential source of null dereferencing caused by incomplete object
initialization. Therefore, none of the tested tools applies special rules to finalizers.
Therefore, all tested tools are unsound in this case.
The failure of the Checker Framework to catch errors in all other tests is surprising.
Most probably, one bug is caused by missing language constructs in the simplified
model language used to prove the soundness of the type system. Indeed, it has no
equivalent of the statement throw. In order to preserve soundness, the statement
should not satisfy the typing rules as soon as its argument is not of a committed type.
The origin of the Checker Framework bugs in the registration examples is unclear
and demonstrates a gap between the typing rules specified in the proposed solution
and the actual implementation. As a result, instead of 6 or 7 passing tests out of 8
tests, the Checker Framework fails in all soundness tests.
The EiffelStudio compiler passes 7 out of 8 soundness tests that matches the expected
ratio of the practical void safety mechanism.

6. Conclusion and future work
None of the tested solutions guarantee complete null safety. It should be possible to
fix the implementations of the Checker Framework and the EiffelStudio compiler, but
at the time of writing the Kotlin compiler has no provisions for fixing the object
initialization issue and can be thought of as “null safety aware”, rather than “null
safety complete” product.
The gap between theoretical works and practical implementations is caused by a
simplified model of the target language and absence of verification of the
implementations against the models.
The work reveals the following areas of future development:

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

147

 application of the proposed benchmark to other frameworks claiming null
safety guarantees;

 collaboration with tool developers to eliminate the deficiencies found in the
tools;

 extension of the suite with new examples to cover more coding patterns
found in the field.

References
[1]. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.

Extensible Markup Language (XML) 1.0 (Fifth Edition). Fifth Edition of a
Recommendation. W3C, Nov. 2008. URL: http://www.w3.org/TR/2008/REC-xml-
20081126/.

[2]. Manuel Fähndrich and K. Rustan M. Leino. Declaring and Checking Non-null Types in
an Object-oriented Language. In: Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-oriented Programing, Systems, Languages, and Applications.
OOPSLA’03. ACM, 2003, pp. 302–312. DOI: 10.1145/949305.949332.

[3]. Manuel Fähndrich and Songtao Xia. Establishing Object Invariants with Delayed Types.
In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications. OOPSLA’07. ACM, 2007, pp. 337–350. DOI:
10.1145/1297027.1297052.

[4]. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., 1995.

[5]. Alexander Kogtenkov. Practical Void Safety. In: Verified Software. Theories, Tools, and
Experiments. 9th International Conference, VSTTE 2017, Heidelberg, Germany, July 22–
23, 2017, Revised Selected Papers. Ed. by Andrei Paskevich and Thomas Wies. Vol.
10712. Lecture Notes in Computer Science. Springer International Publishing, 2017. DOI:
10.1007/978-3-319-72308-2_9.

[6]. Alexander Kogtenkov. Towards null safety benchmarks for object initialization. In:
Modeling and Analysis of Information Systems 24.6 (2017).

[7]. A.V. Kogtenkov. Mechanically Proved Practical Local Null Safety. In: Trudy ISP RAN /
Proc. ISP RAS, vol. 28, issue 5, pp. 27–54. DOI: 10.15514/ISPRAS-2016-28(5)-2.

[8]. Mediator pattern. 2017. URL: https://en.wikipedia.org/wiki/Mediator_pattern (visited on
2017-11-20).

[9]. Bertrand Meyer. Targeted expressions: safe object creation with void safety. July 30,
2012. URL: http://se.ethz.ch/~meyer/publications/online/targeted.pdf (visited on 2017-
05-08).

[10]. Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In:
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL’09. ACM, 2009, pp. 53–65. DOI:
10.1145/1480881.1480890.

[11]. Alexander J. Summers and Peter Müller. Freedom Before Commitment: A Lightweight
Type System for Object Initialisation. In: Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applications.
OOPSLA’11. ACM, 2011, pp. 1013–1032. DOI: 10.1145/2048066.2048142.

