Static dependency analysis for semantic
data validation

D.V. llyin <denis.ilyin@jispras.ru>
N.Yu. Fokina <nfokina@jispras.ru>
V.A. Semenov <sem@ispras.ru>
Ivannikov Institute for Systems Programming of the RAS,
25, Alexander Solzhenitsyn Str., Moscow, 109004, Russia

Abstract. Modern information systems manipulate data models containing millions of items,
and the tendency is to make these models even more complex. One of the most crucial aspects
of modern concurrent engineering environments is their reliability. The principles of ACID
(atomicity, consistency, isolation, durability) are aimed at providing it, but directly following
them leads to serious performance drawbacks on large-scale models, since it is necessary to
control the correctness of every performed transaction. In the paper, a method for incremental
validation of object-oriented data is presented. Assuming that a submitted transaction is applied
to originally consistent data, it is guaranteed that the final data representation is also consistent
if only the spot rules are satisfied. To identify data items subject to spot rule validation, a
bipartite data-rule dependency graph is formed. To automatically build the dependency graph
a static analysis of the model specifications is proposed to apply. In the case of complex object-
oriented models defining hundreds and thousands of data types and semantic rules, the static
analysis seems to be the only way to realize the incremental validation and to make possible to
manage the data in accordance with the ACID principles.

Keywords: information systems; ACID; data consistency management; EXPRESS
DOI: 10.15514/ISPRAS-2018-30(3)-19

For citation: Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic
data validation. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 271-284. DOI:
10.15514/ISPRAS-2018-30(3)-19

1. Introduction

Management of semantically complex data is one of the challenging problems tightly
connected with emerging information systems such as concurrent engineering
environments and product data management systems [1-4]. Although transactional
guarantees ACID (Atomicity, Consistency, Isolation, and Durability) are widely
recognized and recommended for any information system, it is difficult to maintain
the consistency and integrity of data driven by complex object-oriented models. Often
such models are specified in EXPRESS language being part of the STEP standard on

271

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

industrial automation systems and integration (ISO 10303). To be unambiguously
interpretable by different systems the data must satisfy numerous semantic rules
imposed by formal models. Maintaining data consistency and ensuring system
interoperability become a serious computational problem. Full semantic validation
requires extremely high costs, often exceeding the processing time of individual
transactions. Periodic validation is possible, but at a high risk of violating rules and
losing actual data.

The paper presents an effective method for incremental validation of object-oriented
data. An idea of incremental checks is well-understood and was successfully
implemented for the validation of such specific data as UML charts, XML documents,
deductive databases [5-7]. Unlike the aforementioned results, the proposed method
can be applied to semantically complex data driven by arbitrary object-oriented
models.

Assuming that a submitted transaction is applied to originally consistent data, it is
guaranteed that the final data representation is also consistent if only the spot rules
are satisfied. To identify data items subject to spot rule validation, a bipartite data-
rule dependency graph is formed. To automatically build the dependency graph a
static analysis of the model specifications is proposed to apply. In the case of large-
scale models defining hundreds and thousands of data types and semantic rules, static
analysis seems to be the only way to realize the incremental validation and to make
possible to effectively manage the data in accordance with the ACID principles.

The structure of the paper is as follows. In section 2, we will shortly overview
EXPRESS language with an emphasis on the data types and the rule categories
admitted by the language. Formal definitions of model-driven data, rules and
transactions are also provided. In section 3, we will present a complete validation
routine and then explain how an incremental validation can be arranged using the
proposed dependency graph. This is accompanied by an example of the model
specification. In conclusion, we summarise benefits of the proposed validation
method and outdraw future efforts.

2. Product data and transactions

2.1 EXPRESS language

Product data models and, particularly, semantic rules can be specified formally in
EXPRESS (ISO 2004) language [8]. This object-oriented modeling language
provides a wide range of declarative and imperative constructs to define both data
types and constraints imposed upon them. The supported data types can be subdivided
into the following groups: simple types (character, string, integer, float, double,
Boolean, logical, binary), aggregate types (set, multi-set, sequence, array), selects,
enumerations, and entity types.

