Simulating Behavior of Multi-Agent Systems
with Acyclic Interactions of Agents'

.2 R A. Nesterov <rnesterov@hse.ru, r.nesterovi@campus.unimib.it>
' A.A. Mitsyuk <amitsyuk@hse.ru>
'1.A. Lomazova <ilomazova@hse.ru>
! National Research University Higher School of Economics,
20, Myasnitskaya st., Moscow, 101000, Russia
2 Dipartimento di Informatica, Sistemistica e Communicazione,
Universita degli Studi di Milano-Bicocca,
Viale Sarca 336 — Edificio Ul4, I-20126 Milano, Italia

Abstract. In this paper, we present an approach to model and simulate models of multi-agent
systems (MAS) using Petri nets. A MAS is modeled as a set of workflow nets. The agent-to-
agent interactions are described by means of an interface. It is a logical formula over atomic
interaction constraints specifying the order of inner agent actions. Our study considers positive
and negative interaction rules. In this work, we study interfaces describing acyclic agent
interactions. We propose an algorithm for simulating the MAS with respect to a given interface.
The algorithm is implemented as a ProM 6 plug-in that allows one to generate a set of event
logs. We suggest our approach to be used for evaluating process discovery techniques against
the quality of obtained models since this research area is on the rise. The proposed approach
can be used for process discovery algorithms concerning internal agent interactions of the
MAS.

Keywords: Petri nets; multi-agent systems; interaction; interface; simulation; event logs.
DOI: 10.15514/ISPRAS-2018-30(3)-20

For citation: Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-
Agent Systems with Acyclic Interactions of Agents. Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 285-302. DOI: 10.15514/ISPRAS-2018-30(3)-20

1. Introduction

Process discovery has been actively developed over recent years [1]. Many algorithms
for the automatic model synthesis from event logs have been proposed [2]-[7]. They
produce process models in different notations. These can be Petri nets [3], [6], [7],

IThis work is supported by the Basic Research Program at the National Research University
Higher School of Economics and Russian Foundation for Basic Research, project No.
16-01-00546.

285

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

fuzzy models [2], heuristics nets [4] or BPMN models [5] and many others (see [§]
for the comprehensive review of process discovery algorithms).

Discovering process models from event logs helps to use information about users and
system runtime behavior for proper specification, design, and maintenance of
software systems [9], [10]. This topic is increasingly attracting the attention of
researchers [11]-[14]. In particular, application of process mining techniques to
distributed and multi-agent software systems [15], [16] is interesting and important.
The main drawback of most algorithms is that they are not appropriate for modeling
highly concurrent systems. In particular, these are multi-agent systems (MAS). Such
a system consists of multiple agents executing their work independently and
interacting via predefined interfaces. It makes sense to use compositional approaches
to model MAS’s. Fortunately, such approaches have been proposed over recent years
[17], [18].

The overwhelming majority of process discovery algorithms employ different
heuristics. That is why testing is used to evaluate their efficiency and validity [8]. It
is performed using real-life and artificially generated event logs with suitable
characteristics. The latter are prepared using event log generators.

In this paper, we describe a new event log generator that aims at preparing artificial
event logs for MAS’s. We model individual agents using workflow nets, whereas
interfaces are specified using special formulac. They are constructed using a
declarative formalism that we introduce to describe basic asynchronous interactions
between agents. Based on agent models and a declarative interface formula our
generator derives the operational semantics that describes a MAS behavior. We show
that both of MAS representations are equivalent, i.e. they have the same set of
possible model runs. Thus, this semantics can be used to simulate the model and
generate event logs.

The main contributions of this paper are:

e a formalism for a declarative description of the requirements for agent
interactions is defined;

o the operational semantics representing the behavior of a multi-agent system
with declarative requirements for interactions of agents is defined;

e an algorithm for generating event logs from given agent models and
declarative constraints on their interactions based on the operational
semantics is developed;

e the approach is implemented as a prototype software and evaluated.
This paper is structured as follows. The next section gives an overview of existing
approaches for generating event logs and simulating process models. Section 3
introduces main notions used in the paper. In Section 4, we describe our approach to
modeling multi-agent systems with the help of Petri nets. Implementation details are
discussed in Section 5, and Section 6 concludes the paper.

