Towards the methods of analysis malicious
applications for Android operating system

Sergey Staroletov <serg_soft@mail. ru>
Polzunov Altai State Technical University,
Lenin avenue 46, Barnaul, 656038, Russia

Abstract. It is considered to the problem of analysis of Android applications to study a
malicious behaviour. The methods of analysis are presented, the general method, which
combines different analysis techniques (static, dynamic, decompilation, debugging, logging)
is proposed, and information of our software based on it is given.

Keywords: analysis of program behavior; malicious software; data leaks; Java; software and
technical expertise

DOI: 10.15514/ISPRAS-2018-30(1)-4

For citation: Staroletov S.M. Towards the methods of analysis malicious applications for
Android operating system. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68.
DOI: 10.15514/ISPRAS-2018-30(1)-4

1. Necessity for the work

In the recent years, mobile phones with a mobile operating system are widely being
used, and now we observe the explosive growth of mobile devices in the world.
According to forecasts [1], in 2018 the number of smartphones in the world will be
over 50% of the total number of phones (see fig. 1).

More and more people do their daily tasks by using software for phones, including
making the financial transactions.

However, the computer literacy for today's smartphone users is not keeping pace
with the progress in the field of mobile devices. It can mean that soon we are going
to have about 2.5 billion potential victims of intruders; they would use mobile
phones as an instrument to steal private data and money.

It is known that in the past year hackers in Russia were stolen 349 million rubles [2]
from the owners of phones under Android OS (about 2 rubles in mean from each
Russian citizen), which is five times more than a year ago.

55

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

Smartphone Users and Penetration Worldwide,
2013-2018
millions, % of mobile phone users and % change

23802

7.6%
2013 2014 2015 2016 2017 2018
M smartphone users W% of moblle phone users W % change

Note: individuals of any age who own &t least one smantphone and use the
smartphone(s) at least once per manth
Sowrce: eMarketer, Dec 2014

187203 Wi eMarketer.com

Fig. 1. Number of smartphones in the world will be doubled for the last 5 years [1]

Choosing the Android OS by intruders is primarily caused by its prevalence,
availability of cheap Chinese phones under it.

Here we have a problem: typical users (especially from the countryside) are not
even aware that they work with a minicomputer which can hook a trojan program
and such program could get access to user data, receive commands to work
following the hacker's request.

Trojan-SM$S _ 1133% o
Trojan-Dropper mom'ﬂo
.y

Trojan -'Si'ffa"
Trojan-Banker lwz"
Backdoor ['73
Trojan-Downloader e
Trojan-Ransom M 426% m 2016
Other [l fee 2015

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Fig. 2. Distribution of new mobile malware by the type in 2015 and 2016 (Kaspersky)

According to a Kaspersky's report (see fig. 2), the most frequent malware types now
are “RiskTools” (special software or software with vulnerabilities used by intruders
to enter and control the system), “Trojan-SMS” (trojans for sending SMS to short

56

CraponeroB C.M. MeTo/bl aHanu3a BpeJOHOCHOT0 nporpammuoro obecniedenns nox OC Android. Tpyowt HCIT PAH,
tom 30, Bbim. 1, 2018 r., cTp. 55-68

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

numbers) and some other trojan types including “Trojan-Banker” (trojans for
stealing money from a bank account).

In 2015, local representatives of the Police addressed to the Department of Applied
Mathematics at Altai State Technical University in order to develop methods,
algorithms, and software for the analysis of the smartphones injured by the trojans
(like types as “SMS” and “Bankers”), to do digital forensic science to analyze the
malicious applications. We have a situation now: there are no generally accepted
methods to do it.