Depending on the definition context, three basic sorts of constraints are distinguished
in the modeling language: rules for simple user-defined data types, local rules for

272

Wnenn 1.B., ®okuna H.10., Cemenos B.A. CraTudeckuii aHaIu3 3aBUCHMOCTEH [Tl CEMaHTHUYECKOH BaJTUIAIIN
naHHbIX. Tpyoet UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 271-284

object types, and global rules for object type extents. Depending on the evaluation
context these imply the following semantic checks:

attribute type compliance (Ry);

e limited widths of strings and binaries (R4, R>);

e size of aggregates (R3);

e multiplicity of direct and inverse associations in objects (R4, Rs);
e uniqueness of elements in sets, unique lists and arrays (Ry);

e mandatory attributes in objects (R-);

¢ mandatory elements in aggregates excluding sparse arrays (Rg);
e value domains for primitive data types (Ry);

e value domains restricting and interrelating the states of separate attributes
within objects (R, or so-called local rules);

e uniqueness of attribute values (optionally, their groups) on object type
extents (Ry; or uniqueness rules);

e value domains restricting and interrelating the states of whole object
populations (R;, or so-called global rules). Value domains can be specified
in a general algebraic form by means of all the variety of imperative
constructs available in the language (control statements, functions,
procedures, etc.).

Certainly, each product model defines own data types and rules. Therefore, semantic
validation methods and tools should be developed in a model-driven paradigm
allowing their application for any data whose model is formally specified in
EXPRESS language. For a more detailed description refer to the mentioned above
standard family which regulates the language.

2.2 Formalization of models, data and transactions

An object-oriented data model M can be formally considered as a triple M =
(T U< UR), where the types T ={C USU AU ...} are classes C, simple types S,
aggregates A and other constructed structures allowed by EXPRESS.
Generalization/specialization relations < are defined among these types. Each class
¢ € C defines a set of attributes in the form c.a: C — T. The attributes c.a:C » C,
c.a:C » aggregate(C) are single and multiple associations which play role of
object references. The rules R = {Ry U R; U R, U ...U R;,} define the value domains
of typed data in an algebraic way in accordance with EXPRESS. The rules are
subdivided into 12 categories enumerated above. Let us define the key concepts that
are used in further consideration.

An object-oriented dataset x = {0,0,,...} is said to be driven by the model
M(T, <, R) if all the objects belong to its classes: V 0 € x = typeof(0) € C c T.

273

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

Let a dataset x is driven by the model M(T, <, R). All the objects {0*} € x such that
subtypeof(0*) = ¢ € C c T are called an extent of the class ¢ on the dataset x. A
query returning the class extent ¢ on the dataset x is called the extent query and is
designated as Quytent (X,).

Let a dataset x is driven by the model M(T,<,R). An object set {0*} C x,
typeof(0*) =c* €C c T is said to be interlinked with the objects {0} C x,
typeof (o) = ¢ € C c T along the association c.a if Vo € {0},0.a c {0*}, Vo* €
{0*} — 30 € {0}: 0" € 0.a. We will denote that as {0} = {o*}.

Let a dataset x is driven by the model M(T,<,R). An object set {0o*} c x,
typeof(0*) =c* € C c T is said to be interlinked with the objects {o} C x,
typeof (o) = c € C c T along the route {c.a} if 3{o'} c x,{0"} c x, ..., so that

{o} = {o'} - {0"}— ... > {0*}. A query returning the objects {0*} interlinked
with a given set {0} along the route {c. a} is called the route query and is designated
as Qroute (X, {0}, {c.a}). A query returning the objects {0} by a given object set {0*}
is called the reverse route query and is designated as Q.. (X, {0*}, rev {c. a}).

The object set x = {04, 0, ... } driven by the model M(T, <, R) is called consistent if
all the rules being instantiated and evaluated are satisfied on this data set: Vr € R —
r(x) = true.

