Building Modular Real-time software from
Unified Component Model

12K A. Mallachiev <mallachiev@ispras.ru>

1234 A V. Khoroshilov <khoroshilov@ispras.ru>

! vannikov Institute for System Programming of RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia.
2 Lomonosov Moscow State University,

GSP-1, Leninskie Gory, Moscow, 119991, Russia

3 Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
* Higher School of Economics.
20, Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract. Modern real-time operating systems are complex embedded product made by many
vendors: OS vendor, board support package vendor, device driver developers, etc. These
operating systems are designed to run on different hardware; the hardware often has limited
memory. Embedded OS contains many features and drivers to support different hardware. Most
of the drivers are not needed for correct OS execution on a specific board. OS is statically
configured to select drivers and features for each board. Modularity of OS simplifies both
configuration and development. Splitting OS to isolated modules with well-specified interfaces
reduces developers’ needs to interact during joint development. The configurator, in turn, can
easily compose isolated components without component developers. We use formal models to
specify components and their composition. Formal model describes the behavior of
components and their interaction. Usage of formal models has many benefits. Models contain
enough information to generate source code in C language. Our model is executable; this allows
configurator to quickly verify the correctness of component configurations. Moreover, model
contains constraints on its parameters. These constraints are internal consistency or some
external properties. Constraints are translated into asserts in generated source code. Therefore,
we can check these constraints both at model simulation and at source code execution. This
paper presents our approach to describe such models at Scala language. We successfully tested
the approach in RTOS JetOS.

Keywords: components; modularity; RTOS; formal models; code generation
DOI: 10.15514/ISPRAS-2018-30(3)-10

For citation: Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from
Unified Component Model. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-
148. DOI: 10.15514/ISPRAS-2018-30(3)-10

137

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

1. Introduction

Modern embedded operating systems support several CPU architectures and a lot of
peripheral devices. OS contains many drivers to support numerous different
hardware. Embedded OS are often designed for execution in a restricted environment,
for example, with limited memory. Most of the drivers are not needed for correct OS
execution on some specific board and spend valuable resources. Therefore, OS must
support configuration to select drivers, which will execute on the target hardware.
Static OS configuration is used in cases when it is known in advance, on which
hardware the OS image is going to be executed. Static means that configuration is
performed on the host machine before OS loading to the target machine. The result
of static OS configuration is the final image, which can be run on the target. Static
configuration allows keeping final image small.

Typically, there are two roles taking part in the process of OS image building. The
first role is a developer of whole OS or some driver. Developer implements his part
in some programming language, writes documentation and provides support of source
code and documentation. The second one is a system integrator who is responsible
for correct OS configuration for specific task of specific board. Usually the system
integrator does not change OS source code.

Besides simple selecting, which driver will be in the final OS image, many operating
systems support finer tuning. For example, configuration allows selecting file system
for each hard drive, or set IP address that will be used by network stack. These details
are configured statically because for embedded OS and especially for safety-critical
systems simplicity is more important than generality.

It is a natural desire to divide the operating system into isolated components, but not
every part of the OS can be isolated. For example, OS core often is strongly coupled
and might be divided into isolated components only if the core will be fully
redesigned to support new architecture.

If we investigate configurations of the same OS on different boards, then we will see
that there is the most variable part in the OS. We call this part OS drivers. OS drivers
contain device drivers and some services such as network stack, file system, logging,
etc. Our work aimed to support flexible configuration of OS drivers.

It is common that there are many vendors involved in building of OS drivers. When
services or drivers are strongly coupled, their developers have to interact a lot.
Therefore, splitting OS drivers into independent isolated components helps to
simplify and accelerate development.

Component should interact with each other. Appearance of fixed interface between
components would make component development easier. Moreover, fixed interface
can make system flexible. Only connected components can interact, and only
component with the same interfaces can be connected. System integrator is
responsible for connection of the components.