2. The goals of the analysis
Android OS itself is a special Linux Kernel, which contains Dalvik virtual machine
for execution of Java applications using their own API.
The application for Android is an apk (Android Package) file, which is a zip archive
and it contains some compiled Java-classes of the application in the form of .dex file
(Dalvik EXecutable), resources and application's descriptor AndroidManifest.xml
within.
A trojan here — is a dual-purpose Android application. It looks like an ordinary
application but it was created to steal data or money from victims.
A victim — is a people who handed his smartphone with some trojans to the Police
for the analysis since he had suffered by unknown intruder's actions to withdraw his
money via the phone.
According to the problem described in the previous section, the goals of the analysis
are:

o identify malicious applications among given applications from given

phones;

e make some proof of harmfulness of given application;
o study algorithms of the work of applications without having sources of it;

¢ find the remote hosts which application communicates to, discover sending
content, format and protocols);

o discover user's private data leaks;
e compare various malicious applications and group them;

e develop and test a general method to make suchlike analysis.
So, we need dynamic and static methods for analysis the behavior of Android
applications. About 50 real recent malicious applications from the real victims (who
had lost the money because of intruder's actions) were analyzed and identified, and
methods for it were developed.

3. Related work

There is a high number of research papers devoted to malicious applications for
Android but most often to identify whether or not the given application is a trojan.
57

For example, in the work [3] authors explain how to detect a malicious program for
Android with using machine learning and static analysis methods. But it is only a
part of current research, the main our goal is to make the analysis of the behaviour
and prove the harmfulness by the application's actions. The fact of malware can be
detected by using VirusTotal tool [5], which checks the signature of given
application by a lot of modern anti-viruses.

The Pennsylvania State University, Duke University and Intel lab have developed
the series of patches [4] for Android Kernel and libraries to track the data passing
through the functions calls in running Android applications to prevent privacy leaks
(taints). This approach can be applied to our research with some changes to do
dynamic analysis of application's behavior.

4. The analysis

4.1 Malicious applications identifying

The detection of malicious applications in a phone is not so difficult. As a rule, such
dual-purpose applications have a small size, a name and an icon disguised as the
popular applications (WhatsApp, Skype, Flash Player, Kaspersky, Sberbank Online,
etc.).

Since the majority of identified by this research viruses carry out sending messages
in a background to short phone numbers or performing USSD-requests, it is possible
to identify them by looking at the permissions of applications.

If the Android app uses some API, it must request the appropriate permissions from
the system. As a rule, such a request is made during the installation of the
application; however, users just ignore the warnings, even if they say that the
application will send SMS that can cost money or it is going to control the phone as
an administrator.

Permissions are set in AndroidManifest.xml and can be seen in the information
about an application. An example of malicious application's permissions is given on
table 1.

Table 1. Android application’s permissions

android.permission.INTERNET
android.permission. WRITE SMS
android.permission.READ SMS
android.permission.SEND SMS
android.permission.RECEIVE SMS

The application can be sent for an analysis to one of the anti-viruses (for example,
DrWeb online), as well as viewed in the Virus Encyclopedia for its possible actions.
Now, we are using the online tool VirusTotal [5], which accumulates information
about the signatures of malware files from various antivirus software. However,

58

CraponeroB C.M. MeToibl aHanu3a BpeOHOCHOT0 mporpamMmmuoro odecredeHust nox OC Android. Tpyowr UCIT PAH,
tom 30, Bbim. 1, 2018 r., cTp. 55-68

applications are modified, and some recent viruses could not be recognized, so this
analysis is made for educational purposes only.

When the malicious application is detected, a further analysis on the phone would
be inappropriate. As a rule, the application as an apk file is retrieved, and the
browser's logs and download history in the phone are analyzed to search from where
such application could be obtained.

Next, the application is analyzing on a desktop computer running Android OS
emulator (included in the Android Studio application development tools).
Application analysis is complicated because we deal with a compiled application
without the presence of the source code.

4.2 Low-level debugging the Android applications

Without the presence of the source code, there is a way to understand the logic of
the application — to analyze it with using a debugger. Starting with version 6.6, an
interactive debugger IDA Pro [6] supports debugging applications for Dalvik virtual
machine.