Finally, let us introduce the concept of the delta as a specific representation of
transactions. Each delta A(x’, x) aggregates the changes happened in the dataset x' =
{o1, 05, ... } compared with its original revision x = {04, 0, ... }. It is assumed that both
revisions are driven by the same model and the objects have unique identifiers that
allows to uniquely map the objects and to compute delta in a formal way as A(x', x) =
delta(x',x). The delta can be arranged as bidirectional one and then any of the
revisions can be restored by the given other: x' = apply(x,A) and x =
apply(x',A71).

The delta is represented as a set of elementary and compound changes A = {§}, where
each change can be either the creation of an object, or its deletion or modification
designated as Snew(0)s Odei(o)> Omoa(o) COtrespondingly. The modification, in turn, is
represented as a change in the attributes 6,04(0) = {5mod(o_a)} that in the case of
aggregates is represented by the operations of insertion, removal and modification of
the elements &p04(0.0) = {6in5(o_a[]), Orem(o.a)) 6mod(o.a[])}. In what follows, we
assume that each creation operation in the delta representation is complemented by
the operations of initializing the attributes that are equivalent to the modification
operations. Each deletion operation is supplemented by the operations of resetting the
attributes to an undefined state, also representable by the modification operations.
Regardless of the way, the delta is structured, only elementary operations are taken
into account in the context of the studied validation problems.

274

Wnenn 1.B., ®okuna H.10., Cemenos B.A. CraTudeckuii aHaIu3 3aBUCHMOCTEH [Tl CEMaHTHUYECKOH BaJTUIAIIN
naHHbIX. Tpyoet UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 271-284

3. Validation

3.1 Complete validation

The complete validation routine is provided below (see Figure 1). In a cycle on all
objects their attributes are checked against the rules of the categories R; U R, U ... U
Ry. The checks are performed individually for each attribute provided that the
corresponding rules are imposed on their types. In case of detected violations, the
error messages are logged. Rules R, are evaluated for entire objects in the same loop.
The second cycle is formed due to the need for checks of uniqueness rules R, ;. Since
these rules are declared inside the class definitions, an additional cycle is arranged on
the model classes. The rules are evaluated on the class extents. Finally, the third cycle
allows to check global rules R;, which are defined directly in the model. Such checks
are performed for the corresponding class extents.
for each object o € x in dataset
for each attribute o.a in object
for each attribute rule €ER0O URL U R2 U ... U R9 defined for typeof(o.a)
check rule(o.a), log if violated
for each local rule € R10 defined for typeof(o)
check rule(o), log if violated
for each class ¢ € C defined in model
for each uniqueness rule € R11 defined for class c
check rule(Q extent(x, rule.c)), log if violated

for each gldbal rule € R12 defined in model
check rule(Q extent(x, rule.cl), Q extent(x, rule.c2),..), log if violated

Fig. 1. Complete validation routine

As mentioned above, complete validation of semantically complex product data is a
computationally costly task that can cause performance degradation when processing
transactions. Incremental validation makes it possible to reduce the amount of checks
to be performed.

3.2 Incremental validation

The proposed incremental validation method is based on the idea of localizing spot
rules that can be affected by a transaction and generating a set of semantic checks that
is sufficient to detect all potential violations. For this purpose, the dependency graph
is built by a given specification of the data model in EXPRESS language. For brevity,
we just explain that this structure represents and omit the details of how it can be
formed using static analysis of the specification.

The dependency graph is a bipartite graph whose nodes represent the kinds of
transaction operations and the categories of semantic rules both defined by the
underlying model. An operation node is connected with the rule nodes by directed
edges if only such operations can violate the rules being instantiated for particular
data. Usually, the semantics of the operations imply what are the data it is applied to.
Sometimes the inspected data are apriori unknown and have to be determined by

275

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

executing corresponding route queries. Therefore, each edge is formed by the
dependency structure ¢ containing both a rule reference o. rule and an optional query
route o.route. In some sense, the graph reflects the transaction structure as if it
contains all possible kinds of changes and the data organisation as if all data types are
present and all rules are potentially suffered to violations. As mentioned above, only
elementary operations are involved in the dependency analysis.