138



Mainauune K.A., Xopommmuiios A.B ITocTpoenre MOy IbHOTO IPOrpaMMHOT0 00eCIeueHusI Ha OCHOBE OJIHOPOJHON
KoMHoHeHTo#i Mozenu. Tpyost UCIT PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 1., ctp. 135-148

Suppose that system integrator created a composition of the components, which
describes how each component is configured and how components are connected. We
call component-based system flexible if the system integrator can:

¢ modify configuration of the single component without modifying others,

e substitute component with another one of the same interface without
modifying other components,

e add a new component between two other connected components without
modifying any component configuration except the new one.

e add to composition a copy of existing component, and they should not
disturb each other.
We are developing an embedded real-time operating system for civil aircraft
computers called JetOS [1]. JetOS is ARINC-653 compliant and statically configured.
Approaches presented in this paper are designed for JetOS. Since JetOS is a RTOS,
we are focused on minimizing the overhead added by component-based system.

2. Related Works

Classical distributed component models like Enterprise JavaBeans, CORBA and
CORBA Component Model [2, 3] define components and interfaces between them.
These models allow substituting one component with another one if both have the
same interfaces. Brokers dynamically change components configuration. This
dynamic configuration is not suitable for embedded systems with static configuration.
Ideas to separate OS appeared long ago in microkernels. Microkernel architecture’s
[4, 5] primary goal is to separates OS into independent servers that could be isolated
from each other. Servers interact through inter-process communication (IPC). IPC
calls are typed and servers with the same interface can substitute one another. But
there cannot be two servers with the same interface; therefore, this model is not
suitable for our tasks too.

OS-Kit [6] and eCos [7] apply modularity benefits into OS development process.
They provide a set of OS components, which are used as building blocks to configure
an OS. For configuration, eCos uses the Component Definition Language (CDL), an
extension of the existing Tool Command Language (Tcl) scripting language.
Configuration is represented as feature tree with internal dependencies, group and
feature constraints. Enabling of one component can lead to enable of whole
components subtree. Components can have calculated value in configuration, which
are calculated based on other configuration parameters. However, this is not enough
for our task. Configurator cannot manage component connections and cannot add
copies of the same component.

pC/OS-1I kernel uses THINK component framework [8, 9]. THINK is an
implementation of the FRACTAL component model that aims to take into account
the specific constraints of embedded systems development. Component describes
through its interface. Interaction between components is possible after establishment

139

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

of bindings between their interfaces. Binding is a communication channel between
two or more components. Binding can be created between components of a
distributed system (RPC binding). This concept also does not allow having several
copies of the same component in the composition.

VxWorks is a popular embedded operating system. VxWorks board support package
(BSP) is divided into components. Components interfaces are declared in Component
Description Language (CDL). Note that this CDL is different from the CDL used in
eCos. BSP developer can construct BSP from existing component and can add their
own components. However, this system is not flexible. For example, each component
has fixed list of component names, with which it can interact.

We are not aware of any component-based model with the following set of features:

e static configuration;
e low overhead;
o flexible configuration (in all aspects described in the introduction);

e type checking of the connection, i.e. checking that connected components
have the same interface.

3. Component-based Model

Our model is component-based. Component has state, which is changed during model
execution, and configuration, which is immutable. Components can communicate
with other components via ports. Port is a set of functions; there are two kinds of
ports: input ports and output ports. Output port can be connected with input port. Set
of port function signatures is called port type. Only input and output port of the same
port type can be connected.

Each function of a component input port has an assigned handler inside the
component. Call of output port function leads to the call of connected input port,
which, in turn, calls the assigned handler. These calls are standard function call, or in
other words synchronous call inside the same thread. Therefore, component loses
control during output port call.

Thus, port call keeps the current thread. Threads cannot be created dynamically
during model execution. Threads count is constant during execution.

If component needs an additional thread, then this should be explicitly specified in
the model. These components are called active. Active components have special
handlers, which are called periodically or once in the context of the new thread. We
call these handlers the activity handlers.

