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Abstract. It may be useful to analyze and reuse some components of legacy systems during 
development of new systems. By using a model-based approach it is possible to build an 
architecture model from the existing source code of the legacy system. The purpose of using 
architecture models is to analyze the system’s static and dynamic features during the 
development process. These features may include real-time performance, resources 
consumption, reliability etc. The architecture models can be used as for system analysis as well 
as for reusing some components of the legacy system in the new design. In many cases it will 
allow to avoid creation of a new system from scratch. For creation of the architectural models 
various modeling languages can be used. In the present work Architecture Analysis & Design 
Language (AADL) is used. The paper describes an algorithm of extracting architectural 
information from source code of ARINC 653-compatible application software. ARINC 653 
specification defines the requirements for software components of Integrated Modular 
Avionics (IMA) systems. To access the various services of ARINC 653 based OS an 
application software uses function calls defined in the APplication/Executive (APEX) 
interface. Architectural information in source code of application software compliant with 
ARINC 653 specification includes different objects and their attributes such as processes in 
each partition, objects for interpartition and intrapartition communications, as well as global 
variables. To collect the architectural information, it is necessary to extract all APEX calls from 
source code of application software. The extracted architectural information can be further used 
for creation the architecture models of the system. For source code analysis an approach based 
on Counterexample-guided abstraction refinement (CEGAR) algorithm is used. CEGAR 
algorithm explores possible execution paths of the program using its representation in the form 
of Abstract Reachability Graph (ARG). In a classical CEGAR algorithm a path in a program 
to be explored is called a counterexample and it means a path to the error state. In CPAchecker 
tool the basic predicate-based CEGAR algorithm has been extended for explicit-value analysis. 
In this paper the extended for explicit-value analysis CEGAR algorithm is applied for the task 
of extracting architecture information from source code. The main contribution of this paper is 
the application the ideas of counterexample and path feasibility check for the task of extracting 
the architectural information from source code. 
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1. Introduction 
The purpose of using architecture models is to analyze the system’s static and 
dynamic features during the development process. These features may include real-
time performance, resources consumption, reliability etc. This aspect is extremely 
important while developing complex systems that include both software and hardware 
components produced by the different suppliers. Using model-based approach at the 
early stages of the development of the project will help to avoid a waste of time and 
money for correction of system defects when the system is created. For creation of 
the architectural models various modeling languages can be used. The most popular 
ones used for architecture modelling are SysML[1] and AADL[2,3]. 
The model-based development process includes two major project steps. At the first 
step, the system model is being created. There are different levels for representation 
of the system model. The primary focus of this paper is the architectural models. On 
the second step of the project the system model will be used as input for detailed 
design and system implementation. This step may also include the model 
transformations to some intermediate formats used in system design and 
implementation. In the ideal case, the system model can be transformed to the source 
code of the system. 
It may be useful to analyze and reuse some components of legacy systems during 
development of new systems. By using a model-based approach it is possible to build 
an architecture model from the existing source code of the legacy system. This model 
can be used as for system analysis as well as for reusing some components of the 
legacy system in the new design. In many cases, it will allow to avoid creation of a 
new system from scratch. 
A process of model creation for existing system is called a model-driven reverse 
engineering (MDRE). If the source code of a legacy system is available then it is 
possible to build a system model from its source code. This process contains two 
steps. The first step is source code analysis. The second step is model transformations 
to the target output format. This paper describes the first step – source code analysis 
for application software that is based on Integrated Modular Avionics (IMA) 
architecture and ARINC 653 specification. The goal of source code analysis is to 
extract architecture information that is necessary for creation of the architecture 
model of the system.  
The rest of the paper is organized as follows. Section 2 provides an overview of IMA 
architecture and ARINC 653 specification. It also contains a simple example of 
source code to be used for further analysis. Section 3 describes the concept of 
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architectural information in source code, a general approach and a particular 
algorithm used for extracting architectural information from source code. Section 4 
describes the results and outlines the future research and development tasks. 

