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Abstract. A worthy cryptographic protocol specification has to be human-readable (declarative
and concise), executable and formally verified in a sound model. Keeping in mind these re-
quirements, we present a protocol message definition notation named CMN. 1, which is based
on an abstraction named cryptographic stack machine. The paper presents the syntax and se-
mantics of CMN.1 and the principles of implementation of the CMN.1-based executable pro-
tocol specification language. The core language library (the engine) performs all the message
processing, whereas a specification should only provide the declarative definitions of the mes-
sages. If an outcoming message must be formed, the engine takes the CMN. 1 definition as input
and produces the binary data in consistency with it. When an incoming message is received,
the engine verifies the binary data with respect to the given CMN.1 definition memorizing all
the information needed in the further actions. The verification is complete: the engine decrypts
the ciphertexts, checks the message authentication codes and signatures, etc. Currently, the au-
thor's proof-of-concept implementation of the language (embedded in Haskell) can translate a
CMN.1-based specifications both to the interoperable implementations and to the programs for
the ProVerif protocol analyzer. The excerpts from the CMN.1-based TLS protocol specification
and corresponding automatically generated ProVerif program are provided as an illustration.
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1. Introduction

The establishment of good soundness relations between cryptographic protocol
implementations and their formal models is a popular research area. The existing
approaches differ by the starting point of development (implementation first [1-6] or
formal model first [7-9]), by the degree of cryptographic soundness of the models
(symbolic [10] or computational [9]), by the presence of the formal proof of the
soundness of the model-to-implementation (or vice verse) translation procedure, by
implementation usability area and by other aspects.
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Our aim is to soundly tie not two (implementation and formal model) but three
elements of the protocol development process: implementation, formal model and
specification. By the latter, we mean a human-readable protocol description that is
usually placed in RFC. The models' languages, which are based on logics or special
versions of general-purpose programming languages, are not quite suitable for this
task: they are either not convenient for capturing the low-level details or are firmly
imperative.

Therefore, our goal is a declarative specification language that could be directly used
in the RFCs to considerably enhance the degree of formalization of these documents.
Yet, the specification must be automatically translatable both to the interoperable
implementation and to the programs for the state-of-the-art protocol model analyzers
such as ProVerif [10] and Tamarin [11].

2. Related work

There exist many formal notations for data structures: ASN.1, JSON, etc. These
notations are often provided with the engines, which can automatically generate the
binary data using the provided data structure definition and, in the opposite direction,
automatically unpack the binary data in accordance with the definition. Such projects
as CSN.1[12], TSN.1 [13], BinPAC [14], NetPDL [15] are targeted specifically at the
network protocols.

While the readability of some of these notations can be suitable, their expressiveness
(in the domain of cryptographic protocols) does not. We need to have behind the
notation not simply a message generator/parser waiting to be embedded to some
bigger program, but a generic cryptographic protocol implementation waiting for
(semi-)declarative specification to adjust to specific case. Therefore, the primary
challenge is to find such powerful underlying abstraction, whereas the notation would
have to be naturally emerged from it.

3 Cryptographic Stack Machine Notation One

We propose an abstraction named cryptographic stack machine (abbreviated as
CSM), which is a stack machine specifically tailored to the needs of cryptographic
protocols. Within the proposed approach, the message definition is in fact a sequence
of the CSM instructions. The instructions set is divided into "bare-metal" and
"sugared" parts. The "sugared" instructions make the message definitions (which in
their essence are imperative) looking declarative. The instructions set may be
expanded if needed.

To reflect the fact that the declarative style of the protocol message definitions is one
of the main targets, we name our notation «Cryptographic Stack Machine Notation
Oney (abbreviated as CMN.1) adopting the naming style of the ASN.1, CSN.1 and
TSN.1 notations.

166



Tpoxonbes C.E. Hotamus kpunrorpaduueckoii CTeKoBOi MalIMHbI Bepcuu ofuH. 1pyost UCIT PAH, Tom 30, Bbim. 3, 2018
T, cTp. 165-182

3.1 CMN.1 syntax

Below, the terms 'String', 'Integer’, 'Int', "Word8' denote the sets of strings, unlimited
integers, integers ranged from 0 to 232-1 and integers ranged from 0 to 28-1,
respectively. The curled brackets mean repetition, the square ones — optionality. The
symbol ', means comma itself, not concatenation.