286

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

2. Related Work

Process Logs Generator PLG2 [19] is one of the most popular tools for generating
well-structured process models represented by dependency graphs. The tool
constructs models using randomly generated context-free grammars. The user should
specify desired characteristics of models: a size, a number of choices, hierarchy
blocks etc. The obtained model can be used to generate an event log.

Another tool that aims at randomized event log generation is PT and Log
Generator [20]. It generates random process trees (well-structured models)
containing desired number of specified workflow patterns. In particular, generated
models can be constructed from sequences, AND/XOR/OR splits and joins, as well
as structured loops. The algorithm can also randomly insert elements representing
activities. The tool also generates the desired number of logs from automatically
constructed models.

The problem of the randomized process model generation has also been addressed by
Yan, Dijkman, and Grefen in [21]. However, they have not considered event log
generation within the context of their approach.

The main goal of the tools discussed above is the randomized testing using sets of
models and event logs. However, in some cases there is a need to generate event logs
from specific process models that have been prepared on the basis of the real data or
expert knowledge. If this is the case, one can use the tool GENA [22]. It aims at
generating sets of event logs from a Petri net model. The approach allows users to use
preferences to influence a control-flow and to artificially introduce a randomized
noise into an event log. The improved version of GENA can generate event logs from
BPMN 2.0 models [23]. Most basic BPMN constructs are supported: tasks, gateways,
messages, pools, lanes, data objects.

Colored Petri nets can be used to generate event logs [24]. Authors have developed
the extension for CPN Tools that can generate randomized event logs based on a given
colored Petri net. The main drawback of this approach is that it implies writing
Standard ML scripts, which leads to possible problems during tool adaptation for a
specific task. Moreover, this approach and GENA do not support multi-agent systems
with independent asynchronous agents.

Declarative process models might also be used to generate event logs [25]. This
approach is based on construction of a finite automaton using a Declare process
model. The tool can generate a specified number of strings accepted by this
automaton. Strings are generated using the automaton and its randomized execution.
Afterwards, each string is transformed into a log trace with necessary attributes. This
tool is useful, when the only information about the process is the set of constraints.
This approach is also not appropriate for the MAS simulation as we suggest, because
it does not support the imperative control-flow description of individual agents.

In this paper, we propose an extension to the GENA tool that is supposed to be used
for generating event logs by simulating MAS models, because the tools described
above cannot fully support this feature.

287

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

3. Preliminaries

Let N denote the set of all non-negative integers, 4" — the set of all finite non-empty
sequences over aset 4, and 4 = A% U {e}, where ¢ is the empty sequence. For a subset
B C A, the projection of g € A" on a set B, denoted o, is the subsequence of o
including all elements belonging to B.

3.1 Petri Nets

A Petrinet is a triple N = (P, T, F), where P and T are two disjoint sets of places and
transitions, and F = (PxT)U (T*P) is a flow relation. Pictorially, places are shown
by circles, transitions — by boxes, whereas the flow relation is depicted using directed
arcs (see Fig. 1 for an example).

We suppose that transitions of a Petri net are labeled with activity names from
AU {t}, where A is a set of visible activity names, and 7 is a label for an invisible
action. Labels are assigned to transitions via a labeling function A: 7 — AU {t}.

A marking (state) of a Petri net N is a function m: P — N assigning numbers to places.
A marking m is designated by putting m(p) black dots into each place p. By mo we
denote the initial marking.

LetX=P UT.Forx €X, 'x={y € X|(y, x) € F} is the set of input nodes of x in N,
and x* = {y € X| (x, y) € F} is the set of its output nodes.

(a) initial marking (b) transition b fires

Fig. 1. A Petri net

A marking m enables a transition ¢ € T iff there is at least one token in all places which
are input for £. An enabled transition may fire yielding a new marking m' (denoted
m[f)ym"), consuming one token from each of its input places and producing a token
into each of its output places (see Fig. 1b).

A sequence w = tifr...t, over T is a firing sequence iff mo[ti)mi[t2)...mu[t,)m,
(denoted mo[w)m,,).

Let w = t©it»...t, be a firing sequence of the net N, 1 — a labeling function over a set of
activity names A. Define A(w)=A(t))A(%2)...A(#,). Then A(w)|, is called an
(observable) run in N.

A marking m is reachable iff Aw € T": mo[w)m. A reachable marking is called dead
if it does not enable any transition.

