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Abstract. It may be useful to analyze and reuse some components of legacy systems during
development of new systems. By using a model-based approach it is possible to build an
architecture model from the existing source code of the legacy system. The purpose of using
architecture models is to analyze the system’s static and dynamic features during the
development process. These features may include real-time performance, resources
consumption, reliability etc. The architecture models can be used as for system analysis as well
as for reusing some components of the legacy system in the new design. In many cases it will
allow to avoid creation of a new system from scratch. For creation of the architectural models
various modeling languages can be used. In the present work Architecture Analysis & Design
Language (AADL) is used. The paper describes an algorithm of extracting architectural
information from source code of ARINC 653-compatible application software. ARINC 653
specification defines the requirements for software components of Integrated Modular
Avionics (IMA) systems. To access the various services of ARINC 653 based OS an
application software uses function calls defined in the APplication/Executive (APEX)
interface. Architectural information in source code of application software compliant with
ARINC 653 specification includes different objects and their attributes such as processes in
each partition, objects for interpartition and intrapartition communications, as well as global
variables. To collect the architectural information, it is necessary to extract all APEX calls from
source code of application software. The extracted architectural information can be further used
for creation the architecture models of the system. For source code analysis an approach based
on Counterexample-guided abstraction refinement (CEGAR) algorithm is used. CEGAR
algorithm explores possible execution paths of the program using its representation in the form
of Abstract Reachability Graph (ARG). In a classical CEGAR algorithm a path in a program
to be explored is called a counterexample and it means a path to the error state. In CPAchecker
tool the basic predicate-based CEGAR algorithm has been extended for explicit-value analysis.
In this paper the extended for explicit-value analysis CEGAR algorithm is applied for the task
of extracting architecture information from source code. The main contribution of this paper is
the application the ideas of counterexample and path feasibility check for the task of extracting
the architectural information from source code.

31

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46

Keywords: architectural information, architecture models, ARINC 653, IMA, CEGAR
DOI: 10.15514/ISPRAS-2018-30(3)-3

For citation: Lesovoy S.L. Extracting architectural information from source code of ARINC
653-compatible application software using CEGAR-based approach. Trudy ISP RAN/Proc.
ISP RAS, vol. 30, issue 3, 2018, pp. 31-46. DOI: 10.15514/ISPRAS-2018-30(3)-3

1. Introduction

The purpose of using architecture models is to analyze the system’s static and
dynamic features during the development process. These features may include real-
time performance, resources consumption, reliability etc. This aspect is extremely
important while developing complex systems that include both software and hardware
components produced by the different suppliers. Using model-based approach at the
early stages of the development of the project will help to avoid a waste of time and
money for correction of system defects when the system is created. For creation of
the architectural models various modeling languages can be used. The most popular
ones used for architecture modelling are SysML[1] and AADL[2,3].

The model-based development process includes two major project steps. At the first
step, the system model is being created. There are different levels for representation
of the system model. The primary focus of this paper is the architectural models. On
the second step of the project the system model will be used as input for detailed
design and system implementation. This step may also include the model
transformations to some intermediate formats used in system design and
implementation. In the ideal case, the system model can be transformed to the source
code of the system.

It may be useful to analyze and reuse some components of legacy systems during
development of new systems. By using a model-based approach it is possible to build
an architecture model from the existing source code of the legacy system. This model
can be used as for system analysis as well as for reusing some components of the
legacy system in the new design. In many cases, it will allow to avoid creation of a
new system from scratch.

A process of model creation for existing system is called a model-driven reverse
engineering (MDRE). If the source code of a legacy system is available then it is
possible to build a system model from its source code. This process contains two
steps. The first step is source code analysis. The second step is model transformations
to the target output format. This paper describes the first step — source code analysis
for application software that is based on Integrated Modular Avionics (IMA)
architecture and ARINC 653 specification. The goal of source code analysis is to
extract architecture information that is necessary for creation of the architecture
model of the system.