Prog ::="["{Instr,} *[Instr]"]"

Instr ::= BareMetal | Sugared

BareMetal ::= Const Word8List | Var VarName Role VarType | V VarName |
SEnc' SEncAlg | Enco' EncoAlg | Xor' Int | ModAdd' | ModMult' | ModInv' |
Add' Integer | Rev RFun | Hash' HashAlg | Pad' Int Word8List | Mod' | ModExp' |
Take' IntList | Split' IntList | SplitE' Int | ECMult' | ECAdd' | C' | CE' | Len' LenHdr |
InsertTo Int | PickFrom Int | Dup Int | Free Int | Elem Int Prog | Map' Prog Int Int |
Sort' Int Int | SA" Int Int Prog | Select' CaseList | M Prog | L Int Inst

Sugared ::= C Prog | CE Prog | Hash HashAlg Prog | SEnc SEncAlg Prog |
Enco EncoAlg Prog | Mod Prog | ModAdd Prog | ModMult Prog | ModExp Prog |
ModInv Prog | ECMult Prog | ECAdd Prog | Len LenHdr Prog | Xor Prog |
Add Integer Prog | Take IntList Prog | Split IntList Prog | SplitE Int Prog |
Pad Int Word8List Prog | Map Prog Int Prog | Sort Int Prog | Select Inst CaseList |
SA Prog | WithLen LenHdr Prog | VarL Int VarName Role VarType |
VL Int VarName | SelectV VarName CaseList

VarName ::="["{String, } *String"]"

VarType ::= Plain Int | Primary Int | Modulo Inst | UTC | ECx Inst | Sublist Prog |
Choice Prog | Subset Prog | Is Prog

WordS8List ::="["{Word8, } *[ Word8]"]"

IntList ::= "["{Int,} *Int"]"

IntegerList ::= "["{Integer, } *Integer"]"

SEncAlg ::= AES128CBC | AES256CBC ...

HashAlg ::= SHA1 | SHA256 ...

EncoAlg ::= SSLPad Int | B2DERInt | B2DERRBits ...

LenHdr ::= BE Int | LE Int | DER

CaseTy ::= Case Word8List Prog | Cases "["{Word8List,}*Word8List "]" Prog |
Case' Condition Prog | Otherwise Prog | CaseUndef Prog

CaseList ::="["{CaseTy,} *CaseTy"]"

Condition ::= Bytes Word8List | Equal Integer | Less Integer | More Integer |
LessOrEq Integer | MoreOrEq Integer | OneOf IntegerList |Otherwise'

Role ::=Clnt | Serv |A|B|S|CA|RA|TTP...

3.2 CMN.1 semantics

CSM has one main stack and varying number of temporary stacks, random-number
generator, real-time clock, the storage S_var containing the values of the protocol
variables (actually they don’t vary in CSM) and the register S_rol containing the
identifier of the protocol role (fig. 1).

167

Prokopev S.E. Cryptographic Stack Machine Notation One. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp.
165-182

stacks —
the most the least (RTC )
significant byte \ ‘/ significant byte —
stack grows I ‘ I ‘ | RNG
underward | | I | | | | e

v top element
™. of the stack s rol

Fig. 1. Cryptographic stack machine

The language of the CSM instructions extends the line of the stack-oriented
languages. It supports branching but doesn't support looping or recursing (table 1).

Table 1. CSM instructions semantics

Instruction ‘ CSM actions

"Bare-metal" instructions

Const bs ‘ CSM pushes the byte string bs onto the stack.

Varsrt If the storage S_var contains the variable named s, then CSM pushes this
variable value onto the stack. Otherwise, if /= S_rol, CSM returns an error.
Otherwise, it generates a new element of type ¢, stores its value under the name
s in the S_var storage and puts this value in the stack.

The currently defined variable types: Plain n — random n bytes; Primary n —
random primary integer of n-bit length; Modulo is — random integer modulo
n, where n is the big-endian value of the result of the instruction is execution;
ECx is — random point on the curve curve_id, where curve_id is the value of
the result of the instruction is execution; UTC — the time and date in standard
UNIX 32-bit format; Sublistp (Choice p, Subset p) — random sublist
(element, subset) of the list comprised of resulting elements of the program p
execution; IS p — equivalent to Choice [C p].

Vs If the storage S_var contains the variable with name s, then CSM pushes the
value of this variable onto the stack. Otherwise, it returns an error.

SENC' alg CSM takes the top 3 elements of the stack as arguments: a, b, c. CSM encrypts
a with b as initial vector and ¢ as the key using symmetric encryption
algorithm alg.

Here and after: 1) if the stack is underflowed, CSM returns an error; 2) the last
argument in the argument list is located at the top of the stack; 3) the arguments
of the function are removed from the stack; 4) the result is pushed to the stack.

Enco' alg Encoding of a using algorithm alg. List of arguments: a.
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Xor' n Exclusive OR. Arguments: the top n elements of the stack.

ModAdd', Addition (multiplication) of @ and b modulo m. List of arguments: a, b, m.

ModMult' Here and after: the byte strings are interpreted as integers basing on the “big
endian’ agreement.

ModInv' Inverse of @ under modulo m. List of arguments: a, m.

Add' n Let a is the top element of the stack. CSM adds 7 to a modulo 2"(8*k), where
k is the length of a in bytes.