2 IMA 
IMA architecture is widely used in avionics industry for implementation the safety 
critical applications. In IMA systems multiple avionics applications can share 
resources of a single hardware platform (core module) without any mutual influence. 
ARINC 653 [4] is a set of documents that define the requirements for software 
components of IMA systems. The key concept of ARINC 653 is a partition. ARINC 
653 compatible Operating System (OS) provides a dedicated portion of memory and 
predefined time slot within a fixed schedule for each partition. It prevents any affect 
from software executing in one partition to software in other partitions. 
ARINC 653 specification defines that IMA system may include the following 
software components: core software, application partitions and system partitions. 
Core software consists of OS and APplication/EXecutive (APEX) interface. The 
APEX interface defines a set of services provided by the OS for application software. 
In each application, partition can be allocated only one application. System partitions 
contain system software that can directly interact with the OS without using APEX 
interface. 
Communications between applications allocated in different partitions is called the 
interpartition communication. The interpartition communication is only available via 
communication channels. To access a communication channel the application can use 
the ports created inside a partition. ARINC 653 supports two port types: sampling 
ports and queuing ports. 
An application software compliant with ARINC 653 specification has a typical 
structure. Such a software can be located in a single partition or in multiple partitions. 
To access the various services of ARINC 653 based OS an application software uses 
function calls defined in the APEX interface. For each partition several processes can 
be created. One process is responsible for partition initialization. This process creates 
other processes and various objects. Finally, when the initialization of partition has 
been finished this process sets the partition to NORMAL state using 
SET_PARTITION_MODE function call. Since this moment a scheduling for all 
processes created inside a partition is started. It is important to note that after the 
initialization of partition has been finished there is no way to create any new processes 
and objects. 
An ARINC 653 process is quite similar to a POSIX thread. To create a process, it is 
necessary to create a structure that contains the process’s attributes and pass it to 
CREATE_PROCESS function. ENTRY_POINT is an attribute of the process that 
contains the address of the function that will be called when the process is started. 
This function implements the application logic of the process and its communication 
procedures with other processes. 
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Communications between processes within a single partition is called intrapartition 
communication. Buffers and blackboards are used for communication between 
processes inside a partition. Semaphores, events and mutexes are used for process 
synchronization. Any objects for communication and synchronization can be created 
using function calls defined in the APEX interface. The processes located inside the 
same partition can also communicate via global variables. 
At the end of this section, a simple example of application software will be 
demonstrated and explained. The source code fragment of the application software 
compliant with ARINC 653 specification is shown in Fig.1. Source code fragment in 
Fig.1 includes three functions: Run_10_Hz, Run_Monitor  and main. In function main 
two processes, one event and three sampling ports are created. 
 
static void Run_10_Hz(void) { 
    … 
    while (1) { 
        SET_EVENT ( wakeup, ret );    
        READ_SAMPLING_MESSAGE(port_raw_data,  
             (MESSAGE_ADDR_TYPE)&sensor_data,  
             &len, &validity, &ret); 
        // Some operations with data …          
        WRITE_SAMPLING_MESSAGE(port_data_out,  
             (MESSAGE_ADDR_TYPE)&output_data,  
             &len2, &ret);     
        PERIODIC_WAIT(&ret_pause); } 
} 
static void Run_Monitor(void) { 
    while (1) { 
        WAIT_EVENT ( wakeup, TimeOut, ret ); 
        RESET_EVENT ( wakeup, ret );    
        // Some operations with data …                      
        WRITE_SAMPLING_MESSAGE( port_status,  
             (MESSAGE_ADDR_TYPE)&status_data,  
            &len, &ret ); } 
} 
void main(void) { 
    PROCESS_ATTRIBUTE_TYPE Proc_10_Hz_Attributes; 
    Proc_10_Hz_Attributes.ENTRY_POINT = Run_10_Hz; 
    Proc_10_Hz_Attributes.PERIOD = 100000000LL;     
    strncpy(Proc_10_Hz_Attributes.NAME, "Proc_10_Hz",  
        sizeof(PROCESS_NAME_TYPE));       
    CREATE_PROCESS( &Proc_10_Hz_Attributes, &pid_p0,  
        &ret ); 
    START( pid_p0, &ret );   
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    PROCESS_ATTRIBUTE_TYPE Proc_Monitor_Attributes;       
    Proc_Monitor_Attributes.ENTRY_POINT = Run_Monitor;       
    Proc_Monitor_Attributes.PERIOD =  
        INFINITE_TIME_VALUE;  
    strncpy(Proc_Monitor_Attributes.NAME, "Proc_Monitor",  
        sizeof(PROCESS_NAME_TYPE));  
    CREATE_PROCESS( &Proc_Monitor_Attributes, &pid_p1,  
        &ret ); 
    START( pid_p1, &ret ); 
 
