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Abstract. The paper provides a review of distributed graph algorithms research conducted by 
authors. We consider an asynchronous distributed system model represented by a strongly 
connected directed rooted graph with bounded edge capacity (in a sense that only a bounded 
number of messages can be sent through an edge in a given time interval). A graph can be 
static or dynamic, i.e. changing. For a static graph we propose a spanning (in- and out-) tree 
construction algorithm of time complexity O(n / k + d), requiring O(n d log +) message size 
and the same size of memory of each computing agent located in graph vertex, where n is the 
number of vertices of the graph, k is the capacity of an edge, d is the maximum length of 
simple path in the graph, + is the maximum outdegree of the vertices. The spanning trees 
constructed can be used in distributed computation of a function of the multiset of values 
assigned to graph vertices in a time not greater than 3d. In a dynamic graph we suppose that 
k = 1 and an edge can appear, disappear, or change its end. We propose a dynamic graph 
monitoring algorithm than delivers information on any change to the root of the graph in O(n) 
or O(d) after the changes are stopped. We also propose graph exploration and marking 
algorithm with time complexity O(n). The marking provided by it is used in distributed 
computation of a function of the multiset of values assigned to dynamic graph vertices, which 
can be performed in time O(n2) with messages of size O(log n) or in time O(n) with messages 
of size O(n log n). 
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1. Introduction 
This paper considers distributed graph algorithms. To treat them formally, we must 
use a formal computation model, and the choice of such a model critically 
influences the complexity of possible algorithms. In this work we use the following 
model: a set of computing agents located in the vertices of the graph under 
consideration (an algorithm is intended to compute some information about this 
graph) and interacting by passing messages through graph arcs [1–3].  
Such computing agents are called in various ways in the literature: tasks [1], 
processors [2], processes [3], or state machines [4] (if they are actually state 
machines, maybe not finite ones). We suppose that the agents can interact only in a 
peer-to-peer way. A round of agent’s operation can include message reception, 
changing the agent’s state, and sending another message. In [1] such an agent is 
called reactive entity or message-driven entity. To be able to send a message 
through some arc, an agent should refer to this arc. To make this possible, all arcs 
incident to one vertex are supposed to be enumerated, so an agent just use the arc’s 
number. In case of directed graph, this enumeration includes only arcs outgoing 
from the vertex. We also suppose that am agent has no information on other vertices 
– it knows only the number of outgoing arcs in its vertex, and the vertex identifier if 
the graph is enumerated.  
Here and in [1] computations on directed graph are considered, although 
computations on undirected graph are more usual, see [2, 3]. Note, that algorithms 
solving the same tasks on directed graphs are considerably more complex. An 
example is provided by the task of graph traversal by a single message, with agents 
in the vertices being finite state machines. For undirected graphs it is solved by 
well-known Tarry algorithm [2, 22] with time complexity O(m), where m is the 
number of graph arcs. This complexity is minimal, because it coincides with lower 
time bound for any algorithm for this task. For directed graphs lower time bound for 
the same task is O(nm), where n is the number of graph vertices, and the best known 
algorithm has time complexity O(nm + n2 log log n) [16]. It is still unknown 
whether the gap between lower bound estimate and actual algorithm complexity can 
be reduced for directed graphs.  
Synchrony or asynchrony of computation agents is also an important aspect of the 
model. In synchronous models the agents work in lockstep mode, i.e., all the agents 
make one computation step simultaneously, so the main complexity is related with 
number of communication acts [18, 19]. In asynchronous model, the time of 
message transport can differ for different arcs and different messages. Usually the 
time of message transport through one arc is assumed to be bounded by some 
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constant, which can be taken as 1 tic. The algorithm time complexity in 
asynchronous model is the worst case time of its operation. Also in asynchronous 
model, an arc becomes a buffer of messages sent by one arc end and not yet 
accepted by the other, usually organized as a queue. This queue can be unbounded 
or can has some maximum number of messages that can be stored, called an arc 
capacity. It is so an important characteristic of a model [1]. In this work, we 
consider a model with bounded arc capacity.  
We also assume that graphs can have multiple arcs leading from one vertex to 
another one, and can have loops leading from a vertex to itself (some authors called 
such graphs pseudographs or multigraphs). In opposite to our approach, most works 
on distributed computations consider graphs that cannot have multiple arcs or loops.  
For distributed asynchronous algorithms, the memory used is an important 
characteristic. It is true both for the inner memory of a computation agent (which 
can be regarded as a logarithm of the number of its states) and for the size of 
messages used in communication. Therefore, further we estimate the inner memory 
of agents and the size of messages used in an algorithm as functions of the graph 
complexity.  
In synchronous models all the agents start their operation simultaneously and the 
end of operation is often not specified explicitly. In asynchronous models the 
algorithm operation is initiated by an external Start message, which is accepted by 
an agent in some graph vertex, which than starts sending messages to other vertices, 
agents in which start their operation after accepting them [3]. We assume that a 
starting vertex is fixed, it is called the root of a graph.  
The other problem with distributed computation is termination detection [2] – how 
to notice the end of algorithm operation. We assume that the algorithm is finished 
when the root agent sends to the environment special Finish message, possibly 
containing some result data. A procedure helping the root agent to learn that the 
algorithm work is finished is nontrivial in asynchronous models.  
One of important tasks of distributed computations is computation of a global 
function on a graph [3]. In this work, we consider a task of computing a function of 
a multiset of values assigned to graph vertices. An agent located in a vertex knows 
the value assigned to it. To compute the global function value we use the notion of 
aggregate function, which global value can be computed from values for 
nonintersecting subsets of vertices, and minimal aggregate extension, which exists 
for any function [11, 12, 14, 21].  
Such computation tasks are usually solved with the help of broadcast and 
convergecast operations. The broadcast problem is a problem of communication 
organization from one vertex to all other vertices. The convergecast problem is a 
problem of communication organization from all vertices to some single vertex. To 
solve broadcast and convergecast problems a spanning tree of the graph is used. In a 
directed graph broadcast is performed as query message passing along forward or 
spanning out-tree, which has the root coinciding with the root of the graph and arcs 
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leading from an ancestor vertex to its descendants. Convergecast is performed as 
answer message passing along backward or spanning in-tree, with arcs leading from 
descendant vertices to their ancestor, and finally to the root. To use spanning in-tree 
for correct convergecast an agent in a vertex should know the number of incoming 
backward arcs, because it can send its answer only after accepting all the answers of 
agents located in the descendants.  
Algorithm of spanning tree construction for undirected graph uses information 
propagation with feedback [3]. It is performed by broadcast with the help of 
flooding (sending messages along all arcs that are not used before), and then 
convergecast is performed to mark out the spanning tree arcs and assign the number 
of descendants to each vertex. This algorithm uses the possibility to send a message 
along an arc, which is used to transfer a previously accepted message. Directed 
graph has no such a possibility. Instead, one can use for the same task a path from 
the arc’s end to the root and a path from the root to the arc’s start. To construct these 
paths, broadcast messages should accumulate the description of the path passed as a 
sequence of arc numbers. In addition, convergecast also uses flooding, but takes into 
account that several floodings initiated by different vertices are working in parallel 
on the graph.  
In many applications of distributed computations on graphs, including 
communication networks, VLSI design, assembly planning, the base graph can be 
slightly changed from time to time, that is, its vertices or arcs can be inserted or 
deleted. In the last decade, there is a growing interest to algorithms solving certain 
tasks on such dynamic graphs. If one allows only arc insertion or deletion, keeping 
the set of vertices stable, such a graph is described by dynamic connectivity 
structure, a data structure that dynamically maintains information about the 
connected vertices. Some works consider a case when the set of vertices can be also 
changed [20].  
The following problems are often considered on dynamic graphs: connectivity 
determination, computation of the shortest path between the given vertices, 
spanning tree construction, etc. The usual goal of dynamic graph algorithms is to 
update efficiently the solution of a problem after changes, rather than having to re-
compute it from scratch each time. Such algorithms provide incremental updates for 
the previous solution. Our approach is different; we consider possibility to solve 
some task without any previously gathered data on a graph, which is still changing. 
We treat directed dynamic graphs with stable vertices set and changing arcs, an arc 
can disappear, appear, or change its end. We also consider a problem of graph 
monitoring: how to gather actual information on graph structure in its root agent. Of 
course, this information gathering have sense if changes are not too quick. We give 
an estimate of time needed for graph structure information update in the root agent, 
so if no changes occur on this interval, one can trust the data gathered.  
Another problem on dynamic graphs considered here is computation of a function 
on a multiset of values assigned to graph vertices. In this case, we cannot use 
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spanning trees because of possible changes in graph structure. In such a setting one 
can send queries to all vertices from the root and then gather the answers, but 
answers from different vertices should be distinguished. There are different ways to 
distinguish them. One technique uses static enumeration of vertices and their 
identifiers, in this case computation complexity is O(n) and message size is 
O(n log n). Another technique uses linear order on vertices and sending answers 
according to this order, in this situation message size can be O(log n), but total 
computation time becomes O(n2). These methods can be generalized, namely, one 
can construct virtual spanning tree of the graph with the help of additional virtual 
arcs and use it to gather answers from vertices. If such a spanning tree has w leaf 
vertices, then messages used can be of size O(w log n) and total computation time is 
O(n2 / w).  
Below in Section 2 we consider static graphs, their marking out algorithm, and 
parallel computation on static graph. Section 3 presents the dynamic graphs, 
monitoring algorithm, and parallel computation on dynamic graph. The conclusion 
summarizes the paper. 