The rest of the paper is organized as follows. Section 2 provides an overview of IMA
architecture and ARINC 653 specification. It also contains a simple example of
source code to be used for further analysis. Section 3 describes the concept of
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architectural information in source code, a general approach and a particular
algorithm used for extracting architectural information from source code. Section 4
describes the results and outlines the future research and development tasks.

2 IMA

IMA architecture is widely used in avionics industry for implementation the safety
critical applications. In IMA systems multiple avionics applications can share
resources of a single hardware platform (core module) without any mutual influence.
ARINC 653 [4] is a set of documents that define the requirements for software
components of IMA systems. The key concept of ARINC 653 is a partition. ARINC
653 compatible Operating System (OS) provides a dedicated portion of memory and
predefined time slot within a fixed schedule for each partition. It prevents any affect
from software executing in one partition to software in other partitions.

ARINC 653 specification defines that IMA system may include the following
software components: core software, application partitions and system partitions.
Core software consists of OS and APplication/EXecutive (APEX) interface. The
APEX interface defines a set of services provided by the OS for application software.
In each application, partition can be allocated only one application. System partitions
contain system software that can directly interact with the OS without using APEX
interface.

Communications between applications allocated in different partitions is called the
interpartition communication. The interpartition communication is only available via
communication channels. To access a communication channel the application can use
the ports created inside a partition. ARINC 653 supports two port types: sampling
ports and queuing ports.

An application software compliant with ARINC 653 specification has a typical
structure. Such a software can be located in a single partition or in multiple partitions.
To access the various services of ARINC 653 based OS an application software uses
function calls defined in the APEX interface. For each partition several processes can
be created. One process is responsible for partition initialization. This process creates
other processes and various objects. Finally, when the initialization of partition has
been finished this process sets the partition to NORMAL state using
SET PARTITION MODE function call. Since this moment a scheduling for all
processes created inside a partition is started. It is important to note that after the
initialization of partition has been finished there is no way to create any new processes
and objects.

An ARINC 653 process is quite similar to a POSIX thread. To create a process, it is
necessary to create a structure that contains the process’s attributes and pass it to
CREATE PROCESS function. ENTRY POINT is an attribute of the process that
contains the address of the function that will be called when the process is started.
This function implements the application logic of the process and its communication
procedures with other processes.
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Communications between processes within a single partition is called intrapartition
communication. Buffers and blackboards are used for communication between
processes inside a partition. Semaphores, events and mutexes are used for process
synchronization. Any objects for communication and synchronization can be created
using function calls defined in the APEX interface. The processes located inside the
same partition can also communicate via global variables.

At the end of this section, a simple example of application software will be
demonstrated and explained. The source code fragment of the application software
compliant with ARINC 653 specification is shown in Fig.1. Source code fragment in
Fig.1 includes three functions: Run_10 _Hz, Run Monitor and main. In function main
two processes, one event and three sampling ports are created.

static void Run_ 10 Hz (void) {

while (1) {
SET EVENT ( wakeup, ret );
READ SAMPLING MESSAGE (port raw data,
(MESSAGE _ADDR TYPE) &sensor_data,
&len, &validity, &ret);
// Some operations with data ..
WRITE SAMPLING MESSAGE (port data out,
(MESSAGE _ADDR TYPE) &output data,
&len2, &ret);
PERIODIC WAIT (&ret pause); }
}
static void Run Monitor (void) {
while (1) {
WAIT EVENT ( wakeup, TimeOut, ret );
RESET EVENT ( wakeup, ret );
// Some operations with data ..
WRITE SAMPLING MESSAGE ( port status,
(MESSAGE _ADDR TYPE) &status data,
&len, &ret ); }
}
void main (void) {
PROCESS ATTRIBUTE TYPE ProciloiniAttributeS;
Proc 10 Hz Attributes.ENTRY POINT = Run 10 Hz;
Proc_10 Hz Attributes.PERIOD = 100000000LL;
strncpy (Proc_10 Hz Attributes.NAME, "Proc 10 Hz",
sizeof (PROCESS NAME TYPE)) ;
CREATE PROCESS( &Proc 10 Hz Attributes, &pid pO,
&ret );
START ( pid p0O, &ret );
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PROCESS ATTRIBUTE TYPE Proc Monitor Attributes;