Rev fun The function that is reverse to the function fin, where fun must be one of:
Enco' alg, SEnc' alg, Xor' n, ModMult', ModAdd', ModInv', Add' .

Mod' Modulo operation. List of arguments: a.

ModExp' Modular exponentiation: a™b mod m. List of arguments: a,b,m.

Hash' alg CSM calculates the hash of @ using algorithm alg. List of arguments: a.

Pad'  ws Padding of a using the bytes ws until the length of the result reaches n (n must
be equal or greater than length of @). List of arguments: a.

Take' ns Here ns is the list of numbers. If the length of the top element of the stack is
less than the sum of the elements of ns, then CSM returns the specification
error. Otherwise, CSM cuts the top clement of the stack into n parts
considering the numbers from the ns list as lengths of elements and pushes
(from left to right) the resulting n elements onto the stack, where 7 is the length
of the ns list. The remainder of the top element is dropped (if any).

Split' ns The same as the instruction Take' ns, except that the length of the top element
of the stack must be exactly equal to the sum of the numbers from the s list.

SplitE' n Is equivalent to the instruction Split' [,k...k], where k = len / n, where len is
the length of the top element of the stack (/en must be dividable by n).

ECMult' Elliptic curve scalar multiplication. List of arguments: curve id (curve
identifier), x (x-coordinate), y (y-coordinate), k (the scalar). Instruction
produces 2 elements of the stack: x-coordinate and y-coordinate.

ECAdd' Elliptic curve addition of points (x/,y/) and (x2,y2). List of arguments:
curve_id (curve identifier), x1, yl, x2, y2. Instruction produces 2 elements of
the stack: x-coordinate and y-coordinate.

C'n Concatenation. Arguments: the top # elements of the stack.

CE'n Concatenation of the equal-sized arguments.
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Len' e The length of the top element of the stack written in e format, where e can be
one of: BE n (packing into n big-endian bytes), LE n (packing into n little-
endian bytes), DER (packing using ASN.1 DER format).

Insert i ‘ CSM moves the top element of the stack to the i-th position.

Pick i, CSM moves (for Pick) or copies (for Dup) the i-th element of the stack to
Dup i the top position.

Free i ‘ CSM removes the i-th element from the stack.

Elemip CSM executes the program p using temporary empty stack and then puts in

the current working stack the i-th element of temporary stack.

SA'nkp CSM copies n elements from the current working stack to temporary stack,
executes the program p using a new temporary stack and then inserts the
resulting elements between the (k+7)-th and k-th elements of the current
working stack.

Map'pin The stack must contain at least i*n elements. CSM executes the program p n
times using at each iteration a new temporary stack to which the next i
elements from the current working stack are moved (beginning from the
depths of the stack). At each iteration the elements containing in temporary
stack after execution of p are moved to the current working stack.

Sort'in CSM considers the top i *n elements of the stack as a list of n elements,
where each element, in turn, is a list of i elements. CSM sorts this list of
elements comparing their first (from the depths of the stack) elements.

Select' ¢s CSM converts the list of the cases ¢s into the form:

[Case'c: pi1,...,Case ¢cu pal.

If CSM finds in the list c¢s (from left to right) the condition ¢; to which the
top element of the stack satisfies, then it removes the top element from the
stack and executes the program p:. Otherwise, it returns an error.

Mp Macro instruction: CSM simply executes the program p.

Lnp Macro instruction supplemented by the total length of the resulting elements
of p execution (parameter 7).

"Sugared" instructions

Cp, CEp, Xor | CSM executes the program p using temporary empty stack and copies
p, SEnc al p, the resulting m elements onto the current working stack. Then it

Mod p, executes the "bare-metal" counterpart of the "sugared" instruction: C' m,
ModMult p, CE' m, Xor' m, SEnc’ a/, Mod', ModMult', ModAdd', ModEXxp’,
ModAdd p. Modinv', ECMult' or ECAdA'. In the end, CSM moves the resulting
ModExp p, elements (two elements in the case of the ECMult' or ECAdd'

Modinv p instruction and one element in the other cases) to the current working
ECMult p, stack.
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ECAdd p

Map g np CSM executes the program p using temporary empty stack. If m mod n

Sortnp /=0, CSM returns an error (where m is the number of elements of
temporary stack after execution of p). Otherwise, it copies the resulting
m elements onto the current working stack executes the "bare-metal"
counterpart: Map' ¢ i n or Sort' i n, where i =m /n.

Hash ai p, CSM executes the program [C p] using temporary empty stack and

Enco al p, Add
np,

Pad n bs p, Len
ep, Take Ist p,

copies the resulting element onto the current working stack. After that,
CSM executes the "bare-metal" counterpart of the "sugared" instruction:
Hash' al, Enco' al, Add' n, Pad' n bs, Len' ¢, Take' Is, Split' Is or
SplitE' n.