Thus, the dependency graph enables to determine spot rules that could be violated for
particular data due to the accepted transaction. For example, if the node operation is
a modification of the object attribute c.a and aruler € Ry U R{ UR, U ...U Ry is
defined for its type, then the node 8p,04(c.q) is connected with the rule node r by a
corresponding edge. Having a specific operation of this kind 8,,04(0.0), typeof (0) =
¢ in the delta representation the corresponding check r(0.a) can be produced using
the dependency edge.

The method of the dependency graph construction is described in more detail in the
next section. Still, here we will point out some of its important features.

If the same attribute c. a participates in an expression of the domain rule r € R, for
the class c, then the operation &,,54(0.0), typeof (0) = c produces the check (o) for
the object o.

If the attribute c. a participates in the uniqueness rule r € R;; defined for the class c,
then another dependency edge must be associated with the operation node. In this
case, the corresponding check 7(Qpyten: (X, €)) must be performed.

There is a more difficult case when the attribute c. a participates in an expression of
the domain rule r € R, defined for the other class c*. The attribute c. a is assumed
to be accessed by traversing associated objects along the route {c*.a*} from the
objects 0" € ¢*. Then the operation 8,,04(0.0)» typeof (o) = ¢ induces the checks

r(0*) for all 0* € Q,oyte(x, 0,rev {c*.a*}). To identify and perform such checks the
operation node must be connected with the evaluated rule node and a route {c*.a*}
must be prescribed to the edge. The dependency analysis of spot rules r € Ry, is
carried out in a similar way.

Finally, we note that the operations of creating and deleting objects on the
assumptions made above can only violate global rules and only in those cases if the
cardinalities of class extents are computed. Considering object references as specific
attribute types, it is possible to localize some spot rules more exactly. Differing
operations on aggregates also leads to better localization of spot rules. For brevity we
omit the details how the spot rules can be localized more carefully and provide an
example in the next subsection.
for each elementary operation &(o),d(0.a) € delta
{ 0 } = dependency graph(kindof(&))
for each dependency o € { o }
switch kindof (o.rule)
case attribute rule :

check o.rule(o.a), log if violated
case local rule :

276

Wnenn 1.B., ®okuna H.10., Cemenos B.A. CraTudeckuii aHaIu3 3aBUCHMOCTEH [Tl CEMaHTHUYECKOH BaJTUIAIIN
naHHbIX. Tpyoet UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 271-284

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

{ o* } = Query route(x, o, rev (o.route))
for each o* € { o* }
checkset.put (c.rule(o*))
case uniqueness rule :
checkset.put(o)
case gldbal rule :
checkset.put(o)
for each check o, o(o) € checkset
switch kindof (o.rule)
case local rule :
check o.rule(o), log if violated
case uniqueness rule :
check o.rule(Query extent(x, o.rule.c)), log if violated
case gldbal rule :
check o.rule(Query extent(x, o.rule.cl), Query extent(x, o.rule.c2),..),
log if violated

Fig. 2. Incremental validation routine

The validation routine presented in Figure 2 consists in the sequential traversing of
delta operations, determining the nodes of the operation semantics, obtaining
associated spot rule nodes, evaluating the rules directly or filling the checkset for the
subsequent validation. The checkset is organized as an indexed set of records each of
which stores references on the validated rule, query and factual data to perform the
corresponding check. The use of the checkset is motivated by the fact that some
operations lead to repeated checks of the same rules. Indexing of the checkset allows
you to exclude repeated records and, thus, to avoid redundant computations. At the
same time, the attribute rule checks are always produced once by the modification
operations and, therefore, it is more expedient to execute them immediately, without
overloading the checkset.

3.3 Dependency graph construction

To construct the dependency graph, an abstract syntactic tree for the model is built.
According to the retrieved data, for all attribute declarations operation nodes are built.
Number and types of these nodes constructed for a single attribute depend on its type.
For non-aggregate attributes c. a only node 8,,,,4(c. a), representing modification of
the attribute, is built. For aggregate attributes c.a[] three nodes are created: (1)
Sins(c.a[]) — insertion of a new element; (2) &,,,4(c.a[]) — modification of an
element of the aggregate; (3) 8¢ (c. a[]) — removal of an element.