2. Static Graphs 
In this section we suppose that distributed computation is performed by agents 
located in vertices of a directed graph and interacting by passing messages through 
graph arcs, along their direction. The graph is static, i.e., stays unchanged during the 
computation. An agent has no information on graph structure, it knows only the 
number of arcs outgoing from its vertex. Outgoing arcs are numbered, so an agent 
can send a message along an arc using its number.  
Agents operation is asynchronous. On single step of its operation, an agent can 
accept all messages sent to it through incoming arcs, perform some internal 
computations, and send several messages through some outgoing arcs. An arc is a 
buffer with capacity k, i.e., in one time not more than k messages can be sent along 
this arc and not yet accepted. If an arc already has k unaccepted messages, an agent 
located in its starting vertex cannot send new messages along it. We suppose that 
message size is bounded, so arc capacity put a bound on the size of stored data. This 
can be implemented in two ways: one can has k messages of some constant size on 
an arc or one message of a size that is k time bigger. The difference is that in the 
first case it is possible to send more messages, if the number of unaccepted 
messages on an arc is less than k. We consider here algorithms using the first option, 
they can send several messages of bounded size along one arc, but not greater than k 
in a time.  
A message can be sent along only one arc, along all outgoing arcs, or along some 
subset of outgoing arcs. Nevertheless, we assume that a message waits until all 
outgoing arcs are capable to transport it. This assumption can increase the total 
computation time, but make unnecessary separate signals about ability of arcs to 
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carry a message, a single signal concerning all arcs (that a message can be sent 
along any of them) is sufficient.  
To estimate time complexity of computation we count time of internal operation of 
an agent negligible. We also assume that a message is transported through an arc in 
one tic, i.e., not later than one tic after sending it is accepted on the end of the arc.  
We also use the following notation: n is the number of graph vertices, m is the 
number of graph arcs, d is the maximum length of a simple path (passing each 
vertex not more than once), Δ+ is the maximum number of arcs outgoing from one 
vertex, Δ– is the maximum number of arcs incoming to one vertex. 