Split Ist p,

SplitE n p

Select is cs CSM tries to execute the program [C [is]] using temporary empty stack.
If the program was successfully executed, CSM copies the resulting
element onto the current working stack and executes the instruction
Select' ¢s. If the execution failed (due to unknown variable), CSM
checks if the list ¢s does contain the element CaseUnkno p. If so, CSM
executes the program p, otherwise it returns an error.

VarLnsrt Is equivalent to: L n (Var s r 1)

VLns Is equivalent to: L n (V s)

SAp Is equivalent to: SA' 1 0 p

WithLen e p Is equivalent to: M [C p, SA" I 1 [Len' e]]

SelectV s ¢s Is equivalent to: Select (V s) cs

4. Simple CMN.1-based specification language

The language presented below is simple in the sense that it doesn't capture the
protocol automata in full. A specification consists of the CMN.1-based message
definitions and a sequence of protocol actions with simple branching support (table
2).

Table 2. Protocol actions

Action Description

roles rlist | The action sets the roles participating in the protocol. Each role runs its own
CSM instance.

msg src The message with the CMN.1 definition p is transferred from the role src to the
dst p role dst.

171

set » wiist | Here wlist is the list of pairs of type (V name, is). For each pair, the action
executes the CSM instruction is and includes the pair (name, val) in a storage
S_var belonging to the CSM instance of the role », where val is concatenation
of the resulting elements of the execution of is.

select »is | This action provides a branching support in the same manner as the CSM
acs instruction Select is cs does. The difference between the lists cs and acs is that
cs consists of elements Case value p, where p is a CSM program, whereas acs
consist of elements Case value a, where a is a sequence of protocol actions.

trusted » | This action takes from a trusted storage the binary data stored under the name id
id p and processes these data using CMN.1 definition p and the CSM instance of the
role r.

connect » | If this action is present, the specification turns into the client implementation
port addr | acting as the protocol role role. The action carries out the connection to a third-
party server implementation listening on the port port of the IP-address addr.

accept The specification turns into the server implementation acting as role and
role port | listening on the port port.

printPV Both actions generate the ProVerif program corresponding to the protocol events
printPV' | that took place at the time of the call. The first action generates a full program,
the second one ignores the lengths fields of messages and related events as non-
essential in order to make this program more concise and productive.

Bearing in mind the elegant and concise syntax of the Haskell language and
advantages of embedded domain-specific languages, we integrate our CMN.1-based
specification language in Haskell.

As an illustration, we present an excerpt from the CMN.1-based specification of the
TLS protocol (fig. 2; note that the order of declarations can be arbitrary in the Haskell
language). A specification, which serves as source for this excerpt, comprises about
500 lines (the total for client and server) covering substantial part of the TLS v.1.2
protocol including four ciphersuites and X.509 certificates support and excluding
extensions and renegotiations. The specification turned into the implementation (see
the actions connect and accept in the table2) was successfully tested for
interoperability with the OpenSSL v.1.0.20 tool (both in the client and server roles).
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1tlsMsg m src =

[VL 1 ["contentType",m],
SelectV ["version", "clntHello"]
[CaseUnkno [VarL 2 ["version",m] src
(Choice [Const [0x03,0x03], Const [Ox03,0x02],
Const [0x03,0x01]])1,
Otherwise [V ["version","clntHello"]1],
WithLen (BE 2)
[SelectV ["CCS",show src]
[CaseUnkno [payload],
Otherwise [payloadProtected]]]]
where
payload =
SelectV ["contentType",m]
[Case [0x14] [VarL 1 ["CCS",show src] src (Is [Const [0x01]])],
Case [0x15] [vL 1 ["alertLevel",m],
VL 1 ["alertDescr",m]l],
Case [0x16] [Var ["hshkMsg",m] src (Is hshkMsg)],
Case [0x17] [V ["dataContent",ml]]
where
hshkMsg =
[VL 1 ["hshKkType",m],
WithLen (BE 3)
[SelectV ["hshkType",m]
[Case [0xO1] clntHello,
Case [0x02] servHello,
Case [0x0b] servCert,
Case [0x0Oc] servKeyExch,
.11
where
clntHello =
[varL 2 ["version","clntHello"] Clnt
(Choice [Const [0x@3,0x03], Const [0x03,0x02],
Const [0x03,0x01]]),
random Clnt,
Const [0],
WithLen (BE 2) [Var ["suites","clntHello"] Clnt
(Subset [Const [0x00,0x38], Const [0x00,0x32],
Const [0xc@,0xBa), Const [0xcO,0x09]]1)],
WithLen (BE 1) [Const [0]],
Var ["helloExt","clntHello"] Clnt (Choice [Const []])]
servHello =
[VarL 2 ["version","servHello"] Serv
(Is [V ["version","clntHello"1]),
random Serv,

WithLen (BE 1) [Var ["sessId","servHello"] Serv (Plain 32)],
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47 Var ["suite","servHello"] Serv

48 (Choice [SpLitE 2 [V ["suites","clntHello"]]]),
49 VarL 1 ["compressAlg","servHello"] Serv

50 (Choice [Const [0x60]11)]

51 servCert = ...