Proc_Monitor Attributes.ENTRY POINT = Run_ Monitor;

Proc Monitor Attributes.PERIOD =
INFINITE TIME VALUE;

strncpy (Proc_Monitor Attributes.NAME, "Proc Monitor",
sizeof (PROCESS NAME TYPE));

CREATE PROCESS( &Proc Monitor Attributes, &pid pl,
s&ret );

START ( pid pl, &ret );

EVENT NAME TYPE EventName;
strncpy( EventName, "Wakeup", ..);
CREATE EVENT ( EventName, wakeup, ret );

CREATE SAMPLING PORT ( "RAW DATA"™,

port size, DESTINATION, period, &port raw data, ..);
CREATE SAMPLING PORT ( "DATA OUT",

port size, SOURCE, period, &port data out, ..);
CREATE SAMPLING PORT ( "STATUS", port size,

SOURCE, period, é&port status ..);
SET PARTITION MODE ( NORMAL, &ReturnCode );
return 0;

Fig. 1. Source code fragment with APEX calls.

For process creation, APEX call CREATE_PROCESS is used. The first argument of
CREATE PROCESS has a type PROCESS ATTRIBUTE TYPE. It is a structure
that contains attributes for the created process. The ENTRY POINT attribute is equal
to Run_10_ Hz for the first process and is equal to Run_Monitor for the second one.
Run 10 Hz and Run_Monitor are the function’s names that are called when the
processes are started.

Below in the main function, APEX call CREATE EVENT is used to create an event
object. An event object has a name Wakeup. Then APEX calls
CREATE_SAMPLING PORT are used to create three sampling ports. These ports
have the following names: RAW_DATA, DATA OUT and STATUS. In the end
of the main function APEX call SET PARTITION MODE is used to set the partition
to the NORMAL state. After that, OS will invoke functions Run 10 Hz and
Run_Monitor.

A function Run_10 Hz is called periodically with period 10 milliseconds. This value
for period was set in PERIOD attribute during the creation of the first process. Each
time when the function Run 10 Hz is called, it activates the event Wakeup, reads a
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message from sampling port RAW_DATA, performs some operations with data and
writes a message to sampling port DATA OUT.

Function Run_Monitor belongs to the second process that is an aperiodic. This
function waits for event Wakeup, resets it, performs some operations with data and
writes a message to sampling port STATUS.

3 Source code analysis

3.1 Architectural information in source code

The main goal of source code analysis in the paper is to extract the architectural
information from it. Architectural information in source code of application software
compliant with ARINC 653 specification includes the processes in each partition and
their attributes, all objects created for interpartition and intrapartition communications
and their attributes. It also includes the ways of communications and synchronizations
between processes located inside the same partition or in different partitions. If the
global variables are used for communication between processes inside partition then
these variables also should be considered as architectural information.

The source code fragment in Fig.1 contains the following architectural information:
two processes, one event and three sampling ports. Attributes of each process and
each object (event, port) are also important architectural information. For
synchronization between two processes the event object is used. In the first process
APEX call SET_EVENT is used to activate an event. The second process uses APEX
call WAIT EVENT for receiving this event. Sampling ports are used in both
processes to communicate with external environment, i.e. with processes allocated in
other partitions or with external devices.

The source code of real avionic application can contain hundreds of processes
communicating with each other and with external environment via large number of
the objects. Extracting such architectural information from source code can be time
consuming task. This paper proposes a way to do it automatically. The next sections
describe a general approach and a particular algorithm used for source code analysis.