It is possible to trace the logic of the application, explorer function calls from a Java

library, set breakpoints on them and analyze the data transferred as parameters, etc.
UL 1T S] I : -

uncton 1 Data [l Regur functon

[7 15 | ol
associated exception handler: azafo] [.int ex1F7 # Start address of block covered by try: a7af2| |.short
T

=S
e =

|Sc§CheckTask.dolnBackgroundaLL_o

=
SC.accessSORULLL

|SC.Senanessage@uLL

_ L 2 - L]
= P) () e =
_string.replace@LiL] [_def_snsManager.sendTextmessage@uiLiiL] |_def_smsManager.getoefaultat | ‘ aSMS_SENT | [se_ctx
T T

I —
[!

: > : il e
1 R
P W=
) CZEID

asendtextnessag

Fig 3. Discovering a behaviour graph with IDA

With using IDA we can use a feature "proximity browser" for some kind of static
analysis (see fig. 3). Once .dex file is loaded, the app creates a graph containing
functions, variables, other objects and the relationships between them. Without
actual running the debugging it is possible to find a suspicious function call (like
sending the SMS) and view a path for its execution.

With using the debugger we can identify, for example, process of interaction with
an intruder's server (in this case, addresses and sending data were not explicitly

59

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

programmed in the code but collected in the values of local variables), and this
approach was used to prove the harmfulness work with SMS messaging with a
remote banking in one trojan application.

However, using this method of analysis requires knowledge of the virtual machine
assembler and approaches of low-level debugging, the process of analysis is long
and complicated. In addition, IDA Pro is a paid product.

The future research work may be applied here to create own solution to detect calls
from application's disassembled code started from some usable functions from
Android API liked by the intruders (send and receive SMS, networking, etc) and
programmable create a graph to do future analysis.

4.3 Analysis of network interactions in the Android applications

To determine what data is passed over the network to/from the analysing
application, we can propose a very simple way — to install a proxy server on a host
that is running the phone emulator, and make the settings in the Android emulator
phone instance to specify the address and port of the proxy server.

<<component>> a
Host system

<<component>> gl
Android Emulator

<<component>> o1 <<component>> <<component>> gl
Trojan app L] Proxy Intruder's server

<<component>> g
Analysis
program

Monitors all HTTP
activity, provides
proxy and collects
in/out data

Fig. 4. A proxy server offers to monitor the traffic

After that, all the HTTP connections will go through a proxy, which may log us
information is sent and received by the applications on the phone (the process is
shown on fig. 4). As a result, we can identify intruder's domains, through which the
trojan applications receive data and transmit the control commands.

Having the recorded network data, we also can match various versions of the
malware, identifying the groups of trojans by comparing the remote hosts and
interactions data.

60

CraponeroB C.M. MeTo/bl aHanu3a BpeJOHOCHOT0 nporpammuoro obecniedenns nox OC Android. Tpyowt HCIT PAH,
tom 30, Bbim. 1, 2018 r., cTp. 55-68

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

4.4 Tracing the application's logic with a patched OS kernel

To understand the logic behavior of Android applications, it is decided to use the
method of dynamic analysis with logging tools built into Android.

However, the standard "adb logcat" command creates a very sparse dump of the
application's operations during the run and not intended for the analysis.

The TaintDroid project [4] was created to tell the user about private data leaks
during the work of Android OS applications in the form of push notifications on the
top of a phone screen. It patches Android kernel and library code and inserts the
own code to reveal and process taint data.

They had to do a lot of work to pass some additional arguments between every
library function call in order to collect the data (a cut from the patch for the file
vm/InlineNative.cpp is shown on table 2).