52 servKeyExch =

53 [keyExchParams,

54 VarL 1 ["sigHashAlg","servKeyExch"] Serv

55 (Is [SelectV ["suite","servHello"]

56 [Cases [[0x00,0x32],[0x00,0x38],

57 [0xc@,0x09], [6xc0,0x0a]] [Const [0x02]1]1),
58 VarL 1 ["sigAlg","servkeyExch"] Serv

59 (Is [SelectV ["suite","servHello"]

60 [Cases [[0x00,0x32],[0x00,0x38]] [Const [0x02]],
61 Cases [[0xc0,0x891,[0xc0,0x0al] [Const [0x031111},
62 WithLen (BE 2)

63 [mDER 0x30 [mDER ©x02 [sigPart 1],

64 mDER 0xE2 [sigPart 211]]

65 where

66 keyExchParams =

67 SelectV ["suite","servHello"]

68 [cases [[0x0@,0x32],[0x00,0x38]] dh,

69 Cases [[0xc0,0x09],[0xc@,0x0a]] ecdh]

70 where

71 dh = [wWithLen (BE 2) [dhP],

72 WithLen (BE 2) [dhG],

73 withLen (BE 2) [dhPubk Serv "servKeyExch"]
74 ecdh = ...

75 sigPart i =

76 SelectV ["sigAlg","servKeyExch"]

77 [Case [0x02] [Elem i sig dsa],

78 Case [0x03] [Elem i sig ecdsa]]

79 where

80 sig dsa = mSigDSA [hash,p,q.q.X,k] where

81 [p,9,9,x] = [V [x,"servCert"] | x <- ["dsaP","dsaQ",
82 "dsaG", "dsax"]]
83 kK = Var ["dsaK","servCert"] Serv (Modulo p)
84 sig ecdsa = ...

85 hash = ...

86 L.

87 random src =

88 C [Var ["time",show src] src UTC,

89 Var ["salt",show src] src (Plain 28)]

felo}

91 dhP = Var ["dhP","servKeyExch"] Serv (Primary 256)

a2 dhG = Var ["dhG","servKeyExch"] Serv (Modulo dhP}

a3 dhX src a = Var ["dhX",a] src (Modulo dhP)

94 dhPubk src a = ModExp [dhG, dhX src a, dhP]

95 cen
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96 payloadProtected = ...

a7

98 mDER t p = € [Const [t], WithLen DER (f t)] where
99 f 0x02 = [Enco B2DERInt p]

100 f 0x03 = [Enco B2DERBits p]

101 f =p

102

IGBrIné.igDSA [e.p.d.9.x,k] = [r,s] where
104 r = Mod [ModExp [g, k., pl, gl
105 s = ModMult [ModAdd [MedMult [r, x, ql, e, gl,

106 ModInv [k, ql, ql

107 main =

108 roles [Clnt,Serv] >>=

169 -- connect Clnt 4433 0 >>= -- accept Serv 4433 >>= --

110 sendHandsh Clnt Serv [0x01] 1 >»>=
111 sendHandsh Serv Clnt [0x02] 2 >>=

112 ..

113 sendHandsh Serv Clnt [0x0c] 4 »==
114

115 printPV'

116

117 sendHandsh src dst htype 1 ss =

118 set src [(V ["contentType",show i], Const [0x16]),
119 (V ["hshkType", show i], Const htype)] ss >>=
120 msg src dst [tlsMsg (show i) src]

Fig. 2. CMN.I-based specification of the TLS protocol (an excerpt)

5. Translation to the ProVerif program

The ProVerif program presented in the fig. 3 was generated automatically from the
above specification (it is a console output of the call printPV'; see the line 115 in the
fig. 2). This program corresponds to the protocol trace based on the ciphersuite
TLS-DHE-DSS-WITH-AES-256-CBC-SHA. The program passed the ProVerif
compiler checks without warnings. The events and queries of interest have to be
inserted manually because CMN.l-based specifications do not contain such
information.
1 free c: channel.

2...

3 fun ModExp(bitstring,bitstring,bitstring): bitstring.

4 const dhG servKeyExch: bitstring [data].

5 const dhP servKeyExch: bitstring [data].

6 equation forall x:bitstring,y:bitstring;

7 ModExp (ModExp(dhG_servKeyExch,x,dhP_servKeyExch),y,dhP_servKeyExch} =
8 ModExp(ModExp(dhG servKeyExch,y,dhP servKeyExch),x,dhP servKeyExch).
9 fun ModAdd(bitstring,bitstring,bitstring):bitstring.