3.2 General approach for source code analysis

For source code analysis, an approach based on Counterexample-guided abstraction
refinement (CEGAR) algorithm is used. In CPAchecker tool [5] the basic predicate-
based CEGAR algorithm has been extended for explicit-value analysis [7].
CPAchecker is a tool for configurable program analysis (CPA) [5,6] that combines
the traditional program analyses and software model checking. In this paper the
extended for explicit-value analysis CEGAR algorithm is applied for the task of
extracting architecture information from source code. The algorithm is implemented
in CPAchecker tool.

The algorithm presented in this paper uses a Control-Flow Automata (CFA) as
intermediate representations of the program to be analyzed. CFA is a directed graph
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containing nodes and edges. A node corresponds to a program location. An edge
corresponds to a certain operation of the program, for example, an assignment
statement, a conditional branch or a function call. During the analysis, the algorithm
constructs an Abstract Reachability Graph (ARG) using a program CFA. ARG is also
a directed graph but its nodes correspond to abstract states of the program. Each
abstract state contains a program location, a data state and a call stack. A data state is
a mapping between program variables and their values. In data state some program
variables may not have the values.

ARG represents possible execution paths of the program. It means that ARG can
contain both feasible (real) program paths as well as the infeasible (spurious) paths.
The program path is feasible if it can be executed at runtime otherwise it is infeasible.
A path in ARG is a sequence of abstract states connected by edges. An abstract state
is reachable if there is a feasible program path that contains this state.

3.3 Extracting APEX calls from source code

Before starting the algorithm description, it is necessary to explain some important
concepts used by the algorithm. The algorithm constructs the ARG by sequentially
adding the new abstract states to it. For the current state the algorithm gets the list of
all its successors and adds each of them to ARG. There is an edge between the current
state and each its successor.

Target states.

Some edges may correspond to a function call in source code. If this function is
defined in APEX interface, the algorithm will need to collect additional information
about this function call.

An abstract state in ARG which immediately follows such a function call is called the
target state. Any target state has an incoming edge with APEX call. For each target
state there is a path in ARG from the initial state to it. The algorithm performs a
feasibility check for these paths.

Precision.

Explicit-value analysis tracks values for the program variables. In many cases it is
enough to track only a part of program variables that are important for a particular
analysis. A set of program variables that are being tracked for the current abstract
state is called a precision. Different abstract states may have different precisions. The
empty precision means that no variables are being tracked. The full precision means
that all variables are being tracked. As described in [6] the value analysis algorithm
implemented in CPAchecker can change a precision during the analysis depending
on some conditions. It is called a precision adjustment.

An edge in ARG can correspond to a program operation that changes a value of a
program variable. For example, an assignment operation changes the value of the left-
hand operand, for a function call the values of arguments are assigned to function's
parameters, etc. When the algorithm handles an edge between the current state
(predecessor) and next state (successor) it uses a precision of the predecessor. If
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precision of the predecessor contains the current variable, then the algorithm
evaluates and stores its new value in abstract state. The algorithm of analysis can use
the values of variables stored in abstract states for different purposes.

Fig. 2 presents a pseudocode of the main algorithm for extracting the architectural
information from source code. This algorithm implements a classical CEGAR cycle
extended for explicit value analysis [7] and is applied for the task of extracting
architectural information from source code.

CFA of the program is used as an input data for the algorithm. The algorithm uses
two variables to store the abstract states: “reached” and “waitlist”. A variable
“reached” contains the set of abstract states that have been explored already. A
variable “waitlist” contains the set of abstract states that have to be explored on the
next steps of the algorithm.