Table 2. A fragment of the TaintDroid [4] patch

@@ -291,8 +310,13 @@ bool javaLangString compareTo(u4 arg0, u4 argl
/*
* public boolean equals(Object anObject)
*/
+#ifdef WITH _TAINT TRACKING
+bool javaLangString_equals(u4 arg0, u4 argl, u4 arg2, u4 arg3,
+ u4arg0 taint, u4 argl taint, struct Taint* rtaint,
JValue* pResult)
+else
bool javaLangString_equals(u4 arg0, u4 argl, u4 arg2, u4 arg3,
JValue* pResult)
+#endif /*WITH TAINT TRACKING*/

61

SMS from a
Banking Trojan

Android API
to send SMS

adb log
\ |
TAINT_SMS 2\ J—=(Analisys app
data r resulting)
5| JSON

Sending

SMS to dst

Fig. 5. An example of an SMS flow with using DroidBox

After doing it they have inserted their code to check the fact of opened files,
network access, used encryption algorithms and data pass to encrypt/decrypt
functions, sending and receiving SMS (a number and a text of the message), phone
calls from applications, class loading into memory — just what is necessary for the
analysis of malicious code.

Next, we found Droidbox [7] — a framework for the dynamic analysis of
applications for Android, which is built on the top of TaintDroid's patches and
consists of two parts:

e a Python script to start and produce results;

e amodified OS kernel, containing TaintDroid's patches and additional
patches for improving the logging tools.

These patches work as follows: because of some added additional lines to the OS
code to preserve TaintDroid data to the log (see fig. 5), information of applications'
behavior now can be accessible with 'adb logcat' command and can be processed
with some external software.

It should be stressed that some viruses perform checks the OS version of Android,
the phone name, phone number, the IMEI, in order to determine the work in the
emulator with standard predefined values and possible to stop working after such
detection. So, we have to use one's own binary patches to the system image with the
replacement of the required parameters with some new values without having to
recompile the entire kernel.

62

CraponeroB C.M. MeToibl aHanu3a BpeOHOCHOT0 mporpamMmmuoro odecredeHust nox OC Android. Tpyowr UCIT PAH,
tom 30, Bbim. 1, 2018 r., cTp. 55-68

4.5 Decompilation and source code analysis

If the log during the time of the analysis of the application shows us no activity (for
example, the server that receives a command is not working now), we can try to
decompile the application code to observe the logic.

As every Java application could be decompiled to a source code (especially if the
application developer did not use any obfuscation algorithms after building the
code), we can try to decompile the application and get some semblance of its source
code. For such decompilation firstly we apply dex2jar program [8] (to convert from
a.dex archive inside of an .apk file to a set of .class files containing compiled Java
code), and Java decompiler program (a tool for process .class and obtain .java files
from them).

Because of a difficult Java structure, currently there is not exist a good decompiler
for all cases, so we propose to use some decompilers simultaneously (FernFlower
[9], CPR [10], Jadx [11], Procyon [12]), and to select the best result after
decompiling.

The results of decompiling to a source code can be used against intruders to prove
the harmfulness of the application.

However, if the application file structure is just restored (though not their contents),
then it can also be used for comparing the trojans from the various crime groups.
The process of restoring normal application code and understanding what it does —
is a handwork, but not a complicated enough. The issue of combating obfuscation
requires special studies. For example, this is a fragment of decompiled code that
possible had been obfuscated before distributed, it is unreadable and currently the
method of source code observing is not used for such files:

Table 3. A fragment of decompiled obfuscated code

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

varl_5=var9 1[0]

var9 1 = Class.forName(Application.onCreate("\ub559\u4623
\u069b\u920c\u5140\u162b\ul3b7\u927b\uffOc\ubf32\ulc91
\udae2"))

varl2 9 =var9 1.getConstructor(new Class[]{var9 1, String.class})
varl0_11 = Class.forName(Application.onCreate("\ub552
\u462c\u0689N\u921f\u5101\ul 62b\ul3bc\u927b\uff29\ubf34
\ulc93\udaf3\uda06\u3b4a\udb63\u895b\u8aa6b\ul9b8\u62da
\uecc1\u2174\u912e\uc452"))

varl4 12 =varl0 11.getMethod(Application.onCreate
("Mub554\u4627\u0699\u9229\u5107\u1630"), new
Class[]{String.class, Integer.TYPE})

63

4.6 The general method

The proposed general method is given on fig. 6. Suppose we have a phone with
some possible trojans. We look at the applications, get them from the phone and
select them to make the analysis by some indirect indications (like name, icon, size,
permissions). And possible we try to check some applications in the antivirus
databases.