2.1 Marking out a graph  
We consider in this subsection a problem of graph exploration. The solution of this 
problem should be an algorithm that starts by accepting an external Start message in 
the root agent, performs marking out of the graph by computing and storing in 
agents’ internal memory some data that provides a local information on graph 
structure, and finishes by sending Finish message from the root agent as an answer 
to the Start one.  
The graph marking out includes the following.  
Spanning out-tree, directed from the root. We call its arcs forward arcs. An agent 
located in each vertex should store all the outgoing forward arcs. Other outgoing 
arcs are called chords.  
Spanning in-tree, directed to the root. Its arcs are called backward arcs. A vertex can 
have not greater than one outgoing backward arc (the root has no one). An agent 
located in the vertex (except for the root) should store the number (id) of the 
backward arc.  
An agent located in the vertex should store the number of backward arcs incoming 
to it. This number is necessary to gather correctly information along the in-tree, the 
messages accepted along backward arcs are counted until the counter reaches this 
number that means that all the data from the preceding part of in-tree are already 
collected.  
This marking out can be considered as a result of graph exploration, sufficient to 
perform further exploration of the graph or distributed computations on it in an 
efficient way.  
The algorithm of marking out is described in details and with proofs in [10, 11]. 
Here we provide only the general description of it and give complexity estimates 
without proofs. The algorithm has three phases: construction of spanning out-and 
in-trees, construction termination detection, and setting counters of incoming 
backward arcs.  
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2.1.1 Construction of spanning out-and in-trees  