In order to facilitate component reuse we introduce the concepts of a component type
and a component instance. Each component type can have any number of instances.
The components described above are close to component instances.

Component type contains types of component state and configuration, but not their
values. Component type contains types and names of input and output ports, but not
their connection. In addition, component type contains implementation of:

140



Mainauune K.A., Xopommmuiios A.B ITocTpoenre MOy IbHOTO IPOrpaMMHOT0 00eCIeueHusI Ha OCHOBE OJIHOPOJHON
KoMHoHeHTo#i Mozenu. Tpyost UCIT PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 1., ctp. 135-148

e component initialization function, which is called at start and is used to
initialize state based on the configuration;

e handlers assigned with input ports, if component has any;

e activity handlers if component is active.
Instances have unique values of state and configuration. It is easy to see that concepts
of component type and component instance are similar to terms “class” and “class
object” respectively.

3.1 Component Developer View

Component developer designs component state structure, how it should be initialized
base on configuration and how it is changed during execution. Developer chooses
types of configuration parameters. Developer does not aware of specific configuration
parameters values, but he can add constraints on the values. He designs component
input and output ports and implements handlers for input ports. Component’s input
and output ports restrict component developer’s knowledge about “outside world”.
He does not know how many instances of his component will be created or how they
will be connected.

Component developer’s definition of component types consists of two parts:
component type specification and implementation. Specification contains:

e component type name

e component input and output port names and their types

e structure of component configuration

e component’s purpose description: how it should be configured and in

which environment its input ports should be called.

The rest of the information is private for component and is considered as
implementation part.

3.2 System integrator view

System integrator gets specification of all component types in the system. System
integrator decides how many instances of each component should be created and how
they should be connected for solution of the specific problem. For each instance,
integrator sets its configuration values.

3.2 Simple example

Suppose that component developer created Amplifier component type. Amplifier has
single input port “in” and single output port “out”. In addition, it has single
configuration parameter “factor”. Components aim is to amplify input signal from
“in” port by factor “factor” and put output to “out” port.

Suppose that the system integrator wants to pass signal from two sensors to a single
actuator, but he should amplify signal from first sensor by factor of 2 and from second

141

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

one by factor of 10. System integrator decides to use Amplifier component type. He
does not worry about implementation, only interfaces matters to him. For simplicity,
let us assume that all ports have the same type. Amplifier component type as seen by
system integrator can be seen at Fig. 1

: Amplifier
in out
factor: Int

Fig. 1. Graphical representation of Amplifier component type specification

System integrator creates two instances of Amplifier component type: “ampl” with
configuration value “factor” equal to 2 and “amp2” with configuration value “factor”
equal to 10. Then connects them accordingly to sensors and to actuator. Scheme of
the result can be seen at Fig. 2

sensori amp1:Amplifier
factor = 2 out
actuator
sensor2 amp2:Amplifier
factor =10 out

Fig. 2. Amplifier instances connection scheme

4. Prototype

In previous work [10], we implemented component-based approach in C language
with some YAML code. We used common approach to apply object-oriented ideas
in C language. Component state and configuration is presented as C structure, which
explicitly passed to all component functions. Wrappers hid calls to output ports.
There was a lot of boilerplate code used to create component instances, describe their
configuration, and their connections, in component type specification and its
wrappers implementation.

To reduce amount of handwork we started to use YAML — simple declarative
language. In the YAML developer specifies component type state, configuration,
input and output ports, names of functions-handler for input ports. System integrator
describes in the YAML component instances, their configuration and connections.
We generated C code based on these YAML specifications.

This approach has some disadvantages.

e Component developer has to manually keep consistent two files (in YAML
and C languages). Change in one file leads to change in another one.

142



Mainauune K.A., Xopommmuiios A.B ITocTpoenre MOy IbHOTO IPOrpaMMHOT0 00eCIeueHusI Ha OCHOBE OJIHOPOJHON
KoMHoHeHTo#i Mozenu. Tpyost UCIT PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 1., ctp. 135-148

e Component developer’s workflow is not comfortable: after change in
YAML code generation should be processed and only then C code should
be updated accordingly.

e System integrator can connect instances incorrectly (this does not apply to
type checking, which is performed during compilation) and cannot see the
problem until final OS image is prepared and executed in target hardware.