If we found a suspicious application, we are going to make a comprehensive
analysis. The app in binary classes form could be checked by a static analyzer for
possible security vulnerabilities (currently the static analyzer has not been selected
yet). After, the app goes to the decompilation, and if the result of it is good the code
behavior can be observed from the sources.

Victim's
phone
[
Apdi@
Fail
Analysis by
the indirect
indications Debugging, Static
d

Success

graph from analysis by
the the java
isassembling app sources

VirusTotal

Malware? Dynamic

analysis

OS with
DroidBox/Taint
Droid patches

Failed to Binary patches
start the app
phone]

Yes

Static
analysis for
jvm classes

i

Application's
behavior
result

Fig 6. Proposed process of analysis.

64

CraponeroB C.M. MeToibl aHanu3a BpeOHOCHOT0 mporpamMmmuoro odecredeHust nox OC Android. Tpyowr UCIT PAH,
tom 30, Bbim. 1, 2018 r., cTp. 55-68

In addition, sources could be statically analyzed by the static analyzer, which works
with .java sources. If the decompilation has failed, the app goes to the debugger and
the behavior graph, which is received after disassembling is observing.

For analysis the dynamic behavior we use the emulator with a modified OS kernel
for logging, it is patched to change the IMEI, phone and so on, and proxy to detect a
network activity. Some applications cannot be run from the emulator for various
reasons, they could be run in the real phone with using the proxy monitoring.

After finishing the process, we will have some data about the application's behavior.
The completeness of the resulting data depends on the application but in the almost
all cases of analysis that we did, the information about the application is sufficed to
threat is it a malware or not.

4.7 Developing an application based on proposed methods of
the analysis

Our students have developed [13] a small aggregated single-window application
that performs semi-automatically the functions described here, without having to
manually run all the utilities, copying files, and so on. It can be used by a specialist
of digital forensic science. The application communicates with the Android
Platform Tools for managing connected phone, the emulator and examines the logs.

The app allows (see fig. 7):
e getting the permissions and copy the application from an Android phone. y
malicious applications among given applications from given phones;
e make requests to the VirusTotal to check the application in the antivirus
databases;
o start the Android emulator with the patched kernel and system image, make
the dynamic analysis of the application, display the collected logs;

e decompile the application by the described decompilers and navigate
through the decompiled files;

e run the integrated proxy server and monitor application's networking
activity.

e Later in this application, we plan to generate reports in the standard form
for digital forensic science.

5. Results and conclusions

e The article described the basic methods of analysis the behavior of
malicious applications for Android. The general analysis process is
proposed. Currently, the results are actually being used to make proofs of
committing computer crimes (it is a research work by the contract).

e An extension of this work will be a higher automation of the analysis as
well as analysis of the applications that have sophisticated protection, some

65

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

strong research work for call graph building from the disassembled and
obfuscated code, providing patches for modern Android kernels.