This step uses 4 message types: Start is used to initiate the operation in the root and 
to set vertex identifies, Search is used to find paths from any vertex to the root, 
Forward marks out the spanning out-tree, Backward marks out the spanning in-tree.  
The root agent accepts Start message from the environment and this initiates the 
graph marking out. Start message is sent further with flooding pattern: an agent 
accepts the first Start message, sends it along all outgoing arcs, and ignores all other 
incoming Start messages (accepts them and does nothing in addition). A message of 
this kind accumulates a vector – the sequence of arc numbers used along its way 
(each agent before sending the message further appends the sequence in it with the 
number of the arc it uses to send it). The vector of the first Start message accepted in 
the vertex becomes the identifier of this vertex. The root identifier is an empty 
vector.  
A Search message looks for a path from a vertex to the root. An agent that accepts 
the first Start message creates and sends Search messages along all outgoing arcs. 
Such a message contains an initiator vector (the identifier of the vertex where it is 
created) and accumulates backward vector – the sequence of arc numbers it passes. 
An agent stores internally the set of identifiers of initiators of Search messages it 
already processed. After accepting Search message, a non-root agent looks for its 
initiator identifier in this set. If the initiator is already processed, the message is 
ignored. Else, the initiator identifier is stored and the agent sends Search messages 
along all outgoing arcs with their backward vectors appended by numbers of 
corresponding arcs.  
The root agent accepting Search message creates Forward message putting the 
initiator vector and backward vector in it. Forward message is moved along the path 
described by the initiator vector. To make this possible, each agent before sending 
the message along the first arc of the vector marks this arc as a forward one and 
removes its number from the vector in the message. If an agent accepts the Forward 
message with empty initiator vector, then it is the initiator. It creates Backward 
message, put backward vector from the Search message in it, and sends it along 
backward path.  
Backward message moves along backward path in the same way – each agent 
accepting it before sending it along the first arc of the backward vector, marks this 
arc as a backward one (stores its number in a special memory slot), and removes its 
number from the backward vector in the message. Backward arc number can be 
already stored in a vertex agent; in this case, the agent rewrites it. This guarantees 
that no cycles along backward arcs appears in the end.  

2.1.2 Construction termination detection  

Construction termination detection is based on counting of arc starts and ends, when 
this numbers become equal all the arcs are explored and so the construction step is 
complete. To implement this idea the root agent stores the value of known arc starts 
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minus known arc ends. After the operation start, the counter equals to the number of 
outgoing arcs from the root.  
To count arc starts every Search message has an additional field storing the number 
of arcs outgoing from the message initiator. After accepting such a message, the 
root agent adds this field value to the counter.  
To count arc ends we add two special message types, Finish and Minus. All agents 
have the counter of incoming arcs. When Forward message is accepted by its goal 
agent (the initiator), it sends Finish messages along all outgoing arcs. The root agent 
does this just after sending Start messages. When Finish message is accepted, the 
agent increments the counter of incoming arcs. Minus message is created and sent to 
the root agent along the backward arc just after the backward arcs is set in the vertex 
for the first time. The first Minus message contains the value of the counter of 
incoming arcs. If a Finish message is accepted after sending the first Minus 
message, additional Minus message with value 1 is created and sent to the root 
agent. When the root agent accepts Minus message, it decreases its counter of arc 
starts on the value of the message field. When this counter becomes 0, the 
construction step is finished.  

2.1.3 Setting counters of incoming backward arcs  

After the construction of in-tree is finished, it becomes possible to set the counters 
of incoming backward arcs. For this purpose two additional message kinds, Begin 
and End are used. Begin messages are created by the root agent and broadcasted 
along the out-tree – each agent after accepting such a message creates its copies and 
send them along all outgoing forward arcs. It also creates and sends along the 
backward arc End message with initial flag set to true.  
After accepting End message with raised initial flag, an agent increments its 
incoming backward arcs counter, sets the flag to false, and sends the message along 
backward arc (if it isn’t the root agent). End messages with dropped initial flag are 
just sent along backward arcs. The root agent counts accepted End messages. When 
their number reaches the number of registered initiators, the counter setting and so 
the whole algorithm operation are finished.  

2.1.4 Algorithm complexity  

The time complexity of the algorithm is O(n / k + d). The size of internal agent 
memory used is O(nd log Δ+). The maximum size of message used is O(d log Δ+). 
Note, that here d means the maximum length of non-intersecting path, not the graph 
diameter. This is a consequence of asynchrony; the forward path from the root to 
some vertex may appear to be the maximal non-intersecting path, not a path of 
minimum possible length between these two vertices.  
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2.2 Parallel computations and aggregate functions  
In this subsection we consider the problem of parallel computation of a value of a 
function on graph. We suppose that each graph vertex has some value assigned to it 
(vertex agent has special operation providing this value) and we need to compute 
the value of some function on this multiset of values.  
Let X denote a set, from which values assigned to graph vertices are taken. X# is a 
set of all finite multisets of elements from X. Multisets are considered, because 
different graph vertices may have equal values assigned.  