5. Model-Based approach

We decided to go further along the path of abstraction and use abstract models of
components and their composition. We use formal executable models. This has many
benefits. Model contains more information than source code, thus source code can be
generated based on the model. In addition, executable model allows simulating
instances behaviour and their interaction. This is very useful for system integrator to
quickly verify the correctness of configurations. Moreover, formal model can be used
to formally verify its internal consistency.

We use Scala language to model components. Scala is a functional object-oriented
language that suits us well.

5.1 Model Description

5.1.1 Component Developer View

Component type is presented as Scala class inherited from interface (trait)
«Componenty. Component configuration and state are the class fields with fixed
names «config» and «statey respectively.
Active components have functions, which are called periodically or once. If
component type inherits trait «cRunOnce» then it should implement function «starty,
which will be called once after component initialization. If component type inherits
class «Periodically», then it should implement function «periodically»; the frequency
of the call is determined by the configuration.
For example, consider “Counter” component type, at Fig. 3, which has a state but no
configuration. State contains value «callCounty», which is initialized with zero.
Function «periodically» increases «callCount» on every call.

class Counter extends Periodic with Component {

class State(val callCount: Int)
var state = new State(0)

type Config = Unit
val config = ()

def periodically = {callCount += 1}

Fig. 3. «Counter» component type

143

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

Port types are declared as interfaces (traits). Input ports are defined inside component
type class as objects, which inherited port type. Output port are class fields with type
of port type. Output ports values are passed as component type constructor
parameters. It is worth noting that output ports can be passed by name to constructor,
this allows initializing component instances with cycle connections among them.

Example of input/output ports for “Amplifier” component type (defined in previous
sections) can be seen at Fig. 4 Model can have constraints on state and configuration
parameters values. These constraints are defined using Scala require function.
Example of require statement for “Amplifier” component type can be seen at Fig. 5.

trait SignalProcessor {
def processSignal(s:Int): Int

}
class Amplifier (out: =>SignalProcessor) ...{

object in extends SignalProcessor |
def processSignal(s: Int): Int = {
val processed = process(s)
out.processSignal (processed)

}

Fig. 4. Port type SignalProcessor and ports of «Amplifier» component type. The component
type has input port «in» and output port «outy, both of them have type SignalProcessor. here
is an implementation of function processSignal of «in» port. Port «out» passed-by-name.
Scala syntax may be confusing, here function processSignal returns result of out port call

class Amplifier...{
class Config(wval factor: Int) {
reguire (factor>0 && factor<50)

}

Fig. 5. Configuration constraint for «Amplifier» component type; «factory can take values
only in the interval from 1 to 49

5.1.2 System Integrator View

System integrator creates instances of component type and connects them. For each
instance, he defines its configuration parameters values.

As an example of component instances and their connections, consider model of the
scheme depicted in the Fig. 2. This model can be seen at Fig 6.

144



Maimnauues K.A., Xopommmuiios A.B ITocTpoeHre MOIyIbHOTO IPOrpaMMHOT0O 00eCIeueHUsI Ha OCHOBE OJIHOPOJHON
KoMnoHeHToi Mozenu. Tpyovt UCIT PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 1., ctp. 135-148

val actuator = new Actuator

val ampl = new Amplifier (actuator.in) {
val config = new Config(factor = 2)

}

sensorl = new Sensor (ampl.in)

val amp2 = new Amplifier (actuator.in) ({
val config = new Config(factor = 10)

}

sensorZ = new Sensor (amp2.in)

Fig. 6. «Amplifier» instances connection scheme

5.1.3 Preconfigured components

There is often component which have configuration parameters that have the same
value in different configuration. To simplify configuration process for system
integrator, we can define new component type, in which these parameters are fixed
and cannot be configured. New component type class constructor calls constructor of
the original one with values of these parameters. For example, it is possible to define
“AmplifierBy2” which amplifies signal by fixed factor of 2.