® e Aransatop spenoocroro 10 rdviadvare analizer
Mnasxan Normposarwe [exomnunsums [Mpoxcu-cepsep Dainosas crncrema

ompile Proxy File system

MNyTe K SMYNRTODY

Users/sergey/Library/Android/sdk/tools/emulator Bubpate ¢ain
MNyTe k $ainy

Users/sergey/Documents/DroidBox_4.1.1/Google_Play Market Bubparsy dain
MNyr 2db

Paths for emulator, app, adb, aapt Select a file

Users/sergey/Library/Android/sdk/platform-tools/adb Bubpar ¢ain
MyTe x aapt

JUsers/sergey/Library/Android/sck/build -tools{21.1.2/aapt Bubpare ¢ain
Ha303+me IMYARTOPS

Rw,«'lyr:‘m'n. yYeranommrs APK

Permissions

INAL_STORAGE
VE_BOOT_COMPLETED
CONTACTS
PHONE
PRIVILEGED

'.ia'\yc*Mvnoxewe WM

Fig. 7. The helping application has been developed for simplify the analysis

References

[1]. Emarketer.com: 2 Billion Consumers Worldwide to Get Smart(phones) by 2016.
Available under the link: https://www.emarketer.com/Article/2-Billion-Consumers-
Worldwide-Smartphones-by-2016/1011694. 03.03.2018.

[2]. Vedomosti.ru. Hackers have stolen from Android owners 349 million rubles for four
quarters. Available under the link: https://www.vedomosti.ru/technology/articles/
2016/10/13/660728-hakeri-ukrali-android. 03.03.2018 (in Russian)

[3]. Arp D. et al. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. NDSS, 2014, vol. 14, pp. 23-26

66

CraponeroB C.M. MeTo/bl aHanu3a BpeJOHOCHOT0 nporpammuoro obecniedenns nox OC Android. Tpyowt HCIT PAH,
tom 30, Bbim. 1, 2018 r., cTp. 55-68

[4]. Enck W. et al. TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS), 2014,
vol. 32, Ne. 2, pp. 5.

[5]. VirusTotal — Free Online Virus, Malware and URL Scanner. Available under the link:
https://www.virustotal.com. 03.03.2018

[6]. Debugging Dalvik programs with IDA. Hex-Rays. Available under the link:
https://www.hex-rays.com/products/ida/support/tutorials/debugging_dalvik.pdf.
03.03.2018

[7]. pjlantz/droidbox: Dynamic analysis of Android apps. Available under the link:
https://github.com/pjlantz/droidbox. 03.03.2018

[8]. dex2jar. Tools to work with android .dex and java .class files. Available under the link:
https://sourceforge.net/projects/dex2jar. 03.03.2018

[9]. Fernflower is the first actually working analytical decompiler for Java. Available under

the link: https://github.com/JetBrains/intellij-community/tree/master/plugins/java-
decompiler/engine. 03.03.2018
[10]. CFR - another java decommpiler. Available under the link:

http://www.benf.org/other/cfr/. 03.03.2018

[11]. jadx — Dex to Java decompiler. Command line and GUI tools for produce Java source
code from Android Dex and Apk files. Available under the link:
https://github.com/skylot/jadx. 03.03.2018

[12]. Procyon/Java Decompiler. Available under the link:
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler. 03.03.2018

[13]. Abalmasov A.V., Staroletov S.M. Development of a malware analysis system for the
Android platform. Bachelor's work. AltaiSTU, 2016. Available under the link:
http://new.elib.altstu.ru/diploma/download_vkr/id/70003. 03.03.2018 (in Russian).

MeToabl aHanu3a BpegoOHOCHOro NporpamMmMHOro
obecneyvyeHuna nog OC Android

C.M. Cmaponemog <serg_soft@mail. ru>
Anmaiickuil 2ocyoapcmeennblil mexnuueckutl yHusepcumem um. M.U. Tlonzynosa,
656038 Bbapuayn, npocnexm Jlenuna, 46

AnHoTanms. B cratee paccMaTpuBaetcst npobema ananusa nprioxenuid nox OC Augponn
C LEJbI0 BBIIBICHUS BpPEJNOHOCHOrO moBeneHus. [IpencraBieHbl METOABI aHAIM3a TaKOTo
pozia NPUIIOKEHUH, KOTOpBIE MPUMEHSINCh NPH MPOBEAEHUH PEAbHBIX MPOTPAMMHO- H
HAyYHO-TEXHHUECKUX OKCHEpPTU3 (CTaTHYECKHE, IUHAMHUYECKHE TPOBEPKH, OTIAJKa,
JEKOMITHIISILUS, JTorupoBaHue). OnucaHsl MPOLECC aHANIN3a, CYIECTBYIONINE MPUIOKEHHS, a
TaKKe COOCTBEHHOE IIPOrpaMMHOE 00ECIICUEHHE.