Construction of the dependency graph proceeds with generating rule nodes. We
handle construction of nodes for rules R;-Rgand R;o-R;; differently.

For rules R;-Ro we take all explicit attributes and build rule nodes for each of them.
The types of rule nodes depend on the type of the attribute in question. For instance,
if it is a bounded string c.S, we generate a R;(c.S) (R;— limited width of strings),
connected with the node corresponding to the modification of S 8,4 (c. S). Similarly,
if an attribute is a bounded aggregate, we construct a node of type R, and connect it
with the insertion §;,5(c. a[]) and/or removal &,.,,(c.a[]) operation nodes of the

277

attribute, depending on the side from which the aggregate is bounded — if it is bounded
above, then only with insertion node, if below — with removal, if from both sides —
with both of them.

The way of construction of rule nodes for R;o-R;; is uniform. We start with locating
all local rules for Ry, all uniqueness rules for R;; and all global rules for R;.. For each
of the rules, we find all attributes used in it. If an attribute is explicit, we only connect
its modification with the rule node, and also with insertion and removal, if it is an
aggregate used inside a SIZEOF operation. If an attribute is derived, we take its
definition and find the attributes used in it; if inverse — we proceed with analyzing the
attribute it references. For derived and explicit attributes, the analysis is performed
recursively, until all the explicit attributes, directly and indirectly referenced by them,
are located. Then all of them are connected with the rule node corresponding to the
rule in question. If the during the analysis we find a node that is a function call, we
substitute its formal parameters with actual and thus locate the attributes which are
used in it; the analysis of a function body with the parameters substituted is
completely identical to the analysis of a rule.

An example illustrating the constructed graph is given in the next subsection.

3.4 Example of a dependency graph

Let us consider a fragment of the EXPRESS specification of a project management
system. Three classes depicted in Figure 3 — Task, Link and Calendar — are its core
entities. The meaning of Task is self-evident; Link represents a connection defining a
relation and execution order between two tasks. The fact that between two tasks might
be only a single link of one type is reflected in uniqueness rule url. A Calendar
defines a typical working pattern: working days, working times, holidays. The
calendar can be assigned to specific tasks, and one calendar can be set as a default
project calendar, that means that it will be used for tasks for which no task calendar
is set. Besides that, it is possible to use an Elapsed calendar for a task implying that
work will be performed 24/7. Global rule SingleProjectCalendar restricts the possible
number of project calendars to no more than one. Moreover, local rule wr3 is used to
check that if a task has got a task calendar, it the reference to it must be non-null. One
more local rule, wr2, restricts the length of an EntityName to be between 1 and 32
characters.

TYPE LinkEnum = ENUMERATION OF

(START START, START FINISH, FINISH START, FINISH FINISH);
END TYPE;

TYPE CalendarRuleEnum = ENUMERATION OF
(TASK, PROJECT, ELAPSED);

END TYPE;
FUNCTION TaskIsCyclic (Tl : Task, T2 : Task) : BOOLEAN;
IF (SIZEOF(Tl.Parent) = 0) THEN RETURN (FALSE) ;
ELSE
IF ((TaskIsCyclic(Tl.Parent([l], T2) = TRUE) OR (Tl = T2))
278

Wnenn 1.B., ®okuna H.10., Cemenos B.A. CraTudeckuii aHaIu3 3aBUCHMOCTEH [Tl CEMaHTHUYECKOH BaJTUIAIIN
naHHbIX. Tpyoet UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 271-284

THEN RETURN (TRUE) ;
END IF;

END IF;
END FUNCTION;
RULE SingleProjectCalendar FOR (Calendar);
WHERE

wrl: SIZEOF (QUERY (Temp <* Calendar | Temp.isProjectCalendar =
TRUE)) <= 1;
END RULE;