A function g : X# → Y is called aggregate when e : Y → Y a, b  X# 
g(a  b) = e(g(a), g(b)). That is, g value on a multiset can be computed by parts. In 
this situation e is called an aggregator of g.  
Examples of aggregate functions are the following: sum 
 : {a1,...,an} → a1 +...+ an has e : (a, b) → a + b, mimimum 
min : {a1,...,an} → min(a1,...,an) has e : (a, b) → min(a, b), sum of squares 
Q : {a1,...,an} → a12 +...+an2 has e : (a, b) → a + b.  
Not all the functions are aggregate, for example, arithmetical mean is not an 
aggregate function. But one can expand function f : X# → Y as a composition 
f = hg, where g : X# → Z is aggregate and h : Z → Y is just some function. In this 
case g is called an aggregate extension of f. An aggregate extension can help to 
compute f by parts, by computing g by parts and then computing h once in the end. 
Some extensions aren’t helpful actually, e.g., one can take an identity function on 
X# as g and f itself as h. To prevent this situation, we use minimal aggregate 
extension. Intuitively, minimal aggregate extension keeps minimum information to 
make possible further computation of f. Formally, g : X# → B is a minimal 
aggregate extension of f : X# → Y, if g is its aggregate extension and for each g': 
X# → B', which is an aggregate extension of f there is j : B' → B, such that g = jg'. 
Minimal aggregate extension exists for every function on multisets and is unique up 
to isomorphism.  
Examples of minimal aggregate extension are the following: for arithmetical mean 
function f : {a1,...,an} → (a1 + ... + an) / n the minimal aggregate extension is 
provided by function g : {a1,...,an} → ((a1 + ... + an), n) and corresponding 
h : (a, n) → a / n, for root mean square f : {a1,...,an} → ((a12 +...+an2) / n)1/2 the 
minimal aggregate extension is provided by function h : (a, n) → (a / n)1/2. 
Aggregate functions theory is a modification of theory of inductive functions on 
finite sequences, see [21]. Detailed proofs can be found in [11].  

2.3 Parallel computations on static graph  
In this subsection we describe an algorithm for computation of a function of values 
assigned to graph vertices (details can be found in‘[11, 12]). This algorithm uses the 
marking out provided by the algorithm described above: spanning in-and out-trees 
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and counters of incoming backward arcs. Note, that this marking out can be 
constructed once and further used for many computations.  
Computation is started when the root agent accepts an external Start message with 
specification of three functions h, g, e. One need to compute the value of f = hg on 
the multiset of values from X assigned to graph vertices. g is a minimal aggregate 
extension of f, and e is an aggregator function of g. Specification of a function can 
be actually a program to compute it.  
The computation is based on broadcast along spanning out-tree and convergecast 
along spanning in-tree of the graph. Request messages containing specifications of 
g and e are transferred along forward arcs. Response messages are transferred along 
backward arcs and contain value of g on a subset of values assigned to vertices of a 
subtree of in-tree.  
When an agent of a leaf vertex of in-tree (it has incoming backward arcs counter 
equal to zero) accepts Request, it computes the function g of the value assigned to 
its vertex, and sends the computed value in the field of Response message along the 
backward arc. Agent of a non-leaf vertex also computes the value of g, but doesn’t 
send it until getting Response messages from all incoming backward arcs, using the 
counter to detect this situation. When it gets all the responses, it can compute the 
complete value of g for the subtree having the corresponding vertex as its root, and 
then sends the result with Response message along its backward arc. When the root 
agent get all the responses, it can compute the value of f by applying h to the value 
of g, and sends the final value to the environment.  
The total computation time of this algorithm is O(3d), ignoring the computation 
complexity of g, h, e, the memory size of an agent is bounded by O(Δ+ + log Δ–

 + x + y), message size is O(x + y), where x is the size of specification of g and e, 
and y is the size of g values.  

3. Dynamic graphs  
In this section we consider computations on dynamic graphs, i.e., graphs, which arcs 
can change while the set of vertices doesn’t change. There are three possible 
changes of arcs.  

 An arc can appear. This event produces a special signal to arc start agent; the 
appearance signal contains the number of new arc.  

 An arc can disappear. We assume that if there is a message being transported 
along the arc, the arc start agent gets a signal with the number of disappeared 
arc, and all the messages sent along it and not yet accepted also disappear. If 
there are no such messages, then no signal is generated. However, in case the 
agent tries to send a message along the disappeared arc, it also gets a 
disappearance signal.  