At the beginning, the algorithm takes the initial state from CFA and put it to “waitlist”.
After that, the external loop of the algorithm begins. The algorithm takes and removes
the current state from waitlist. Further the algorithm gets all reachable successors for
the current state using function “getAbstractSuccessors”. A pseudocode for the
function “getAbstractSuccessors” is shown on Fig.3. The first operation of the
function gets all successors (CFA nodes) of the current state. Then the function
consecutively handles the edges (function “handleEdge”) between the current state
and each its successor. The function “handleEdge” takes two parameters. The first
parameter is an edge to be explored. The second parameter is a precision. The
precision is taken from the edge predecessor. Depending on the operation in source
code that the edge corresponds to, the function “handleEdge” performs the following
actions:

e For an assignment operation, the algorithm evaluates a new value for this
variable. The new value for a variable will be stored in abstract state if this
variable is contained in the precision.

e For a function call, the function’s arguments are assigned to function’s
parameters.

e For a conditional branch, a logical value for a condition is evaluated. If the
logical value of a conditional branch is equal to FALSE then the function
“handleEdge” return FALSE. It means that this successor is not reachable.
In all other cases the function returns TRUE and the current successor is
added to the list of reachable successors. So, function
“getAbstractSuccessors” returns for the current state a list of all its reachable
successors.

FUNCTION main
INPUT

CFA of the program;
OUTPUT
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Architectural information
VARIABLES
reached - a set of states that have been reached;
waitlist - a set of states to be explored;
BEGIN
initState = getInitialState (CFA);
addStateToWaitlist (initState);
// Traverse through all CFA nodes.
LOOP WHILE waitlist # 0 // External loop.
curState = getAndRemoveStateFromWaitlist () ;
// Get all reachable successors of the current state.
successors = getAbstractSuccessors (curState);
// Traverse through all reachable successors.
FOR EACH nextState IN successors // Internal loop.
IF isTargetState (nextState)
path = getPathToState (nextState);
IF isPathFeasible (path) = FALSE
// Refine the path.
performRefinementForPath (path,
reached, waitlist);
BREAK // Go to external loop.
END IF
END IF
merge (nextState, reached);
update (reached) ;
addStateToWaitlist (nextState);
END FOR EACH
END LOOP
END
Fig. 2. The main algorithm for extracting the architectural information from source code
Further in internal loop the main algorithm traverses through all reachable successors
for the current state. At this part of algorithm, a successor is called as a “nextState”.
The algorithm checks whether a nextState is a target state. If it is a target state, the
algorithm calculates a path in ARG from the initial state to the current target state and
checks its feasibility using function “isPathFeasible”. In a classical CEGAR
algorithm a path in a program to be explored is called a counterexample and it means

a path to the error state. In the current algorithm it is just a path to the target state we
need to explore.

The algorithm of function “isPathFeasible” is shown in Fig. 4. To check the path
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feasibility the algorithm consecutively passes through all edges of the path, starting
from the initial state. The algorithm analyses the operations for each edge. To track
all program variables, for each state on the path the full precision is set, i.e. the
algorithm performs the feasibility check for a path with the full precision.

FUNCTION getAbstractSuccessors
INPUT
curState // Current state.
RETURN
reachableSuccessors // All reachable successors.
BEGIN
// Get all successors of the current state.
allCFASuccessors = getAllSuccessors (curState);
FOR EACH successor IN allCFASuccessors
edge = getEdge (curState, successor);
precision = getPrecisionForState (curState);
IF handleEdge (edge, precision) = TRUE
// Add successor to reachableSuccessors.
addToSet (reachableSuccessors, successor);
END IF
END FOR EACH
RETURN reachableSuccessors;
END
Fig. 3. The algorithm of function getAbstractSuccessors

Each edge on the path is handled with the function “handleEdge” that was already
described above. For a conditional branch the function “handleEdge” may return
FALSE if logical condition is not satisfied. The path is not feasible if for any edge on
the path the logical condition is not satisfied. In this case the function “isPathFeasible”
returns FALSE. In all other cases the path is feasible. If the path is feasible then at the
last state of the path the values for all program variables assigned on this path are
known. The last edge and the last state of the path is passed to a function
“handleApexCall”.

FUNCTION isPathFeasible
INPUT

path
RETURN

TRUE - path is feasible;
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FALSE - path is not feasible;
BEGIN

// Traverse through all edges.