TYPE EntityName = STRING;
WHERE

wr2: (1 <= SELF) AND (SELF <= 32);
END TYPE;

ENTITY Task;
ID : INTEGER;
Name : EntityName;
TaskCalendar : Calendar;
CalendarRule : CalendarRuleEnum;
Children : LIST [0:?] OF Task;
DERIVE
TaskDuration : Duration := ?;
INVERSE
Parent : SET [0:1] OF Task FOR Children;
DownstreamLinks : SET [0:?] OF Link FOR Predecessor;
UpstreamLinks : SET [0:?] OF Link FOR Successor;
WHERE
wr3 : CalendarRule <> CalendarRuleEnum.TASK OR
EXISTS (TaskCalendar) ;

wrd : (SIZEOF (Parent) = 0) OR (TaskIsCyclic(Parent[l], SELF) =
FALSE) ;
UNIQUE

url : ID;

END _ENTITY;

ENTITY Link;
ID : INTEGER;
LinkType : LinkEnum;
Predecessor : Task;
Successor : Task;

UNIQUE
ur2 : LinkType AND Predecessor.ID AND Successor.ID;
ur3 : ID;

END ENTITY;

ENTITY Calendar;
ID : INTEGER;
Name : OPTIONAL EntityName;
IsProjectCalendar : BOOLEAN;
UNIQUE
urd4 : ID;
END ENTITY;

Fig. 3. An example of the model specification in EXPRESS language

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

The dependency graph for this fragment of the specification is shown in Figure 4.

Ro(Children)

Rs(Children)
Oins(Children[]) Riofwrd)

Ryi(Task.ID)
Omoa(Children(]) Ro(Name)

R;(Name)
Imod(Task.ID)

Ro(wr2)
Omod(Name) Ryi(Link.ID)

Ro(LinkType)
Smoa(Link.ID)

R;(LinkType)

Omoa(LinkType) Ryi(ur2)
Ry(Predecessor)
Omod(Predecessor) R;(Predecessor)

Ry(Successor)

Smod(Successor)

R7(Successor)

Ro(TaskCalendar)
O askCalendar,
od(T¢) Riufowr3)
Ry(CalendarRule)
Omoa(CalendarRule)
R;(CalendarRule)
R;i(Calendar.1D)
Omoa(Calendar.ID)
Ry(IsProjectCalendar)
Omod(IsProjectCalendar) R;(IsProjectCalendar)
R x(SingleProjectCalendar)

Orem(Children(])

R(Children)

LML

Rs(Parent)

Fig. 4. A fragment of the model dependency graph

Each operation of attribute modification except for removal of elements from the list
of task children is connected with the rules validating corresponding attribute type
compliance Ry and availability of defined values for mandatory attributes R;. To avoid
placement of null values to the list of mandatory elements the rule Rs should be
validated as well after the operations have been performed. The insertion cannot
violate multiplicity of the direct and inverse associations as their upper borders are
unlimited, but checks Ry, Rs should be performed when an element is removed from
280

Wnenn 1.B., ®okuna H.10., Cemenos B.A. CraTudeckuii aHaIu3 3aBUCHMOCTEH [Tl CEMaHTHUYECKOH BaJTUIAIIN
naHHbIX. Tpyoet UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 271-284

Children. Therefore, the corresponding operation nodes should be connected with the
aforementioned nodes of the rules that the operations may potentially violate. As the
expression for the local rule wr3 includes the attributes CalendarRule and
TaskCalendar, the nodes corresponding to the operations of modification of these
attributes are connected with the wr3 rule node. For the rule wr2 defining the value
range of the EntityName type, there is a connection between the FEntityName
modification node and the wr2 rule node. The corresponding edges are assigned by
the routes by traversing of which the attributes could be accessed. The expression of
the global rule SingleProjectCalendar references only one attribute
IsProjectCalendar, so the appropriate graph nodes are connected by the edge as well.
Modification of any attribute of the Link class can affect its uniqueness defined by
ur2; hence the connections between LinkType, Predecessor and Successor and the
uniqueness rule node.