 An arc can change its end vertex. No signal is generated on this event.  
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This model requires minimal number of additional signals to provide agents with 
data on arc changes. We assume that a special release signal is sent to an agent in 
the arcs starting vertex when a message of the arc is accepted and new message can 
be sent along it. We also suppose that arc capacity is 1 – only single message can be 
transported at a time.  
If an arc changes are too frequent, two unprocessed signals can emerge, and in this 
case we assume that one of them is lost. The second signal can be only an 
appearance signal, so the rules of signal collapse are as follows.  

 From two appearance signals only the last one is retained.  
 From disappearance and appearance signals only the appearance one is 

retained.  
 From release and appearance signals any one can be retained.  
We ignore the time of agent’s internal operation and consider the time of one 
message transport through an arc as bounded by one tic. Too frequent changes can 
make impossible message transport along an arc; to prevent this we suppose that 
some arcs are long-living. A long-living arc always transfers at least one message 
while it is in a stable state. So, long-living arcs are changed not more frequent than 
once in a tic. We also suppose that changes preserve strong connectedness of the 
graph. More precisely, the subgraph made of long-living arcs is always strongly 
connected and contains all the vertices of the graph.  
The algorithms presented below are operating when graph is changing, so they use 
the following heuristics. All the data an agent need to send another agent should be 
put in a single message, because only a single message is guaranteed to be 
transported along an arc. Also, a message should be sent each time it becomes 
possible, that is, the necessary arc appears or is released. Otherwise, the message 
data may not reach other agents because the arc may change its end several times 
without any signals to the sender.  

3.1 Dynamic graph monitoring  
We assume that the graph is enumerated, its vertices has numbers from 1 to n, and 
each agent knows the corresponding vertex number.  
We consider the problem of graph monitoring: to collect complete information on 
graph structure in the root agent (this information is also gathered in all other vertex 
agents). Due to permanent changes, one cannot guarantee the correctness of this 
information, but we can require that the information on arc change becomes known 
to all agents not later than in some finite time T0. So, if in time T0 an arc doesn’t 
change, the agents has correct information about it.  
The algorithm is described in details and with proofs in [13], here we provide only 
the general description and complexity estimates without proofs.  
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3.1.1 Arc description and messages  

The algorithm works as follows. Each agent has an internal storage of arc 
descriptions. An arc description is a triple of the number of start vertex, the arc 
number in its start, and the number of the end vertex (if it is known, else it is 
replaced with 0). Each message also contains a set of arc descriptions. Each time an 
agent accepts a message, it compares his internal arc descriptions with the ones in 
the message, copies to its internal memory the descriptions of arcs it doesn’t know, 
and replaces the descriptions, which are more recent in the message. After that, it 
sends its internal set of descriptions in messages along all outgoing arcs.  
In case an arc appears, the start vertex agent creates the new arc description with 
zero end number. The start vertex agent is also the first one who learns about arc 
disappearance. In case of arc end change the end agent can discover this, if it 
accepts a message with another end number (or zero) in arc description. To make 
this noticeable, the message contains the identifier of the arc used to transfer it.  

3.1.2 Arc rank  

Since an arc can change several times, an agent should determine whether it has 
more recent arc description than the one in a message or not. For this purpose, we 
use a number field in arc description called rank and showing “a version number” of 
the description. When the rank is greater, the corresponding description is more 
recent and should replace an older one. When an agent learns about a new arc or arc 
change and creates or modifies an arc description, it should increase the rank in it.  
To be sure that in every other description the rank is smaller, it isn’t always enough 
to increase it in a new description by 1. Several arc end changes can lead to the 
situation when different end agents assign to a new description rank value greater by 
1 than the old one. To resolve this, the arc start agent accepting a message with 
newer arc description always adds additional 1 to updated arc description in its 
storage. Accordingly, accepting an appearance or disappearance signal the arc start 
agent increases the arc description rank by 2.  