FOR EACH edge IN path

precision = FULL;

IF handleEdge (edge, precision) = FALSE
RETURN FALSE

END IF

IF isLastEdge (edge, path) = TRUE
lastState = getSuccessor (edge) ;
handleApexCall (edge, lastState);

END IF

END FOR EACH
RETURN TRUE
END
Fig. 4. The algorithm of function isPathFeasible

The last edge contains the information about the APEX call. The last state contains
values for all program variables on the path. The function “handleApexCall” extracts
all architectural information including the function name for the last APEX call,
values for its argument and call stack. It is important to note that the algorithm extracts
architecture information only from the APEX calls that belong to a feasible paths.
The algorithm collects the architectural information for each APEX call and uses it
as output data. The format of the output data will be described in the next section.

If the algorithm has detected that a path is infeasible, then it will refine this path.
During refinement procedure the precision for some abstract states of the path are
changed by adding variables for tracking. The refinement procedure is described in
detail in [7]. Finally, the algorithm will update the ARG in such a way that will
eliminate the infeasible path or its part for the further analysis.

At the end of the internal loop the algorithm tries to merge the nextState with already
reached states, updates reached states and adds the last explored state (nextState) to
“waitlist”. These steps are described in details in [7] (see section “Reachability
Algorithm for CPA”).

The described above steps of internal loop are being repeated for each reachable
successor of the current state.

Then the algorithm leaves the internal loop and continues its execution by taking the
first step on the main loop. It takes the next state from “waitlist” variable and repeats
all steps already described above. The algorithm terminates when all ARG abstract
states have been processed.
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3.4 Output format

The algorithm keeps the collected architectural information in the internal format. For
further processing the architectural information has to be transformed to the external
representation. The export format depends on the tool that is used for creation the
architecture models. The architectural information can also be exported to human-
readable format. In Fig. 5 the architectural information extracted by the algorithm
from the source code fragment in Fig. | is presented in a human-readable format. The
presented architectural information is divided onto sections. The first section contains
information about ARINC653 processes. There are two processes with names
Proc_10 Hz and Proc_Monitor. Below the process name there are the list of its
attributes. On the Fig3 there are only three attributes are presented: PROCESS 1D,
ENTRY POINT and PERIOD. PROCESS ID is a serial number of the process
inside a partition. ENTRY POINT is a name of the function that is being called when
the process is started. PERIOD shows the period’s duration in milliseconds.
INFINITE TIME VALUE in source code corresponds to aperiodic process. The next
sections contain the information about other ARINC653 objects created in the source
code.

ARINC653 SAMPLING PORTS section shows three sampling ports and its
attributes.

ARINC653 SAMPLING MESSAGES section shows what processes are using
sampling ports for sending (WRITE subsection) and for receiving (READ subsection)
messages. For example the port DATA OUT is used by the first process (function
Run_10 Hz) for sending messages.

ARINC653 EVENTS contains information about the events that have been created
and used in the source code.

ARINC653 EVENTS section has three subsections: SET_EVENT, WAIT EVENT
and RESET _EVENTS. The name of the subsection corresponds to the APEX call.
For example, a subsection SET_EVENT corresponds to APEX call SET_EVENT that
activate an event.

==ARINC653 PROCESSES==
Proc 10 Hz
PROCESS ID: 0
ENTRY POINT: Run 10 Hz(0)
PERIOD = 100 ms

Proc_Monitor
PROCESS ID: 1
ENTRY POINT: Run Monitor (1)
APERIODIC

==ARINC653 SAMPLING PORTS==
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1) RAW DATA
MAX MESSAGE SIZE = 128
PORT DIRECTION = DESTINATION
REFRESH PERIOD = 1000

2) DATA OUT
3) STATUS

ZZARINC6537$AMPLING7MESSAGES=:
=WRITE=
1) PORT NAME=DATA OUT;

ENTRY POINT=Run_ 10 Hz (0);
2) PORT NAME=STATUS;

ENTRY POINT=Run Monitor(1l);
=READ=
1) PORT NAME=RAW DATA;

ENTRY POINT=Run 10 Hz (0);

==ARINC653 EVENTS==
=SET EVENT=
1) EVENT NAME=Wakeup;

ENTRY POINT=Run_ 10 Hz (0)
=WAIT EVENT=
1) EVENT NAME=Wakeup;

ENTRY POINT=Run Monitor (1)
=RESET_ EVENTS=

Fig. 5. The architectural information in human-readable format.