288

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

Workflow nets (WF-nets) form a subclass of Petri nets used for business process
modeling. A Petri net is a triple N = (P, T, F, my) is a WF-net iff:

e there is a single source place i and a single source place f; s.t. ‘i =f " =2;

e cachnodein PUT lies on a path from i to f.
The initial marking mo of a WF-net contains exactly one token in its source place i.

3.2 Event Logs

A multiset over a set A is amap B: A — N. The set of all multisets over 4 is denoted by
B(A).

Let A be a set of activity names. A frace o over A is defined as a finite non-empty

sequence over A, i.e. € A*. An event log L over A is a finite multiset of traces, i.e.
L € B(A™).

4. Modeling Multi-Agent Systems

In this section, we present formalism for modeling multi-agent systems consisting of
several asynchronously interacting agents.

A model for a system of k agents will consist of kK WF-nets Ny, N,,..., Ni, representing
behavior of individual agents (called agent nets), and constraints on their
asynchronous interaction J (called interface).

We assume that transitions of agent nets have individual labels. In other words,
different agents implement different activities. We also assume that agent interactions
are acyclic, namely, activities in interaction constraints do not belong to cycles and
therefore occur in each system run not more than once.

Interfaces are defined as positive logical formulae over atomic constraints. Let us give
the exact definitions.

Let Ni, Na,..., Nibe agent nets with pairwise disjoint sets of activity names A,(71),
M(T2),..., Al(Ty) respectively. We define two types of atomic constraints, namely
A< B and A< B, where A and B are activity names from two different sets, i.e.
A € A(Ty), B € A(T;) and i #/.

The validity of atomic constraints for a given trace o over the set of activity names
A=0(T)UAA(T2) U ... UA(Ty) is defined as follows:

e 0k A<B& if Boccurs in g, then 4 occurs before B;

e 0FEA<B& if A does not occur before B in a.
When ¢ E ¢, we say that ¢ is valid for o, and o satisfies ¢. The validity of the atomic
constraints has a natural interpretation.
The constraint 4 < B means that B should be always preceded by A4, e.g. a message
can be received only if it has already been sent. Thus, 4 < B is valid for a trace
o=...A...B... and is not valid for a trace o = ...<except A>...B... The constraint
A < B means that B cannot occur if A has happened before, e.g. if a message has been

289

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

already sent by mail, we should not fax it again. A trace o = ...<except A>...B...
satisfies this constraint, and a trace 0 = ...4...B... does not satisfy it. However, these
atomic constraints are not negations of each other. Both 4 < B and 4 < B are valid for
a trace that does not contain B.
Now a language of interface constraints is defined by the following grammar rules:
Atom ::= A< B|A<B,
¢ =Atom | dV S| d AP,
where Atom is an atomic constraint, and ¢ is a constraint formula.
Validity of a constraint formula ¢ for a given trace o is defined in a standard way:
CEQIND & ogE ¢ and o E ¢,
O'|=¢1V¢2<:> 0I=¢10r0'I=<;b2.
Let L be an event log over a set A of activity names, and ¢ be a constraint formula,
then ¢ is valid for L iff ¢ is valid for each trace in L.
Interface formulae allow us to express different useful interaction constraints, e.g. the
formula ¢p =4 < B A B < A describes a conflict between A and B, i.e. A and B cannot
occur in the same trace.
Recall that a MAS model consists of £ agent nets N, Na,..., Ny, where N; = (P;, T;, F,
me’, 4;), and a constraint formula J (interface) with atomic constraints that defines the
relations on activities of different agents.
It is easy to see that the union of Petri nets (considering several disjoint graphs as one
disconnected graph) is also a Petri net. Thus, we can consider & agent nets as a single
Petri net N. Recall that a run for a Petri net N is a sequence of activity names,
corresponding to a firing sequence of &V, and a trace from the related event log. Then
arun of a MAS model S = (N1, Na,..., Ni, J) is defined as a run p in N satisfying 7, i.e.
pEJ.
The following proposition is the immediate consequence of the definitions.
Proposition 1: Let S= (N1, Na,..., Ni, 7) be a MAS model, and p be a run in S. Then
for all i the projection p|, ., on transition labels of an agent net N; is a run in N;.

Agent 1

Fig. 2. A multi-agent system with two interacting systems

290

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

Consider as an example the system shown in Fig. 2 with =4 < B A B < 4 meaning
that 4 conflicts with B. Consider a run ¢ = x| By,x3 satisfying J. Projecting o on agent
nets gives traces x1x3 and By,, which are runs of the corresponding agent nets. This
property will be further used for designing the simulation algorithm presented in the
next section.