It is more interesting to define new component, which is a composition of existing
components. This is useful if some compositions are used often. Our approach
assumes unified modeling of components and their composition. This allows using
component-composition transparently for system integrator.

As an example, assume that there are component type « Amplifier» and «Filter», that
are often connected. We create a new component type « AmplifyAndFilter» that is the
composition of «Amplifier» and «Filter» Graphical representation of the
«AmplifyAndFilter» component type can be seen at Fig. 7 and implementation at Fig.
8.

AmplifyAndFilter
filter:Filter amp1:Amplifier
Ii.'>' Iﬁl.'> out factor = 2 out)--fout

Fig. 7. Graphical representation of «AmplifyAndFilter» component type.

145

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

class AmplifyAndFilter (out: SignalProcessor)
extends Component |
val amp = new Amplifier (out) {
val config = new Config(factor)

}

val filter = new Filter (amp.in)

object in extends SignalProcessor {
def processSignal(x:Int):Int = filter.in(x)
}

Fig. 8. Implementation of «Amplify AndFilter» component type

5.2 Model Usage

We use model to simulate instances behaviour and their interaction. We can verify
that constraints are hold during simulation. In addition, we can write tests (unit and
integration) to check that component model is correct.

We use model to generate C code, which gets into JetOS. We statically parse Scala
code, extract needed information and translate it into C code.

Generated C code structurally looks much like code generated by prototype based on
YAML files. We use same approach to model OOP in C language.

Some parts of the model can be translated into C without modifications, for example,
simple operations and function calls. Some parts modified automatically during
translation, but some can not be automatically translated without human help.

JetOS has strict coding style and, for instance, function can not have more than one
return statement. We can generate code according this code style and, for example,
we can automatically substitute several return statements in the model with a single
one in the generated code.

As was mentioned, there are also statements, which cannot be easily translated into
C. In addition, there are situations when generator tool cannot get enough information
statically analysing Scala code. To solve these problems we add annotations to Scala
code. Annotations does not change behaviour of model, they used only to provide
additional information for the generator tool.

We use annotations to highlight input and output ports and their type interfaces.
Annotations are «inport», «outport» and «interface» for input ports, output ports and
port types respectively. As an example, Fig, 9 shows «Amplifier» component type
with annotations.

146



Maimnauues K.A., Xopommmuiios A.B ITocTpoeHre MOIyIbHOTO IPOrpaMMHOT0O 00eCIeueHUsI Ha OCHOBE OJIHOPOJHON
KoMnoHeHToi Mozenu. Tpyovt UCIT PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 1., ctp. 135-148

@interface
trait SignalProcessor {
def processSignal(s:Int): Int

3
class Amplifier (@outport out: SignalProcessor)...({

@inport
object in extends SignalProcessor |
def processSignal(s: Int): Int = {
val processed = process(s)
out .processSignal (processed)

Fig. 9. Port type SignalProcessor and ports of «Amplifier» component type with annotations.

Scala language has rich syntax and not every statement can be easily translated to C.
We allow annotating blocks of Scala code or Scala functions with C code. Fig. 10
contains partial example.

@C_code (code="int process(intx array) {...}")
def process(lst:List[Int]) = {...}

Fig. 10. C _code annotation example

This C_code annotation allows iteratively develop generator tool. At start, when tool
supports only a few Scala statements, almost all code has C annotations. When
support for new Scala statements adds to the tool, C annotations for these statements
are no longer needed. Therefore, during tool development number of C_code
annotations decreases.

6 Future Work

First, we still do not support many Scala statements and have a lot of C_code in our
models. We are going to fix this in the new versions of generator tool.

For now, system developer should write Scala code by hand. This Scala code is very
simple and matches a simple pattern. Thus, we can generate this Scala code from
some GUI interface. Configuration constraints of the model can be extracted and
added to this tool. This is one of optional future works.