In the analyzed source call there is only one such a call for event with a name Wakeup.
The ENTRY POINT string contains a name of the ENTRY POINT function where
this call was made. In the real code the ENTRY POINT function is determined using
a call stack information. The serial number of the process is shown in parentheses. In
the Fig.3 we can see that event Wakeup was set in function Run_10_ Hz that belongs
to the process with PROCESS ID equal to 0 (Proc 10 Hz). From the section
WAIT_EVENT, we can understand that the function Run_Monitor waits for the event
Wakeup using APEX call WAIT _EVENT. The function Run Monitor belongs to
process Proc_ Monitor. So, we can see that the event Wakeup is used by two processes
for synchronization.

The representation of architectural information in the human-readable format is
presented only for explaining the content of such information and is useful mainly for
debug purposes. As it was mentioned above for further processing the architectural
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information should be transformed to the format that is supported by the external
tools.

4 Results and conclusions

The algorithm presented in the paper allows extracting architectural information from
source code of ARINC 653-compatible application software. The main contribution
of this paper is the application the ideas of counterexample and path feasibility check
for the task of extracting the architectural information from source code. In the
presented algorithm the task of extracting architectural information from source code
has been solved by transforming it into the task of path feasibility check.

The work of the algorithm is demonstrated on the simple example. By this moment
the algorithm has been tested on the several software applications that are compatible
with ARINC 653 specification. These applications contained up to 50 ARINC 653
process and up to 30 objects for communications.