3.1.3 Estimates  
The estimate of time needed to an agent to learn about arc change is T0 = O(n). The 
estimate of time needed to transport information on all changes after they stop is 
T1 = O(d). The size of agent’s internal memory and the message size are both 
O( m log Δ+nν), where ν is the maximum number of changes of one arc. This is 
caused by the fact the each agent actually stores the full description of graph 
structure and the same full description is contained in a message. The multiplier v is 
caused by the arc rank field in messages.  
In case when all arc are long-living, we can eliminate v multiplier. In such a 
situation, the number of arc changes is not greater than total time of operation, 
which is O(n). So, one can count ranks modulo some number of the value O(n), and 
the estimate of message size becomes O(m log Δ+n).  
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3.2 Parallel computations on a dynamic graph  
For parallel computation on dynamic graph, we need to mark it out, which is not 
performed by monitoring algorithm. Moreover, one cannot use the same method 
with broadcast of Request and convergecast of Response messages, because 
changes in arcs of in-or out-trees may require modifications in spanning trees. Also, 
successful message transport along arcs is not guaranteed.  
However, as one can see on monitoring algorithm example, assumption on arcs 
long-liveness can guarantee that information from any vertex can be delivered to 
any other vertex. To do this, vertex agents should send all gathered information 
along any arc any time the arc is able to transfer it.  
This approach is sufficient to deliver Request messages to all vertices. One can 
gather responses in the same way in the root and perform all the computations by 
the root agent, but this requires very large messages that should contain all the data 
from all known vertices. Use of spanning in-tree and backward arc counters helps to 
minimize the size of Response messages; along backward arcs one can send only 
the summary information on the subtree, having the start vertex as its root.  
In case of dynamic graph the idea is to use a virtual spanning in-tree, constructed 
using additional virtual arcs connecting arbitrary vertices. In addition, we can 
choose the form of the virtual in-tree, since its height h (the maximum length of a 
path from its leaf to the root) determines the computation time (the computations 
can be performed in parallel on different paths only, on one path to the root they are 
performed sequentially) and its width w (the number of leafs) determines the 
maximum message size.  
For the given n and w one can construct the tree of minimum height with n vertices 
and w leafs. It is a fan-like tree homeomorphic to star graph with w rays (branches), 
each ray contains h or h – 1 vertices, where h = (n – 1) / w. The vertices on such a 
tree (besides the root) can be enumerated by two-component index, the ray number 
from 1 to w and the number of the vertex on the ray from 1 to h, smaller numbers 
are closer to the root. The backward arc counter in such a tree is necessary only in 
the root (and it has value w). Other agents should know only the status of its vertex 
whether it is a leaf (counter value is 0) or not (counter value is 1).  
Below we present a general description of the algorithm and its complexity 
estimates. Details and proofs can be found in [14].  

3.2.1 Marking out a dynamic graph  

Marking is performed in two phases; at the first phase the root agent gathers data on 
all vertices using Forward messages, at the second one the root constructs the 
virtual spanning in-tree and sends it to all the vertices using Backward messages.  
The root agent after accepting the Start message from the environment creates 
Forward message, which further circulates on the graph accumulating the arc 
descriptions (with the same fields as in monitoring algorithm). Any agent accepting 
this message updates its internal storage with its data, updates the message with the 
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descriptions, which are more recent in its storage, and sends the updated message 
along all outgoing arcs.  
We need additional assumptions to guarantee that the root agent learns about all the 
vertices. First, we assume that in the clash of release and appearance signals the 
release signal is retained. This helps to guarantee the successful transport of a 
message, since release signal cannot be lost now. Second, we need more stable 
initial arcs. Initial arc is stable from the start of algorithm work until the first 
message is transported along it. We also assume that all the vertices are reachable 
from the root along initial arcs.  
Using this assumptions an agent can register only arcs appearing until it accepts the 
first message (and ignore arc appearing signals after this). This helps to register all 
the initial arcs, and hence all the vertices becomes known to the root agent after 
some time. The root agent can check the condition that it knows ends of all known 
arcs, and due to assumptions, this condition is sufficient to conclude that it knows all 
vertices.  
When the root agent learns about all vertices, the second phase starts. The root agent 
creates the description of virtual fan-like tree, which is sent in Backward message. 
The tree description consists of descriptions of vertices. Each vertex description 
includes the vertex number, its index in the tree, and the flag stating whether it is a 
leaf vertex or not. Each agent accepting Backward message first time, stores the 
description of its vertex, removes it from the tree description, stores the modified 
description, and sends it with Backward message along all outgoing arcs. It also 
stops resending of Forward messages. Accepting Backward message second time 
or further, it constructs and stores the intersection of sets of vertex descriptions 
stored internally and in the message, and stores and sends this intersection. After 
some time the description of virtual tree in Backward messages becomes empty, 
and then this description in the root agent becomes empty. This is the end of the 
marking of the graph.  