5. Simulating MAS Process Models

In this section, we describe an algorithm for simulating MAS models. It has been
implemented as a ProM 6 plug-in extending GENA tool [22].

5.1 An Interface-Driven Firing Rule

A constraint formula in a MAS model defines declarative restrictions on the model
behavior. To simulate the model behavior, we need to define operational semantics
for MAS models based on a special firing rule for selecting and executing the next
step in the run of the model. We call this rule an interface-driven firing rule to
distinguish it from the standard Petri net firing rule. Naturally, this rule should be
consistent with the declarative definitions of MAS model behavior.

Let S = (N, 7) be a MAS model, where a Petri net N= (P, T, F, mo, A) is a union of
all agent nets.

Firstly, we convert J to a disjunctive normal form (DNF) using standard logical laws.
Then, an interface 7 = V C;forj = 1, 2,..., n, where C; = /A S, and S; is an atomic
constraint for / = 1, 2,..., m. By abuse of notation, we also denote by J the set of its
conjuncts, and by C; — the set of atomic constraints in a conjunct C;.

Obviously, a trace o satisties J ifft 3C; € J: 0 & Cj, i.e. it should satisfy at least one
conjunct in J. Thus, to generate a model run, we choose a conjunct C; and fire
transitions of N only if they do not violate C;.

Then we define 77 € T to be the set of transitions involved in agent interaction, i.e.
t € T3 iff A(f) occurs in 3. We call transitions from 77 interface transitions. Independent
transitions from 777 fire according to the standard firing rule for Petri nets. The firing
of interface transitions is restricted by the constraint formula. To check whether firing
of a transition ¢ violates C;, we keep the current historical model run, i.e. a sequence
of already fired activities. When a transition ¢ € 77is enabled according to the standard
Petri net firing rule at a current marking m, and an atomic constraint 4 < A(f) occurs
in C;, then ¢ is defined to be enabled only if 4 occurs in the current run. Similarly, if
A < A(f) occurs in Cj, then t is enabled only if A does not occur in the current run.
Otherwise, a transition ¢ is enabled in the model, when it is enabled in V.

Now the operational semantics of a MAS model S = (N, 7), where N = (P, T, F, m,
A and J =V Ciforj=1,2,..., n,is defined by the following procedure.

Step 1. Choose nondeterministically a conjunct Cin J.
Step 2. Start with the initial marking m and ¢ for the current run o.

291

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

Step 3. For a current marking m and a current run o repeat while there are enabled
transitions in N:
1) compute the set Tox of all transitions enabled at m and not violating
constraints from C w.r.t. 0;
2) choose nondeterministically a transition ¢ from Tox;
3) fire ¢t by changing the current marking to m', m[f)m’, and adding A(?) to o.

5.2 Event Log Generation

This subsection presents an algorithm for generating an event log by simulating
behavior of a MAS model.

Let S = (N, 7) be a MAS model, where N = (P, T, F, mo, A) is a Petri net, and 7 is in
DNF. Firstly, for each conjunct C occurring in J, we run (simulate) S to check if it is
possible to obtain a trace o satisfying C. If we cannot obtain such a trace, we exclude
this conjunct. As a result, we come to a set of conjuncts ' € J, which can be actually
satisfied by traces of S or an empty set if 7 cannot be satisfied by traces of S. If 7'= g,
then the simulation is terminated producing an empty event log L.

That is why we can simulate S w.r.t. conjuncts occurring in J’ only. Starting a new
iteration of simulation, we randomly choose a conjunct from 7’ and fire transitions of
N according to the interface-driven firing rule.

The end user specifies the final marking m,, which is actually the set of sink places of
agent nets. Apart from that, the log generation is regulated by the number of logs, the
number of traces in a log, and by the maximum number of steps which can be
executed while generating a single trace (denoted further by maxSteps).

Algorithm 1 is used for generating a single trace that satisfies C from J'.