10 equation forall a@:bitstring,al:bitstring;

11 ModAdd(a@,al,dhP servKeyExch) = ModAdd(al,a@,dhP servKeyExch).

12 equation forall &0:bitstring,al:bitstring;

13 ModAdd(a0,al,dsaP servCert) = ModAdd(al,al,dsaP servCert).
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14 reduc forall a0:bitstring,al:bitstring,a2:bitstring;

15 Rev@ModAdd (ModAdd(a0,al,a2),al,a2) = a0.

16 reduc forall a@:bitstring,al:bitstring,a2:bitstring;

17 Rev1ModAdd(a®,ModAdd(a0,al,a2) ,a2) = al.

18 fun ModInv(bitstring,bitstring):bitstring.

19 reduc forall a@:bitstring,al:bitstring; Rev@ModInv(ModInv(a@,al),al) = a@.
20 fun HashSHA1(bitstring):bitstring.

21 fun Mod(bitstring,bitstring):bitstring.

22 fun EncoB2DERInt(bitstring):bitstring.

23 reduc forall a@:bitstring; Rev@EncoB2DERInt(EncoB2DERINnt(a@)) = a@.
24 const xnull: bitstring [data].

25 const x0038: bitstring [data].

26...

27 let processClnt =

28 new time Clnt: bitstring;

29 new salt Clnt: bitstring;

30 let v17 = (time Clnt,salt Clnt) in

31 new suites clntHello: bitstring;

32 let v25 = (x0303,v17,x00,suites clntHello,x€0,xnull) in
33 let hshkMsg 1 = (x81,v25) in

34 let vll = (x16,x0303,hshkMsg_1) in

35 out(c,vll);

36 in(c,v37:bitstring);

37 let (=x16,=x0303,hshkMsg 2:bitstring) = v37 in

38 let (=x02,v48:bitstring) = hshkMsg 2 in

39 let (=x@303,v42:bitstring,sessId servHello:bitstring,

40 =x0038, compressAlg servHello:bitstring) = v48 in
41 let (time Serv:bitstring,salt Serv:bitstring] = v42 in
42

43 1in(c,v180:bitstring);

44  let (=x16,=x0303,hshkMsg_4:bitstring) = v18@ in

45 let (=x8c,v217:bitstring) = hshkMsg 4 in

46 let (v193:bitstring,=x02,=x02,v214:bitstring) = v217 in

47 let (=dhP_servKeyExch, K =dhG_servKeyExch,v190:bitstring) = v193 in
48 let (=x30,v21l:bitstring) = v214 in

49 let (v206:bitstring,v210:bitstring) = v211 in

50 let (=x02,v203:bitstring) = v206 in

51 let v196 = RevBEncoB2DERInt(v203) in

52 let (=xB2,v207:bitstring) = v21@ 1n

53 let v202 = Rev@EncoB2DERInt(v207) in

54 let v198 = (v17,v42,v193) in

55 let v199 = HashSHA1(v198) in

56 let v223 = ModInv(v202,dsaQ servCert) in

57 let v224 = ModMult(v199,v223,dsaQ servCert) in

58 let v226 = ModExp(dsaG servCert,v224,dsaP servCert) in
59 let v225 = ModMult(v196,v223,dsal servCert) in

60 let v227 = ModExp(v132,v225,dsaP servCert) in

61 let v230 = ModMult(v226,v227,dsaP_servCert) in

62 1f v196 = Mod(v230,dsaQ servCert) then
63 in(c,v237:bitstring);

64 ...

65 let processServ =

66 in(c,vl1@:bitstring);
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69 let (=x0303,v14:bitstring,=x00,suites clntHello:bitstring,
70 =x00, helloExt clntHello:bitstring) = v22 in

71 let (time Clnt:bitstring,salt Clnt:bitstring) = v14 in

72 new time Serv: bitstring;

73 new salt Serv: bitstring;

74 let v38 = (time_Serv,salt_Serv) in

75 new sessId servHello: bitstring;

76 if x0038 = Split2 2 2 2 1(suites clntHello) then

77 let v44 = (x0303,v38,sessId servHello,x0038,x00) in

78 let hshkMsg 2 = (x@2,v44) in

79 let v34 = (x16,x0303,hshkMsg 2) 1in

80 out(c,v3d);

81 ...