3.2.2 Function computation  

To compute a function of a multiset of values assigned to graph vertices we use 
request-response scheme, as for static graph. But in case of dynamic graph, all the 
information should be sent in one message along all the arcs that can transport it 
(that is, each time just after appearance or release signals). Therefore, each request 
message should also contain a partial response. One response value for each tree 
branch can be contained in a message, and it is accompanied by the index of the 
agent, which computed this response. The response value is at first set by the agents 
located in the leafs of virtual trees, then it is modified by the agents of the next 
virtual tree vertices in the direction to the root, until the root agent gathers responses 
from all the root neighbors in the virtual tree. Accepting Request message, an agent 
also stops to send Forward and Backward messages.  
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After the end of computation, Request messages can still move along the arcs. 
Their movement can be stopped by next computation, to do this the root agent can 
enumerate computation tasks requested by the environment and put the number of 
task in Request message. So, Request message contains the number of task, the 
specification of g and e functions, the set of pairs (the value of g for i-th branch, the 
index of response creator).  

3.2.3 Estimates  

The time of graph marking out is O(n), the time of function computation is 
O(n2 / w). The size of agent internal memory and the size of a message is 
O(m log nΔ+) on the marking out phase and O(x + log N + wy + w log n), where N is 
the maximum number of tasks, x is the size of specification of g and e, and y is the 
size of g values. For w = 1 one have total computation time O(n2) and message size 
O(x + log N + y + log n), for w = n one have minimal total computation time O(n) 
and maximal message size O(x + log N + ny + n log n). To remove dependence on 
N, one can use the same modification as in monitoring algorithm if all arcs are long-
living, task number can be countered modulo some number of value O(n2 / w).  

4. Conclusion  
The paper presents algorithms for distributed computation of functions on directed 
graphs, which is performed by agents assigned to graph vertices, communicating by 
message passing along directed arcs, and knowing only the number of arcs outgoing 
from the corresponding vertex.  
At first we consider static graph, and describe an algorithm that performs the 
marking out of the graph preparing it for further computations. The marking 
includes marks of forward arcs, making up a spanning out-tree, along which all the 
vertices can be reached from the root, marks of backward arcs, making up a 
spanning in-tree, along which responses from all the vertices can be gathered in the 
root, and incoming backward arcs counters, which are used to collect responses 
correctly. The time complexity of the marking algorithm is O(n / k + d). The size of 
internal agent memory and message size used are O(nd log Δ+). The computation 
algorithm for a function of multiset of values assigned to graph vertices uses the 
marking constructed to complete computations in O(d). Here n is the number of 
vertices, d is the length of maximal non-self-intersecting path, Δ+ is maximum 
outdegree, k is the arc capacity, the maximum number of messages that can be sent 
along an arc and not yet accepted.  
Next we concern parallel computations on a dynamic graph that can change its 
structure during computation. We present a graph monitoring algorithm providing 
information about most recent changes to all the vertex agents in O(n). We also 
describe a parameterized algorithm for parallel computation of a function on a 
dynamic graph. The algorithm parameter w can be chosen from the interval from 1 
to n and helps to balance computation time and the size of messages used. The time 
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of computation is O(n2 / w) and the message size and agent memory size used is 
O(w log n) (ignoring memory for function specification and result storage).  
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Аннотация. Эта статья представляет собой обзор серии работ авторов, посвящённых 
исследованию распределенных систем. Рассматривается асинхронная модель 
распределённой системы, представленную сильно связанным ориентированным 
корневым графом, с ограниченной емкостью дуги (в том смысле, что только 
ограниченное количество сообщений может быть отправлено по дуге за определенный 
интервал времени). Граф может быть статическим или динамическим, т.е. 
меняющимся во времени. Для статического графа предлагается алгоритм построения 
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прямого и обратного остовных деревьев с оценкой времени O(n / k + d), размером 
памяти в вершине и сообщения O(n d log +), где n – число вершин графа, k – емкость 
дуги, d – длина максимального пути, + – максимальная полустепень исхода вершин. 
Построенные остовные деревья используются в распределенном алгоритме 
вычисления функции от мультимножества значений, приписанных вершинам графа, за 
время не более 3d. В динамическом графе предполагается, что k = 1, дуга может 
появляться, исчезать или менять свой конец. Предлагается алгоритм мониторинга 
динамического графа, который доставляет в корень информацию о каждом изменении 
в графе за время O(n) или O(d) после прекращения изменений. Также предлагается 
алгоритм сбора информации о вершинах графа и разметки графа за время O(n). Эта 
разметка используется в алгоритме вычисления функции от мультимножества на 
динамическом графе за время O(n2) с размером сообщения O(log n) или за время O(n) с 
размером сообщения O(n log n). 
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