Algorithm 1. Single trace generation
Input: v = (P, T, F, my, A), 7’, and ms
Output: a trace o, s.t. ¢ E J’/
0 «— & me my; 1 < 1; C < pickRandomConjunct (J7)
while (i < maxSteps) A (m # mf) do

Tox ¢ findEnabledTransitions (N, m, C, o)

if 7.« # ¢ then

t « pickRandomTransition (Tox)

m <« fireTransition (N, m, t)
if A(t) # 7 then
oo+ At); 1« i+ 1

end

else
o « ¢&; break

end

end

Algorithm 2 is used for finding enabled transitions, which do not violate constraints
of C. Firstly, we find a set of transitions enabled at a reachable marking m according

292

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

to the standard firing rule. Secondly, if m enables interface transitions, we check
whether the current run o = A(w)| 4, s.t. mo[w)m, satisfies constraints of C using the

interface-driven firing rule. A run o is a trace to be recorded into an event log L.

Algorithm 2. Function findEnabledTransitions
Input: N = (P, T, F, my, A), m € [my), C € IJ’, o
Output: a set Tox of transitions enabled w.r.t. C
Tn < stEnabledTransitions (N, m)
Tox & Tn\Ty
foreach t € 1, N T do
foreach s € ¢ do
if s X < A(t) then
if ¢ = uxv then T, « T, Ut
else 1f s =X < A(t) then
if o#uxv then T, « T, Ut
end
end
end

e

We do not show here how the transition firing is implemented. It is discussed in detail
in [22] where the original GENA plug-in is described.

Consider an example based on the system shown in Fig. 2. Assume J = (4 <B) V
(1< x1 Ax2<dy)). C=y1<4x1 Axa <y is chosen. We are at the initial marking, i.e. o =
. Enabled transitions are {4, xi, B, yi}. However, x| cannot fire, since it should wait
until y; is executed. Then B fires nondetermenistically. Subsequently, the run is ¢ =
B, and the enabled transitions are {4, x1, y»}, but x; still cannot fire. We can choose 4
to fire. Then the run is o = B4, and the enabled transitions are {x,, y»} firing of which
is not influenced by C. As a result, we can obtain a trace 0 = BAy»x; satisfying C, and
the projections of o on agent transitions, Ax; and By, are the runs of corresponding
agent nets.

5.3 Experimental Simulation

We have developed the extension to the ProM? plug-in GENA implementing the
proposed simulation algorithm and allowing users to obtain a set of event logs by
simulating a given MAS model w.r.t. interaction constraints.

We have prepared five use cases for evaluating the proposed simulation approach. In
each case, we have generated event logs with 5000 traces. In addition, we provide a
“filtered” version of a generated event log w.r.t. interacting actions, s.t. it is clear
whether the corresponding interface is exactly observed.

We have used Disco® to visualize generated event logs. Insignificant parts of agent
nets are shown by shaded ovals.

2 ProM 6 Framework page: http://www.promtools.org
3 Fluxicon Disco page: https:/fluxicon.com/disco/

293

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

a) Sequencing: Consider a system with three interacting agents (see Fig. 3). Each
agent always executes one action. We have simulated it w.r.t. the interface 7=4 < B A
B < C. Intuitively, in this case each interacting agent prepares resources needed for
the other agent.

-

R]

(a) a system (b) an event log
Fig. 3. Sequential interaction

b) Conditional sequencing: As opposed to sequencing, conditional sequencing allows
for several execution options. In this case, a system consists of two agents, one of
which has two alternative branches (see Fig. 4). The interface for the conditional
sequencing is as follows: 7=4 <CV C < B.

@

(a) a system (b) an event log
Fig. 4. Sequential interaction with options

¢) Alternative interaction: The alternative interaction implies that one of two
interacting agents influences the choice done by the other agent. A system consists of

294

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMysIus MOBECHHS MYJIbTHATCHTHBIX CUCTEM C AlIUKINYECKU
B3aumoeiicTByromumu arentamu. Ipyowst MCIT PAH, 2018, Tom 30, Bem. 3, 2018 r., ctp. 285-302

two interacting agents both having two alternative branches (see Fig. 5). The interface
formula for this case is as follows: I=4 < CV B < D.

®

(a) a system (b) an C\’CI;T log
Fig. 5. Alternative interaction

d) Interaction using negative constraints: Assume we have a system of two
interacting agents with two alternative branches as shown in Fig. 5a. The result of
simulating this system w.r.t. the interface =4 < C is shown in Fig. 6. It is clear from
the simulation result that C is never preceded by A. Intuitively, negative constraints
allow for a more compact way of interface construction.