82 new dhX servKeyExch: bitstring;

83 let v203 = ModExp(dhG_servKeyExch,dhX servKeyExch,dhP servKeyExch) in
84 let v206 = (dhP_servKeyExch,dhG_servKeyExch,v203) in

85 new dsaK servCert: bitstring;

86 let v21@ = ModExp(dsaG servCert,dsaK servCert,dsaP servCert) in
87 let v211 = Mod(v210,dsaQ _servCert) in

88 let v218 = EncoB2DERINnt(v211l) in

89 let v221 = (x02,v218) in

90 let v212 = ModMult(v2ll,dsaX servCert,dsaQ servCert) in
91 let v213 = (v14,v38,v206) in

92 let v214 = HashSHA1(v213) in

93 let v215 = ModAdd(v212,v214,dsaQ servCert) in

94 let v216 = ModInv(dsaK servCert,dsaQ servCert) in

95 let v217 = ModMult(v2l5,v216,dsaQ servCert) in

96 let v222 = EncoB2DERINnt(v217) in

97 let v225 = (x02,v222) in

98 let v226 = (v221,v225) in

99 let v229 = (x30,v226) in

100 let v232 = (v206,x02,x02,v229) in
101 let hshkMsg 4 = (xOc,v232) in

102 let v194 = (x16,x0303,hshkMsg 4) in
163 out(c,v194);

1604 ...

105 process

106 ((!processClnt) | (!processserv))

Fig. 3. The corresponding ProVerif program (an excerpt)

6. Engine implementation details

The engine implements the functionality that is significantly more powerful than the
CSM machine presented in the section 3. The engine does not execute the CMN.1-
notated programs as straightforward as CSM does. It executes the programs
symbolically: the elements of the stack are not byte strings but symbolic expressions.
This well-known technique allows the engine to fully take over the task of verification
of the incoming messages using the same CMN.1-definitions that are used in the
direct task of message generation. The verification is complete: the engine decrypts
the ciphertexts, checks MACs and signatures, etc. Throughout a protocol execution,
the engine accumulates the generated symbolic expressions, their values, lengths and
types. It uses this information to generate or verify the protocol messages in the future.
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In addition, the engine logs such events as calculations of the values of the symbolic
expressions and applications of the rewriting rules. This information can be used by
the engine's environment to extract symbolic traces and convert them to the programs
for symbolic verifiers, e.g. ProVerif (as was presented in the previous section).
The scheme of the verification is as follows. Let the byte string bs is considered by
the engine as a protocol message with the CMN.1 definition p. Let EQ is a set variable
containing equations, i.e. pairs of type (symbolic expression, byte string). The engine
implements the verification procedure as follows.
Step 1. The engine executes the program p symbolically resulting the
symbolic expression exp. EQ is initialized with the equation (exp,bs).
Step 2. For every new equation (exp,bs) from EQ, until neither of Step 2.1
or Step 2.2 can be applied anymore:
Step 2.1. The engine tries to apply a rewriting rule to this equation.
This rule can be a simple inversion (for Enco, SEnc, Xor,
ModMult, ModAdd, ModInv or Add functions) or be a complex
group operation taking into account other equations from E£Q (e.g.
for Split). The application of the rule produces one or several new
equations, which are inserted in £Q. If some rule was applied, the
engine returns to the beginning of the Step 2. Otherwise, it goes to
the Step 2.2.
Step 2.2. If the values of all the arguments of the top operation of
the symbolic expression exp are known, the engine calculates the
value of exp. If this value is equal to bs, the engine removes the
equation from EQ. Otherwise, it returns the message verification
errTor.
The engine knows about the equality (a®)° = (a%)® and analogous equality for the
elliptic curve scalar multiplication, so Diffie-Hellman key exchange and ElGamal
asymmetric encryption do not ask for special treatment. Yet the engine uses specific
rewrites for expressions relevant to the DSA and ECDSA algorithms or to their
relatives.
The calls exported by the engine are presented below.
1. cSymExec p — The engine executes the program p symbolically and returns
the descriptor of the generated symbolic expression.
2. cCalc d — The engine calculates the value of the symbolic expression with
descriptor d.
3. cGetVal d — The engine returns the value of the symbolic expression with
descriptor d.
4. cSetVal d bs — The engine assigns the value bs to the symbolic expression
with descriptor d.
5. cVerify d bs — The engine verifies the byte string bs with respect to the
symbolic expression with descriptor d. If verification has failed, it returns an
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error, otherwise, it returns the superfluous remainder of the byte string bs (if
present).

6. cEvent ev — The engine logs the event ev (i.e. the environment can insert
additional events into the engine log).

7. cGetLog — The engine returns content of its log.

7. Conclusion

We presented cryptographic protocol message notation (named CMN.1) based on the
instruction set of a stack machine specifically tailored to the needs of cryptographic
protocols (named cryptographic stack machine, or CSM). The principles of
implementation of the protocol specification language based on this notation also
presented. Within such an approach, specifications are executable and also
translatable to the programs for symbolic verifiers, such as ProVerif. The readability
of CMN.1-notated specifications is brought in the court of public opinion.