    EVENT_NAME_TYPE EventName; 
    strncpy( EventName, "Wakeup", …); 
    CREATE_EVENT ( EventName, wakeup, ret ); 
    … 
    CREATE_SAMPLING_PORT( "RAW_DATA",  
        port_size, DESTINATION, period, &port_raw_data, …);   
    CREATE_SAMPLING_PORT( "DATA_OUT",  
        port_size, SOURCE, period, &port_data_out, …);      
    CREATE_SAMPLING_PORT( "STATUS", port_size,  
        SOURCE, period, &port_status …); 
    SET_PARTITION_MODE ( NORMAL, &ReturnCode );       
    return 0; 
} 

Fig. 1. Source code fragment with APEX calls. 

 
For process creation, APEX call CREATE_PROCESS is used.  The first argument of 
CREATE_PROCESS  has a type PROCESS_ATTRIBUTE_TYPE. It is a structure 
that contains attributes for the created process. The ENTRY_POINT attribute is equal 
to Run_10_Hz for the first process and is equal to  Run_Monitor for the second one.  
Run_10_Hz and Run_Monitor are the function’s names that are called when the 
processes are started. 
Below in the main function, APEX call CREATE_EVENT is used to create an event 
object. An event object has a name Wakeup. Then APEX calls 
CREATE_SAMPLING_PORT are used to create three sampling ports. These ports 
have the following names:  RAW_DATA,  DATA_OUT and  STATUS. In the end 
of the main function APEX call SET_PARTITION_MODE is used to set the partition 
to the NORMAL state. After that, OS will invoke functions Run_10_Hz and 
Run_Monitor. 
A function Run_10_Hz is called periodically with period 10 milliseconds. This value 
for period was set in PERIOD attribute during the creation of the first process. Each 
time when the function Run_10_Hz is called, it activates the event Wakeup, reads a 
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message from sampling port RAW_DATA, performs some operations with data and 
writes a message to sampling port DATA_OUT. 
Function Run_Monitor belongs to the second process that is an aperiodic. This 
function waits for event Wakeup, resets it, performs some operations with data and 
writes a message to sampling port STATUS. 

3 Source code analysis 

3.1 Architectural information in source code 
The main goal of source code analysis in the paper is to extract the architectural 
information from it. Architectural information in source code of application software 
compliant with ARINC 653 specification includes the processes in each partition and 
their attributes, all objects created for interpartition and intrapartition communications 
and their attributes. It also includes the ways of communications and synchronizations 
between processes located inside the same partition or in different partitions. If the 
global variables are used for communication between processes inside partition then 
these variables also should be considered as architectural information. 
The source code fragment in Fig.1 contains the following architectural information: 
two processes, one event and three sampling ports. Attributes of each process and 
each object (event, port) are also important architectural information. For 
synchronization between two processes the event object is used.  In the first process 
APEX call SET_EVENT is used to activate an event. The second process uses APEX 
call WAIT_EVENT for receiving this event. Sampling ports are used in both 
processes to communicate with external environment, i.e. with processes allocated in 
other partitions or with external devices. 
The source code of real avionic application can contain hundreds of processes 
communicating with each other and with external environment via large number of 
the objects. Extracting such architectural information from source code can be time 
consuming task. This paper proposes a way to do it automatically. The next sections 
describe a general approach and a particular algorithm used for source code analysis. 

3.2 General approach for source code analysis 
For source code analysis, an approach based on Counterexample-guided abstraction 
refinement (CEGAR) algorithm is used. In CPAchecker tool [5] the basic predicate-
based CEGAR algorithm has been extended for explicit-value analysis [7]. 
CPAchecker is a tool for configurable program analysis (CPA) [5,6] that combines 
the traditional program analyses and software model checking. In this paper the 
extended for explicit-value analysis CEGAR algorithm is applied for the task of 
extracting architecture information from source code. The algorithm is implemented 
in CPAchecker tool. 
The algorithm presented in this paper uses a Control-Flow Automata (CFA) as 
intermediate representations of the program to be analyzed. CFA is a directed graph 
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containing nodes and edges. A node corresponds to a program location. An edge 
corresponds to a certain operation of the program, for example, an assignment 
statement, a conditional branch or a function call. During the analysis, the algorithm 
constructs an Abstract Reachability Graph (ARG) using a program CFA. ARG is also 
a directed graph but its nodes correspond to abstract states of the program. Each 
abstract state contains a program location, a data state and a call stack. A data state is 
a mapping between program variables and their values. In data state some program 
variables may not have the values. 
ARG represents possible execution paths of the program. It means that ARG can 
contain both feasible (real) program paths as well as the infeasible (spurious) paths. 
The program path is feasible if it can be executed at runtime otherwise it is infeasible. 
A path in ARG is a sequence of abstract states connected by edges. An abstract state 
is reachable if there is a feasible program path that contains this state. 