—
WO

Fig. 6. Interaction using negative constraints: an event log

295

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

e) Complex interaction: In this case, we show several ways of interaction among three
different agents (see Fig. 7a). For convenience, we have filtered the obtained log in
two ways (see Fig. 8). We have used the following interface formula (given in a
conjunctive normal form for the convenience of areader): I=B<AANH<ICAD<F
V E<G).
Ny N3 .
ma

L =
Fs 2T
&l

(a) a system (b) a full event log

Fig. 7. Complex interaction

2,489 2,511

(a) actions D, E, F, G

(b) actions 4, B, C, H

Fig. 8. Complex interaction: filtered event logs

296

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

6. Conclusion

We have proposed the new approach to model and simulate multi-agent systems using
Petri nets. Independent agents are modeled as a set of labeled workflow nets, and their
interaction is described using a declarative interface. The interface is constructed as
a logic formula over atomic constraints describing the order of internal agent actions.
This study has considered only acyclic agent interactions described by two kinds of
atomic constraints, s.t. interacting activities are implemented only once. If cyclic
interactions are allowed, subtler relations on interacting activities are needed to
express such constraints as “each B should be preceded by A” or “at least one B
should be preceded by 4. This is a subject for further research.

An algorithm for simulating process models of multi-agent systems with respect to
the interface has been developed. We have implemented the algorithm within the
existing ProM 6 plug-in GENA and have evaluated it using five different cases of
agent interactions. The experiment results show how to obtain artificial event logs by
simulating process models of multi-agent systems with a finite number of
asynchronously interacting agents.

References

[1]. van der Aalst W.M.P. Process Mining — Data Science in Action. Springer, Heidelberg,
2016, 467 p.

[2]. Giinther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification
based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.

[3]. van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process
Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-4,
2009, pp. 387-412.

[4]. Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of
the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011, pp.
310-317.

[5]. Kalenkova A.A., Lomazova [.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489,
2014, pp. 71-90.

[6]. Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with
Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.

[7]. Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs.
Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125-140..

[8]. Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella
M., Soo A. Automated Discovery of Process Models from Event Logs: Review and
Benchmark. CoRR, 2017, vol. abs/1705.02288.

[9]. Rubin V.A., Mitsyuk A.A., Lomazova [.A., van der Aalst W.M.P. Process Mining can be
applied to software too! In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM °14), 2014, pp. 1-8.

[10]. Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering real-
life business transactions and process models from distributed systems. MODELS 2015,
pp- 44-53.

297

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

[11]. Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and
Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol.
abs/1710.09323.

[12]. Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery
from software execution data. In Proceedings of the IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1-8.

[13]. Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA
systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOL:
10.15514/ISPRAS-2017-29(4)-10.

[14]. 3TU: Big software on the run. [Online]. Available: http://www.3tu-bsr.nl. Accessed:
09.06.2018.

[15]. Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-
Oriented Software Engineering. Transactions on Petri Nets and Other Models of
Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.

[16]. Cabac L., Knaak N., Moldt D., Rolke H. Analysis of Multi-Agent Interactions with
Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.

[17]. Nesterov R.A., Lomazova [.A. Using Interface Patterns for Compositional Discovery of
Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp.
21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2.

[18]. Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on
Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.

[19]. Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline
Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.

[20]. Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD
2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

[21]. Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and
System Modeling, 2017, vol. 16, issue 4, pp. 979-995.

[22]. Shugurov LS., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In
Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software
Engineering (SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

[23]. Mitsyuk A.A., Shugurov L.S., Kalenkova A.A., van der Aalst W.M.P. Generating event
logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74,
2017, pp. 1-16.

[24]. de Medeiros A.K.A., Giinther C.W. Process Mining: Using CPN Tools to Create Test
Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp.
177-190.

[25]. Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs
Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp.
20-36.

298

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

CVIMyHFlLIVIil noBeaeHNA MynbTUareHTHbIX CUCTemM C
dAUUKITU4ecKun B3aMMOAeﬁCTBYI-OI.IJ,VIM areHTamMmu

.2 P A. Hecmepos <rnesterov@hse.ru, r.nesterov@campus.unimib.it>
'A.A. Muyrox <amitsyuk@hse.ru>
YU A. Jlomazoea <ilomazova@hse.ru>
! Hayuonanemeti uccnedoeamensckutl ynueepcumem «Boicuias wikona sKoOHOMUKILY,
101000, Poccus, e. Mockea, yn. Macnuyxas, 0. 20.