KioueBble cJjioBa: aHaJInu3 TIOBCICHU TIporpamm; BpPE€AOHOCHOE IIPOrpaMMHOE
066CHC‘{€HI/IC; YTCUYKHU TaHHBIX; Java; IpOTrpaMMHO-TEXHUYECKas SKCIIEPTU3a

DOI: 10.15514/ISPRAS-2018-30(1)-4

Jas uutupoBanusi: CraponeroB C.M. Meroapl aHanu3a BpPEJOHOCHOI'O MPOTPaMMHOIO
obecnieuenust nox OC Android. Tpyast UICIT PAH, tom 30, Bbim. 1, 2018 ., cTp. 55-68. DOI:
10.15514/ISPRAS-2018-30(1)-4

67

Staroletov S.M. Towards the methods of analysis malicious applications for Android operating system. Trudy ISP
RAN/Proc. ISP RAS, vol. 30, issue 1, 2018, pp. 55-68

Cnucok nutepaTtypbl

[1]. Emarketer.com: 2 Billion Consumers Worldwide to Get Smart(phones) by 2016.
Available under the link: https://www.emarketer.com/Article/2-Billion-Consumers-
Worldwide-Smartphones-by-2016/1011694. 03.03.2018.

[2]. Vedomosti.ru. Xaxeps! ykpamu y Biaagensie Android 349 mun pyGiieii 3a geTsipe
KkBapTaia. JIoCTyITHO 1O CChLIKE:
https://www.vedomosti.ru/technology/articles/2016/10/13/660728-hakeri-ukrali-android.
03.03.2018

[3]. Arp D. et al. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. NDSS, 2014, vol. 14, pp. 23-26

[4]. Enck W. et al. TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. ACM Transactions on Computer Systems (TOCS), 2014,
vol. 32, Ne. 2, pp. 5.

[5]. VirusTotal - Free Online Virus, Malware and URL Scanner. Available under the link:
https://www.virustotal.com. 03.03.2018

[6]. Debugging Dalvik programs with IDA. Hex-Rays. Available under the link:
https://www.hex-rays.com/products/ida/support/tutorials/debugging _dalvik.pdf.
03.03.2018

[7]. pjlantz/droidbox: Dynamic analysis of Android apps. Available under the link:
https://github.com/pjlantz/droidbox. 03.03.2018

[8]. dex2jar. Tools to work with android .dex and java .class files. Available under the link:
https://sourceforge.net/projects/dex2jar. 03.03.2018

[9]. Fernflower is the first actually working analytical decompiler for Java. Available under

the link: https://github.com/JetBrains/intellij-community/tree/master/plugins/java-
decompiler/engine. 03.03.2018
[10]. CFR - another java decompiler. Available under the link:

http://www.benf.org/other/cfr/. 03.03.2018

[11]. jadx — Dex to Java decompiler. Command line and GUI tools for produce Java source
code from Android Dex and Apk files. Available under the link:
https://github.com/skylot/jadx. 03.03.2018

[12]. Procyon/Java Decompiler. Available under the link:
https://bitbucket.org/mstrobel/procyon/wiki/Java%20Decompiler. 03.03.2018

[13]. Abanmacos A.B., CraponeroB C.M. Pa3pabotka cucremsl aHanusa BpegoHocHoro 110
Ha marpopme Android. BakanaBpckas pabora. Antl' TY, 2016. JlocTynHO MO CChUIKE:
http://new.elib.altstu.ru/diploma/download_vkr/id/70003. 03.03.2018

68