Furthermore, formal model is a powerful tool and allows much more than C code
generation. Formal model can be used for model checking and formal verifying
internal consistency, preconditions or state invariants.

Tests and requirements can be generated based on the model and requirement
generation is our next task. Requirement is the most important part of safety-critical
system certification. Requirement writing is a hard handwork and automation (at least
partial) will be very helpful.

147

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

7 Conclusion

The paper presents continuation of the work on modularity of RTOS. OS drivers are
decomposed into isolated components. System integrator carries out component
composition, and it can be done without contacting component developers and
without writing C code.

We use a unified formal model to specify both components and their composition.
Model, which is written in Scala language, is used to generated C code.

Also, model is executable, this allows system integrator to quickly verify correctness
of composition. Model contains constraints on the model parameters. These
constraints are tested during model simulation, also constraints can be translated into
asserts in the generated C code.

Model-based approach still has disadvantage since the model is divided in two parts
written in two languages, which have to be manually kept consistent. However, C
code for some Scala statement is placed right before the statement, we hope that this
will stimulate developers to update parts synchronously. Maturing of the generator
tool decreases amount of C code in the model and reduces the importance of the
problem.

The approach has been successfully tested on OS drivers of JetOS — ARINC-653
compliant RTOS. ARINC-653 has restrictions on the code executed in OS. For
instance, resources (like buffers, semaphores, threads, etc.) can be requested only
during initialization stage. Model restriction on threads creation apply well to
ARINC-653 restrictions. Moreover, constructor code of the component type class is
executed during initialization stage. Thus, component can request resources in the
constructor.

References

[1]. K.M. Mallachiev, N.V. Pakulin, and A.V. Khoroshilov. Design and architecture of real-
time operating system. Trudy ISP RAN / Proc. ISP RAS, vol. 28, no. 2, 2016, pp. 181—
192. DOI: 10.15514/ISPRAS-2016-28(2)-12

[2]. J. Siegel and D. Frantz. CORBA 3 fundamentals and programming. John Wiley & Sons
New York, NY, USA, 2000, vol. 2.

[3]. N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the corba component model. In
Component-Based Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., 2001, pp. 557-571.

[4]. A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig, J. E. Tidswell, L.
Deller, and L. Reuther. The sawmill multiserver approach. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the
operating system, 2000, pp. 109-114.

[5]. 1. Boule, M. Gien, and M. Guillemont. Chorus distributed operating systems. Computing
Systems, vol. 1, no. 4, 1988, pp. 305-370.

[6]. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux oskit: A
substrate for kernel and language research. ACM SIGOPS Operating Systems Review,
vol. 31, no. 5, 1997, pp. 38-51.

148



Mainauune K.A., Xopommmuiios A.B ITocTpoenre MOy IbHOTO IPOrpaMMHOT0 00eCIeueHusI Ha OCHOBE OJIHOPOJHON
KoMHoHeHTo#i Mozenu. Tpyost UCIT PAH, Tpyowr UCII PAH, Tom 30, Bbim. 3, 2018 1., ctp. 135-148

[7]. A. Massa, Embedded software development with eCos. Prentice Hall Professional
Technical Reference, 2002.

[8]. J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller. Think: A software framework for
component-based operating system kernels. In Proceedings of the USENIX Annual
Technical Conference, General Track, 2002, pp. 73-86.

[9]. F. Loiret, J. Navas, J.-P. Babau, and O. Lobry. Component-based real-time operating
system for embedded applications. In Proceedings of the International Symposium on
Component-Based Software Engineering. Springer, 2009, pp. 209-226.