? Jlenapmamenm ungopmamuxu, CUCmem u KOMMYHUKAYU,
Munancxuti ynueepcumem-bukokka,

20126, Umanusa, o. Munan, Viale Sarca 336 — Edificio Ul4

AnHoTanms. B pabore npemiokeH MOAXOA ISl MOJCIMPOBAHHUS U CHMYJISILIMU TTOBEACHUS
myiabrrareHTHbIX cucteM (MAC) ¢ npumenenuem cereit [lerpu. MAC npeacrasiseTcs: Kak
KOHEYHOE MHOXECTBO CeTell NMOTOKOB paboT. ACHHXpPOHHBIE B3aHMOJCHCTBHS areHTOB
OMHUCHIBAIOTCA € IOMOIIBIO HHTEpdelica, KOTOPEIi ompeaessieTcs Jorudeckoil Gpopmysoit Hazg
MHO)KECTBOM aTOMApHBIX OTPAaHMYCHUI. DTH OTPaHUYCHUS 3aIAI0T MOPSJOK BBHITTOTHEHHS
BHYTPEHHUX [JeHcTBUH areHroB. B cTarbe paccMaTpuBalOTCS TOJBKO AalMKINYECKHE
B3aUMOJICUCTBHUS areHToB. Takxke ObLT pa3paboTan anroput™ cumyisinuy nosexexus MAC ¢
Y4ETOM OrpaHMYCHUIl B3aUMOAEHCTBUS arcHTOB. AJITOPUTM pealu30BaH B BHJC
MOJIKJIFOYaeMOro MOJIYJIs sl MHCTpyMeHTa ProM 6. TIpennoskeHHbIH MOIX0 MOXKET OBbITh
HCIIOJIB30BaH IS OLIEHKU KauecTBa aJITOPUTMOB M3BJICYEHHS IporeccoB (process discovery) ¢
TOYKH 3pPEHHS XapaKTEPUCTHK MOJTy4aeMbIX MOJIeel MPOLECCOB.

KuroueBblie cioBa: cetu [leTpu; MyIbTHAreHTHBIC CUCTEMBI; B3aMOeiicTBUE; nHTEpdeEiic;
CUMYJISIIUS; XKy pPHAIIBI COOBITHH

DOI: 10.15514/ISPRAS-2018-30(3)-20

Jas uutupoBanms: Hecrepos P.A., Mumtok A.A., Jlomazoa U.A. Cumynsiiust moBeeHus
MYJIbTUAI€HTHBIX CHCTEM C alMKJIMYeckH B3aumojeicTBytommu arenramu. Tpynsl MCIT
PAH, Tom 30, Ben. 3, 2018 1., cTp. 285-302 (Ha anrnuiickoM s3bike). DOL: 10.15514/ISPRAS-
2018-30(3)-20

Cnucok nutepaTtypbl

[1]. van der Aalst W.M.P. Process Mining — Data Science in Action. Springer, Heidelberg,
2016, 467 p.

[2]. Giinther C.W., van der Aalst W.M.P. Fuzzy mining: Adaptive process simplification
based on multi-perspective metrics. BPM 2007. LNCS, vol. 4714, 2007, pp. 328-343.

[3]. van der Werf J.M.E.M., van Dongen B.F., Hurkens C.A.J., Serebrenik A. Process
Discovery using Integer Linear Programming. Fundamenta Informaticae, vol. 94, no. 3-4,
2009, pp. 387-412.

[4]. Weijters A.J.M.M., Ribeiro J.T.S. Flexible Heuristics Miner (FHM). In Proceedings of
the IEEE Symposium on Computational Intelligence and Data Mining (CIDM), 2011, pp.
310-317.

299

Nesterov R.A., Mitsyuk A.A., Lomazova [.A. Simulating Behavior of Multi-Agent Systems with Acyclic Interactions of
Agents. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 285-302

[5]. Kalenkova A.A., Lomazova L.A., van der Aalst W.M.P. Process Model Discovery: A
Method Based on Transition System Decomposition. ICATPN 2014. LNCS, vol. 8489,
2014, pp. 71-90.

[6]. Leemans S.J.J., Fahland D., van der Aalst W.M.P. Scalable Process Discovery with
Guarantees. BPMDS 2015, EMMSAD 2015. LNBIP, vol 214, 2015, pp. 85-101.