Kogtenkov A.V. Null safety benchmarks for object initialization. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 6, 2017,
pp. 135-150

148

Эталонные тесты безопасности нулевых ссылок при
инициализации объекта

А.В. Когтенков <kwaxer@mail.ru>
Независимый учёный,
Россия, г. Подольск

Аннотация. Разыменование нулевого указателя остаётся одной из основных проблем в
современных объектно-ориентированных языках. Очевидное добавление ключевых
слов, чтобы различать между всегда ненулевыми и возможно нулевыми ссылками,
оказывается недостаточным во время инициализации объекта, когда некоторые поля,
объявленные всегда ненулевыми, могут временно быть нулевыми до окончания
инициализации. Существует несколько подходов к решению проблемы инициализации
объекта. Каким образом их можно сравнить практически? Являются ли реализации
обоснованными? Данная работа представляет набор примеров, выделяя сценарии
использования из публикаций по теме и библиотек с открытым кодом, и объясняет
стоящие за ними критерии. Затем она обсуждает ожидаемые результаты для выбранного
набора инструментов, производящих проверки безопасности нулевых ссылок для Eiffel,
Java и Kotlin, и завершается фактическими результатами, демонстрирующими
незрелость решений.

Ключевые слова: разыменование нулевого указателя; безопасность нулевых ссылок;
безопасность пустых ссылок; инициализация объектов; статический анализ; эталонные
тесты безопасности нулевых ссылок.

DOI: 10.15514/ISPRAS-2017-29(6)-7

Для цитирования: Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при
инициализации объекта. Труды ИСП РАН, том 29, вып. 6, 2017 г., стр. 135-150 (на
английском языке). DOI: 10.15514/ISPRAS-2017-29(6)-7

Список литературы
[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.

Extensible Markup Language (XML) 1.0 (Fifth Edition). Fifth Edition of a
Recommendation. W3C, Nov. 2008. URL: http://www.w3.org/TR/2008/REC-xml-
20081126/.

[2] Manuel Fähndrich and K. Rustan M. Leino. Declaring and Checking Non-null Types in
an Object-oriented Language. In: Proceedings of the 18th Annual ACM SIGPLAN
Conference on Object-oriented Programing, Systems, Languages, and Applications.
OOPSLA’03. ACM, 2003, pp. 302–312. DOI: 10.1145/949305.949332.

[3] Manuel Fähndrich and Songtao Xia. Establishing Object Invariants with Delayed Types.
In: Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications. OOPSLA’07. ACM, 2007, pp. 337–350. DOI:
10.1145/1297027.1297052.

Когтенков А.В. Эталонные тесты безопасности нулевых ссылок при инициализации объекта. Труды ИСП РАН,
том 29, вып. 6, 2017 г., стр. 135-150

149

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., 1995.

[5] Alexander Kogtenkov. Practical Void Safety. In: Verified Software. Theories, Tools, and
Experiments. 9th International Conference, VSTTE 2017, Heidelberg, Germany, July 22–
23, 2017, Revised Selected Papers. Ed. by Andrei Paskevich and Thomas Wies. Vol.
10712. Lecture Notes in Computer Science. Springer International Publishing, 2017. DOI:
10.1007/978-3-319-72308-2_9.

[6] Alexander Kogtenkov. Towards null safety benchmarks for object initialization. In:
Modeling and Analysis of Information Systems 24.6 (2017).

[7] A.V. Kogtenkov. Mechanically Proved Practical Local Null Safety. In: Trudy ISP RAN /
Proc. ISP RAS, vol. 28, issue 5, pp. 27–54. DOI: 10.15514/ISPRAS-2016-28(5)-2.

[8] Mediator pattern. 2017. URL: https://en.wikipedia.org/wiki/Mediator_pattern (visited on
2017-11-20).

[9] Bertrand Meyer. Targeted expressions: safe object creation with void safety. July 30,
2012. URL: http://se.ethz.ch/~meyer/publications/online/targeted.pdf (visited on 2017-
05-08).

[10] Xin Qi and Andrew C. Myers. Masked Types for Sound Object Initialization. In:
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL’09. ACM, 2009, pp. 53–65. DOI:
10.1145/1480881.1480890.

[11] Alexander J. Summers and Peter Müller. Freedom Before Commitment: A Lightweight
Type System for Object Initialisation. In: Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applications.
OOPSLA’11. ACM, 2011, pp. 1013–1032. DOI: 10.1145/2048066.2048142.