In addition, the validation of the proposed notation on a wider spectrum of
cryptographic protocols is needed. The validation will certainly cause minor additions
to the notation (at least regarding cryptographic key types) without affecting currently
defined CSM instructions. Taking into account the fact that the author's proof-of-
concept implementation of the core language library (the engine) comprises only 700
lines of the Haskell code (excluding cryptographic primitives), it seems logical to
provide in the future a formal description of the engine's algorithm and, basing on it,
a proof of the soundness of the ProVerif-translation procedure.
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HoTtauusa kpunTtorpacgpuyeckomn CTeKOBOM MalUMHbI BEpCUun
oaVH

C.E. Ilpoxonves <s.e.pr@mail.ru>
2. Mocxkea

AnHoTamus. Xopomrasi crHenu(UKanus KPHITOrpaQUIecKoro IPOTOKONA JOIDKHA JIETKO
BOCIIPUHHAMATHCS] YEJIOBEKOM (OBITh IEKIapaTUBHOM M JAKOHWYHOH), OBITH HCIIONHUMOU H
npolTH Tpouexypy (GopManbHONH BepuUUKanmMM B HEKOTOPO aJeKBaTHOH MOJEIHL.
HaunenuBasice Ha 3T TpeboBaHuMs, B cTathe npeioxkena Hotauuss CMN. 1, npenHa3zHaueHHas
JUIL  ONMHUCAaHHWsA COOOIIeHMIT KpunTorpaguUecKux MpPOTOKOJIOB W OCHOBaHHAas Ha
BBIYMCIUTENBHON a0CTPaKIMK TOJ Ha3BaHHEM Kpunmozpaguueckas CMeKkoeas Mauiuna
(CSM). Crarps omnucbiBaeT cuHTakcuc u ceMaHTuky CMN.1, a Taxke MHOpeAcTaBisieT
pe3ynsraThl  pa3paboTKH  s3bIKa  crenuUKandidi  KpUOTOrpaduueckux  MPOTOKOJIOB,
TIOCTPOECHHOTO Ha OCHOBE JAaHHOM HOTalMH M BCTpoeHHOTO B si3bIk Haskell. B aBTopckoit
peanm3anuy Best 00paboTKa COOOIIEHNI HHKAIICYTHPOBaHa BHYTPH 0a30BOT0 OHOIMOTETHOTO
MOZYJIS, B TO BpeMs Kak CIenU(pHKanys JODKHA JIMIIG JaTh ACKIAPaTUBHBIC ONPEIEeIICHUS
3THX coobmenuit. [Ipu GopMHUPOBAHUE UCXOMAIIETO COOOLICHHUS MPOTOKOJIAa 0A30BbIi MOAY/Ib
Oepet onucanue naHHoro coo6bmieHus B Hotauun CMN.1 u Bo3Bpamaer pparMeHT JaHHBIX,
CreHEepHpPOBaHHbIM MO 3ToMy omnmcaHuio. IIpu o0paboTke BXoxsmero cooOmeHus 0a30BbIi
MOZy/b OepeT MOCTYNUBLIMKA (parMeHT JaHHBIX M ONMCAHME OXKMAAEMOro COOOIICHHS B
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Horanmn CMN.l m Bo3BpamiaeT BEpAUKT 00 MX COOTBETCTBHH APYT HAPYTY, U3BIEKas H
3allOMUHAsi P 3TOM BCE COIEpIKAaIMecss B COOONIEHWM IaHHBIE, HEOOXOIMMBIE IS
¢dbopmupoBaHus WIM BepuHUKAIMK CICAYIONUX COOOIICHU mpoTokona. [Iporecc
BepU(HKALINH SBISIETCS HOIHBIM: 6a30BBIN MOYJIb OCYLIECTBIISIET paciin(ppoBaHUE, TPOBEPKY
KOZIOB ayTeHTH(HUKALMKM COOOIIeHUH W 3HaueHUi 1wmbpoBol moamucu u T.0. Texymas
peanu3anys A3blka BKJIIOYAeT (QYHKLMM TPAHCIALMU crelu(UKaUil B UCIONIHIAEMbIH KOI,
COBMECTHMBIH C CYIIECTBYIOIIMMH MPOTPAMMHBIMH PEAH3aLUsIMI MPOTOKOJIOB, a TaKKe
(GYyHKIUM KOHBEpPTAIMU CHENU(UKAIMKA B TPOrpaMMbl HAa BXODHOM S3BIKE aHAIM3aTOpPa
nporokosoB ProVerif. B kauectBe wmmoctpanuu mnpusomsTcss Beimepxkku u3 CMN.1-
cnerudukanyy mporokona TLS m cooTBeTCTByrOmel el aBTOMAaTHYECKH CTeHEPHPOBAHHOM
nporpammsl uist ProVerif.

KiroueBble clioBa: 3K crequ(UKAmuid KPUITOrpapUIECKUX MPOTOKOIOB; HOTALHS
Cco00IIeHNIT KpUNTOrpadUUeCKUX MPOTOKOJIOB; KpHITOrpaduyeckas CTEKOBas MAllNHA;
BCTPOCHHBIC IPEIMETHO-OpUEHTHPOBaHHbIE s13b1kH; Haskell; ProVerif; TLS
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