[7]. Begicheva A.K., Lomazova I.A. Discovering high-level process models from event logs.
Modeling and Analysis of Information Systems, vol. 24, no. 2, 2017, pp. 125-140..

[8]. Augusto A., Conforti R., Dumas M., La Rosa M., Maria Maggi F., Marrella A., Mecella
M., Soo A. Automated Discovery of Process Models from Event Logs: Review and
Benchmark. CoRR, 2017, vol. abs/1705.02288.

[9]. Rubin V.A., Mitsyuk A.A., Lomazova [.A., van der Aalst W.M.P. Process Mining can be
applied to software too! In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM ’14), 2014, pp. 1-8.

[10]. Leemans M., van der Aalst W.M.P. Process mining in software systems: Discovering real-
life business transactions and process models from distributed systems. MODELS 2015,
pp. 44-53.

[11]. Leemans M., van der Aalst W.M.P., van den Brand M. Recursion Aware Modeling and
Discovery for Hierarchical Software Event Log Analysis (Extended). CoRR, 2017, vol.
abs/1710.09323.

[12]. Liu C., van Dongen B.F., Assy N., van der Aalst W.M.P. Component behavior discovery
from software execution data. In Proceedings of the IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1-8.

[13]. Davydova K.V., Shershakov S.A. Mining hybrid UML models from event logs of SOA
systems. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017, pp. 155-174. DOI:
10.15514/ISPRAS-2017-29(4)-10.

[14]. 3TU: Big software on the run. [Online]. Available: http://www.3tu-bsr.nl. Accessed:
09.06.2018.

[15]. Cabac L., Denz N. Net Components for the Integration of Process Mining into Agent-
Oriented Software Engineering. Transactions on Petri Nets and Other Models of
Concurrency I. LNCS, vol. 5100, 2008, pp. 86-103.

[16]. Cabac L., Knaak N., Moldt D., Rolke H. Analysis of Multi-Agent Interactions with
Process Mining Techniques. MATES 2006. LNCS, vol. 4196, 2006, pp. 12-23.

[17]. Nesterov R.A., Lomazova I.A. Using Interface Patterns for Compositional Discovery of
Distributed System Models. Trudy ISP RAN/Proc. ISP RAS, 2017, vol. 29, issue 4, pp.
21-38. DOI: 10.15514/ISPRAS-2017-29(4)-2.

[18]. Nesterov R.A., Lomazova I.A. Compositional Process Model Synthesis Based on
Interface Patterns. TMPA 2017. CCIS, vol. 779, 2018, pp. 151-162.

[19]. Burattin A. PLG2: Multiperspective Process Randomization with Online and Offline
Simulations. BPMD 2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 1-6.

[20]. Jouck T., Depaire B. PTandLogGenerator: A Generator for Artificial Event Data. BPMD
2016. CEUR Workshop Proceedings, vol. 1789, 2016, pp. 23-27.

[21]. Yan Z., Dijkman R.M., Grefen P. Generating process model collections. Software and
System Modeling, 2017, vol. 16, issue 4, pp. 979-995.

[22]. Shugurov 1.S., Mitsyuk A.A. Generation of a Set of Event Logs with Noise. In
Proceedings of the 8th Spring/Summer Young Researchers Colloquium on Software
Engineering (SYRCoSE 2014), 2014, pp. 88-95. DOI: 10.15514/SYRCOSE-2014-8-13.

300

Hecrepos P.A., Muitok A.A., Jlomazosa M. A. CuMyisIus MOBECHHS MYJIbTHAr€HTHBIX CUCTEM C AlIUKINYECKH
B3auMoJeiicTByromnmu areatamu. 1pyost UCIT PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 285-302

[23]. Mitsyuk A.A., Shugurov I.S., Kalenkova A.A., van der Aalst W.M.P. Generating event
logs for high-level process models. Simulation Modelling Practice and Theory, vol. 74,
2017, pp. 1-16.

[24]. de Medeiros A.K.A., Giinther C.W. Process Mining: Using CPN Tools to Create Test
Logs for Mining Algorithms. In Proceedings of CPN 2005. DAIMI, vol. 576, 2005, pp.
177-190.

[25]. Di Ciccio C., Luca Bernardi M., Cimitile M., Maria Maggi F. Generating Event Logs
Through the Simulation of Declare Models. EOMAS 2015. LNBIP, vol. 231, 2015, pp.
20-36.

301