[10]. K. Mallachiev, N. Pakulin, A. Khoroshilov, and D. Buzdalov. Using modularization in
embedded OS. Trudy ISP RAN / Proc. ISP RAS, vol. 29, issue. 4, 2017, pp. 283-294.
DOI: 10.15514/ISPRAS-2017-29(4)-19

MocTpoeHne MoaynbLHOro NPorpaMMHOro o6ecneyeHust Ha
OCHOBE OQHOPOAHOW KOMMOHEHTON Mogenu

12 K A. Mannauuee <mallachiev@ispras.ru>
1,234 4. B. Xopownoe <khoroshilov@ispras.ru>

' Unemumym cucmemmnozo npozpammupoeanus um. B.I1. Heannuxosa PAH,

109004, Poccus, e. Mockea, yn. A. Comicenuybina, 0. 25,
2 Mockoeckuii 2ocyoapcmeennviil ynueepcumem umenu M.B. Jlomonocoea,

119991, Poccus, Mocksa, Jlenunckue 2opwi, 0. 1

SMockoeckuti huzuxo-mexnuseckuii uncmumyn,

141700, Mockosckas obracme, 2. [oneonpyouwiil, Mncmumymckuil nep., 9
4 Boicuias wikona 9KoHOMUKY,
101000, Poccus, . Mocksa, yn. Macnuyxas, 0. 20

AnHotanusi. COBpEeMEHHBIC OICPALIOHHBIC CHCTEMBI PEANbHOTO BPEMEHH SIBIISIOTCS
CIIOXKHBIM TIPOAYKTOM, pa3pabaThIBa€MbIM MHOTMMH IOCTaBIIMKAMH: HENOCPEICTBEHHBIMH
paspaborunkamu OC, HOCTaBIIMKAaMH IaKeTa IOANEPXKKH almaparypbl, pa3paboTduKaMu
npaiiBepoB ycTpoiictB u T.1. Takne OC CHpOeKTUPOBAHbI Tak, YTOOBI UMETh BO3MOXKHOCTB
3alyCKaThCsd Ha Pa3IMYHOM OOOPYZOBAHMH, YaCTO HMEIOIIEM OrpPaHHYCHHBIE PECYpCHIL.
Berpauaembie OC copepkaT MHOXKECTBO HACTPOEK M ApaiBepOB VIS MOLIEPIKKU PasHOM
anmnapatyphsl. boJIBIIMHCTBO U3 3THX JpaiBepOB SIBISIOTCS M3MHIIHUMU Juis 3amycka OC Ha
KaKOM-TO KOHKpeTHOM oOopyaoBanun. OC cratndecku KOHQUTYpHpyeTcs IS BbIOOpa
Habopa IpaiiBepOB W HACTPOEK AJIS KXKIOTO THIIA armaparypsl. MoayiasHocTs OC ymporiaeT
kak pazpaborky OC, Tak u ee koHpurypuposanue. Paznenenne OC Ha H30IMpOBaHHEBIE
MOJYJI C (MKCHPOBaHHBIMU HHTepQelicaMi yMEHBIIAeT HEOOXOANMOCTh B3aMMOACHCTBHS
MEXIy pa3padoTYMKaMH B XOJIe COBMECTHOW pa3paboTku. Mbl ucrnoss3dyem (opMalibHbIE
MOJIEJIN JUIS OIMCAHMSI KOMIIOHEHTOB M MX B3aMMojelcTBus. Mcronb3oBaHue GpopMaibHBIX
Moziefell MPUHOCUT OOJbIIyI0 MONb3y. ONHCBIBaeMble MOJEIM COJAEPKAT JOCTATOYHO
nH(popMaImy i TeHepaluy UCXOJHOTO Koia KOMIoHeHTa Ha si3bike Cu. [IpenocTtapisemble
MOJETH SIBIIIOTCS HCTIONHAEMBIMH, 4YTO IIO3BOJISIET UYEJIOBEKY, OTBEYAIOIIEMy 32
KOH(HUTYpaLuio, OBICTPO MPOBEPUTH MPABIIILHOCTH 3aJaHHOW KoHpurypamuu. Kpome toro,
MOJIETTb COJIEPXKHUT OrPaHUUYCHUs HAa KOHQUIypanMOHHBIE mHapamerphl. IIpuMepom Takmx
OTPAaHMYEHHH SBIISIOTCS OTPAaHWYEHHS Ha BHYTPEHHIOIO COTJIACOBAHHOCTH Mojend. llpu
reHepaliy UCXOJHOTO KOJIa TaKHe OTPAaHWYEHHS TPAHCIUPYIOTCS B CIICLMAIBHbIEC IPOBEPKH