The next task to be done is to extend the algorithm for extracting from source code
the global variables that are used for communication between processes inside
partition. It is also necessary to implement the algorithm of transformation of the
architecture information to the architecture model.
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AHHOTanMsi. MoJenbHO-OpHEHTUPOBAHHBIN MOAXOA K pa3paboTKe MO3BOJISET MOCTPOUTH
apXUTEKTYPHYIO MOJIETb CYIIECTBYIOLIEH CHCTEMBI MO ee ucxogHoMmy Kkony. IloctpoenHas
apXUTEKTypHas MOJeNb CYIIECTBYIONIEH CHCTEMBI II03BOJIIET IPOAHAIM3UPOBATH €€
pa3IUYHBIE CTATUYECKHE M AUHAMHIECKHE XapaKTePHCTHUKH, BKIIIOUAs IIPOU3BOAUTEIHHOCTS,
TpebyeMble amnmapaTHbIe PeCypChl, HaIEXKHOCTb M Jpyrue. APXUTEKTypHBIE MOJIETH MOTYT
HCTIONB30BAaThCA KaK JUId aHalu3a, TaK M JUId ITOBTOPHOTO HCIONB30BAHHUS HEKOTOPBIX
KOMIIOHEHTOB CYIIECTBYIOIIEH CHCTEMBI B HOBOM IpoeKTe. Bo MHOTHX ciTydasx Takoi oAXo.1
M03BOJISIET M30€XaTh MOCTPOCHUsI HOBOHM cHCTEeMbI ¢ Hyns. [l co3maHusl apXUTEKTYPHBIX
MoJeNiel MOTYT HCIIOJIB30BAaThCS PA3iM4HbIE S3BIKM MOAEIMpOBaHMA. B nmanHoil pabore
UCTIONIB3YETCS A3BIK aHalIM3a M NPOEKTHpOBaHHA apxXUTeKTypbl (AADL). JlanHas craThs
OIMCHIBACT aJITOPUTM H3BJICUCHUS apXUTEKTypHOU MH(pOpManuu u3 ucxoxHoro koxa ARINC
653 coBMmecTHMBIX HporpaMMHBIX npmitoxenuid. Cremudukamus ARINC 653 ompenenser
TpeOoBaHMsI K TNPOTPaMMHBIM KOMIIOHEHTaM MJISI CHCTEM WHTETPHPOBAHHOM MOIYJIBHOM
auonukn (MMA). [ns pmoctynma K pasiddHBIM CepBHCAM OHEPALIOHHON CHCTEMBI
NpOrpaMMHBIC  NPUIOXKEHHS HCIOJb3YIOT MPHUKIAJAHON  HCIOJHSASMBIH  HHTEpdEiic.
ApxuTekTypHas HHGOPMAIMS B HCXOIHOM KOJIE TPOIPAMMHBIX IIPHIIOKEHNH COBMECTUMBIX C
tpeboBanusimu cnetdukanun ARINC 653 BkiroyaeT mporecchl B KaXI0M paszerne, 00beKThI
JUISL B3aUMOJEHCTBUSI MEXIy MpoIeccaMd BHYTPU M 3a TpelelaMH pasfiena, a Takxke
riobansHble MepeMeHHble. J[I aHanmm3a HMCXOJHOTO KOJAa U IIOMYYCHHS apXUTEKTYpHOH
nHopMany HeoOXOJUMO IPOAHATU3UPOBATE BCE IPOTPAMMHBIC BBI30BBI HPHUKIIATHOTO
ucrionHsiemMoro uuTepdeiica. M3pnedeHnas apxuTekTypHas HHGOpPMaLUs Aaiee NCHIOoIb3yeTcs
JUIL TIOCTPOEHMSI apXUTEKTYPHBIX Mojenell cucreMbl. [l aHanmm3a MCXOJHOTO KoJa
ucnoisp3yercs moaxox Ha ocHose anroputMa CEGAR (yrounenune abGCTpakiy C MOMOIIBIO
KOHTpIIPHMEPA), MIHPOKO HCIOJIb3yeMOro NP BepHU(PHUKALUKM MPOrPAMMHOIO 00ECIICUEHHS.
Anroputm CEGAR ananusupyeT BO3MOXKHBIE IIYTH HMCIOJIHEHHS IPOTPAaMMBbI, HCIONB3Ys
HpEJCTaBICHHE TIPOrpaMMbl B BHAE aOCTPAaKTHOTO rpada JOCTHXUMOCTH. B KnaccuueckoM
anroputMe CEGAR uccnenyemslii myTh IpOrpaMMbl Ha3bIBa€TCS KOHTPIIPUMEPOM M O3HAYAET
IIyTh OT HaYajia IPOTrPaMMBI 10 HEKOTOPOTO OIIMOOYHOTO COCTOSIHHSA. J|JIsl IMONTBEPKICHUS
Hammuuss ommOku B koxe mporpammel  anroputMm  CEGAR — BEIonHSET mHpoBepKy
JOCTIDKUMOCTH [UIsl HcciiexyeMoro mytd. B mporpammuom unctpymente CPAchecker
6a30BbIi OCHOBaHHBIM Ha npemukarax anroputM CEGAR pacmmpen [yt aHammsa sSBHBIX
3HaYEHUH NEpEeMEHHbIX. B NaHHOW CTaTbe pacCIIMPEHHBbIM U1 aHaiuu3a SIBHBIX 3HAYCHUN
nepemenHbx anroput™ CEGAR ucnonb3yercs mist 3agadd U3BJICUCHHUS] apXUTEKTypHOU
uHOpPMAalMd M3 MCXOIHOTO KoJa mnpuiokeHuid. OCHOBHOW BKJIaA MJaHHOW CTaTbU
3aKJII0YAeTCs B IPUMEHEHUH HAeH KOHTPIPUMEpa U MPOBEPKH JOCTIKHUMOCTH ITyTH K 3aaue
U3BJICYCHUS apXUTEKTYPHOU HH(OPMALU U3 UCXOIHOTO KOJIa IPHUIIOKCHUH.
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