It is also possible that a change affects a constraint not directly but through an inverse
association, or even a chain of them, where other classes can be involved. In this
case, rules for all the chain of affected classes is added to the checkset. Furthermore,
they can be affected not only by direct associations but also by the inverse. For
instance, cardinality constraints on inverse aggregate attributes causes insertion of
additional rule nodes to the graph.

4. Conclusion

This paper presents the incremental method of model data validation. The method is
applicable for semantically complex data driven by arbitrary object-oriented models.
It allows to increase the performance of semantic validation and to effectively manage
the data in accordance with the ACID principles.

The planned work concerns basically the implementation of the method proposed and
its evaluation for industry meaningful product data. The expected positive results will
allow its wide introduction into new software engineering technologies and emerging
information systems.

References

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In
Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary
Engineering, 10S Press, 2017, pp. 592-599.

[2]. L. Ldmmer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering in
the 21st Century — Foundations, Developments and Challenges, Springer, 2015, pp. 455-
490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best
practices towards the development of a multiple industry, multiple domain environment.
Clemson University, 20009. Accessed: 29/01/2018. Available:
http://tigerprints.clemson.edu/all theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data
management, Industrial Management & Data Systems, MCB University Press, vol. 96,
no. 4, 1996, pp. 11-17.

281

Ilyin D.V., Fokina N.Yu., Semenov V.A. Static dependency analysis for semantic data validation. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 271-284

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model
Inconsistencies based on Model Operations. In Advanced Information Systems
Engineering, CAiSE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive
Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.
292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for
Active Deductive Databases. In Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8]. ISO 10303-11: 2004. Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, ISO, 2004.

CtaTuyeckun aHann3 saBUCMMOCTEN AN CeMaHTU4YeCKon
Banuaauum AaHHbIX

Unvun J].B. <denis.ilyin@jispras.ru>
@okuna H.IO. <nfokina@ispras.ru>
Cemenos B.A. <sem@ispras.ru>
HUncmumym cucmemnoeo npoecpammupoganus um. B.I11. Heannuxosea PAH,
109004, Poccus, 2. Mocksa, ya. A. Conxcenuyvina, 0. 25

AnHoTaums. CoBpeMeHHbIC HHPOPMaLMOHHbIE CHCTEMbl MAHUITYJIUPYIOT MOJEIISIMU JAQHHBIX,
COZIEPXKAIIUMU MHJUTHOHBI OOBEKTOB, M TEHJEHIMS TaKOBa, YTO 3TU MOJENU IOCTOSHHO
ycnoxHsoTea. OJHUM U3 BaXKHEHIINX aclEKTOB COBPEMEHHBIX MapalieNbHbIX HHKEHEPHBIX
cpen sBigercss WX HamexHocTh. [IpmHmmmsel ACID (aToMapHOCTB, COTJIACOBAaHHOCTH,
H30JMPOBAHHOCTb, YCTOHYMBOCTH) HANpaBIEHBl HA €€ oOecHedeHHe, OIHAKO MpsMOe
ClIeIOBAaHUE UM HPUBOJUT K CEPbE3HOMY CHIDKCHUIO IIPOU3BOJUTEIBHOCTH Ha
KpYHMHOMAacIITaOHBIX MOJENSIX, IOCKOJIbKY HEOOXOANMO KOHTPOJIHMPOBATH IPABIIBHOCTD
KaXJIOH BBINOJHEHHON TpaH3akuuu. B Hacrosmed cTaree IIPEACTABIEH METOX
MHKPEMEHTAJIBHON BalUJalnuK OOBEKTHO-OPUEHTHPOBAHHBIX JaHHBIX. I[Ipeamonarasi, 4To
TPaH3aKLHs MIPUMEHSETCA K MEPBOHAYANBHO COTIACOBAHHBIM JAHHBIM, TapaHTHPYETCS, YTO
OKOHYATEIIbHOE MPEJCTaBICHHE NaHHBIX TaKke OyAeT COracOBaHHBIM, €CIIH TONBKO OyayT
BEIIIOJTHEHB! JIOKANbHBIE MpaBwia. s ompexpeneHns OOBEKTOB [AHHBIX, IOMICKAIINX
mpoBepke, (GopMupyercs IOBYHONbHBIH Tpad 3aBucumocTeit 1O maHHBIM. {71
ABTOMATHYECKOTO ITOCTPOEHHMs rpada 3aBUCHMOCTEH NpeaaraeTcsl IpUMEHITh CTaTHIeCKHUI
aHanm3 crenuuKanii Moaenr. B ciydae croXxHBIX 00beKTHO-OPUEHTHPOBAHHBIX MOJEIICH,
BKJIFOYAIOIUX COTHU U ThICAYM THUIIOB JAHHBIX U CEMAHTUYECKUX IIPaBHJI, CTATUYECKUH
aHaNn3, MO-BUIUMOMY, SIBJSIETCS €IMHCTBEHHBIM CIIOCOOOM pealn3aliy WHKPEMEHTalbHON
BaUJALUM U OOecredeHHs BO3MOXKHOCTH YTPABIE€HHsS [AHHBIMH B COOTBETCTBHH C
npuniunamu ACID.