149

Mallachiev K.A., Khoroshilov A.V. Building Modular Real-time software from Unified Component Model. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 135-148

Ha ypOBHE HCXOTHOTO Koja. CliejoBaTeNIbHO, OTpAHHIEHUSIMH MOTYT OBITH IIPOBEPEHEI KaK BO
BpeMsl CUMYJISILIUKM MOJICIH, TaK U BO BPeMs UCIIOJIHEHHUS HCXOHOro Kona. B nanHoii pabore
HPEJICTABIICH MOJX0M K OIHMCAHUIO TaKUX MOJEJICH Ha si3bIKe TporpammupoBanus Scala. Ml
YCIICIIHO anpoOHPOBaIX AaHHBIH noaxo ] Ha ocHoBe OC peansHOro BpemeHn JetOS.

KiioueBble c10Ba: KOMIOOHEHTH; MomyIbHOCTh; OCPB; dopmanbHble MOJENH; TeHepaIis
Kozja

DOI: 10.15514/ISPRAS-2018-30(3)-10

Juasi uurupoBanusi: Mammaunes K.A., XopommsnoB A.B TlocrtpoeHue MoaysbHOroO
IpOrpaMMHOTr0 oOecHedYeHHs Ha OCHOBE OJHOPOJHOM KomroHeHToi monenu. Tpyast UCIT
PAH, tom 30, Beim. 3, 2018 r., ctp. 135-148 (ua anrnuiickom si3pike). DOI: 10.15514/ISPRAS-
2018-30(3)-10

Cnucok nutepaTtypbl

[11]. K.M. Mallachiev, N.V. Pakulin, and A.V. Khoroshilov. Design and architecture of real-
time operating system. Trudy ISP RAN / Proc. ISP RAS, vol. 28, no. 2, 2016, pp. 181—
192. DOI: 10.15514/ISPRAS-2016-28(2)-12

[1]. J. Siegel and D. Frantz. CORBA 3 fundamentals and programming. John Wiley & Sons
New York, NY, USA, 2000, vol. 2.

[2]. N. Wang, D. C. Schmidt, and C. O’Ryan. Overview of the corba component model. In
Component-Based Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., 2001, pp. 557-571.

[3]. A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig, J. E. Tidswell, L.
Deller, and L. Reuther. The sawmill multiserver approach. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the
operating system, 2000, pp. 109-114.

[4]. 1. Boule, M. Gien, and M. Guillemont. Chorus distributed operating systems. Computing
Systems, vol. 1, no. 4, 1988, pp. 305-370.

[5]. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux oskit: A
substrate for kernel and language research. ACM SIGOPS Operating Systems Review,
vol. 31, no. 5, 1997, pp. 38-51.

[6]. A. Massa, Embedded software development with eCos. Prentice Hall Professional
Technical Reference, 2002.

[7]. J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller. Think: A software framework for
component-based operating system kernels. In Proceedings of the USENIX Annual
Technical Conference, General Track, 2002, pp. 73—-86.

[8]. F. Loiret, J. Navas, J.-P. Babau, and O. Lobry. Component-based real-time operating
system for embedded applications. In Proceedings of the International Symposium on
Component-Based Software Engineering. Springer, 2009, pp. 209-226.

[9]. K. Mallachiev, N. Pakulin, A. Khoroshilov, and D. Buzdalov. Using modularization in
embedded OS. Trudy ISP RAN / Proc. ISP RAS, vol. 29, issue. 4, 2017, pp. 283-294.
DOI: 10.15514/ISPRAS-2017-29(4)-19

150