Kuniouesrble cioBa: nudopmarmonnsie cucteMsl; ACID; ynpapieH#e [eJI0CTHOCTHIO JaHHBIX;
EXPRESS

DOI: 10.15514/ISPRAS-2018-30(3)-19

282

Wnenn 1.B., ®okuna H.10., Cemenos B.A. CraTudeckuii aHaIu3 3aBUCHMOCTEH [Tl CEMaHTHUYECKOH BaJTUIAIIN
naHHbIX. Tpyoet UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 271-284

Jas uurupoBanusi: Mnbun J1.B., ®oxuna H.IO., CemenoB B.A. Craruyeckuil ananus
3aBUCHUMOCTEH 151 ceManTuyeckor Banmaauuu nanubix. Tpyast UCIT PAH, Tom 30, Beim. 3,
2018 r., cp. 271-284 (na anrnuiickoM s3bike). DOI: 10.15514/ISPRAS-2018-30(3)-19

Cnucok nutepaTtypbl

[1]. V.A. Semenov. Product Data Management with Solid Transactional Guarantees, In
Transdisciplinary Engineering: A Paradigm Shift Series Advances in Transdisciplinary
Engineering, IOS Press, 2017, pp. 592-599.

[2]. L. Laimmer and M. Theiss. Product Lifecycle Management, In Concurrent Engineering in
the 21st Century — Foundations, Developments and Challenges, Springer, 2015, pp. 455-
490.

[3]. J. Osborn. Survey of concurrent engineering environments and the application of best
practices towards the development of a multiple industry, multiple domain environment.
Clemson University, 2009. Hara oOpamenus: 29/01/2018. Pexum pgoctyma:
http://tigerprints.clemson.edu/all_theses/635/

[4]. M. Philpotts. An introduction to the concepts, benefits and terminology of product data
management, Industrial Management & Data Systems, MCB University Press, vol. 96,
no. 4, 1996, pp. 11-17.

[5]. X. Blanc, A. Mougenot, I. Mounier, T. Mens. Incremental Detection of Model
Inconsistencies based on Model Operations. In Advanced Information Systems
Engineering, CAiSE 2009, LNCS, vol. 5565, Springer, 2009, pp. 32-46.

[6]. C. Xu, C.S. Cheung, W.K. Chan. Incremental Consistency Checking for Pervasive
Context. In Proc. the 28th International Conference on Software Engineering, 2006, pp.
292-301.

[7]. J. Harrison, S.W. Dietrich. Towards an Incremental Condition Evaluation Strategy for
Active Deductive Databases. In Research and Practical Issues in Databases, World
Scientific, 1992, pp. 81-95.

[8]. ISO 10303-11: 2004. Industrial automation systems and integration — Product data
representation and exchange — Part 11: Description methods: The EXPRESS language
reference manual, ISO, 2004.

283