3.3 Extracting APEX calls from source code 
Before starting the algorithm description, it is necessary to explain some important 
concepts used by the algorithm. The algorithm constructs the ARG by sequentially 
adding the new abstract states to it. For the current state the algorithm gets the list of 
all its successors and adds each of them to ARG. There is an edge between the current 
state and each its successor. 
Target states. 
Some edges may correspond to a function call in source code. If this function is 
defined in APEX interface, the algorithm will need to collect additional information 
about this function call.  
An abstract state in ARG which immediately follows such a function call is called the 
target state. Any target state has an incoming edge with APEX call. For each target 
state there is a path in ARG from the initial state to it. The algorithm performs a 
feasibility check for these paths. 
Precision. 
Explicit-value analysis tracks values for the program variables. In many cases it is 
enough to track only a part of program variables that are important for a particular 
analysis. A set of program variables that are being tracked for the current abstract 
state is called a precision. Different abstract states may have different precisions. The 
empty precision means that no variables are being tracked. The full precision means 
that all variables are being tracked. As described in [6] the value analysis algorithm 
implemented in CPAchecker can change a precision during the analysis depending 
on some conditions. It is called a precision adjustment. 
An edge in ARG can correspond to a program operation that changes a value of a 
program variable. For example, an assignment operation changes the value of the left-
hand operand, for a function call the values of arguments are assigned to function's 
parameters, etc. When the algorithm handles an edge between the current state 
(predecessor) and next state (successor) it uses a precision of the predecessor. If 
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precision of the predecessor contains the current variable, then the algorithm 
evaluates and stores its new value in abstract state. The algorithm of analysis can use 
the values of variables stored in abstract states for different purposes. 
Fig. 2 presents a pseudocode of the main algorithm for extracting the architectural 
information from source code. This algorithm implements a classical CEGAR cycle 
extended for explicit value analysis [7] and is applied for the task of extracting 
architectural information from source code. 
CFA of the program is used as an input data for the algorithm. The algorithm uses 
two variables to store the abstract states: “reached” and “waitlist”. A variable 
“reached” contains the set of abstract states that have been explored already. A 
variable “waitlist” contains the set of abstract states that have to be explored on the 
next steps of the algorithm. 
At the beginning, the algorithm takes the initial state from CFA and put it to “waitlist”. 
After that, the external loop of the algorithm begins. The algorithm takes and removes 
the current state from waitlist. Further the algorithm gets all reachable successors for 
the current state using function “getAbstractSuccessors”. A pseudocode for the 
function “getAbstractSuccessors” is shown on Fig.3. The first operation of the 
function gets all successors (CFA nodes) of the current state. Then the function 
consecutively handles the edges (function “handleEdge”) between the current state 
and each its successor. The function “handleEdge” takes two parameters. The first 
parameter is an edge to be explored. The second parameter is a precision. The 
precision is taken from the edge predecessor. Depending on the operation in source 
code that the edge corresponds to, the function “handleEdge” performs the following 
actions: 

 For an assignment operation, the algorithm evaluates a new value for this 
variable. The new value for a variable will be stored in abstract state if this 
variable is contained in the precision. 

 For a function call, the function’s arguments are assigned to function’s 
parameters. 

 For a conditional branch, a logical value for a condition is evaluated. If the 
logical value of a conditional branch is equal to FALSE then the function 
“handleEdge” return FALSE. It means that this successor is not reachable. 
In all other cases the function returns TRUE and the current successor is 
added to the list of reachable successors. So, function 
“getAbstractSuccessors” returns for the current state a list of all its reachable 
successors. 

 
FUNCTION main 

INPUT 

    CFA of the program; 

OUTPUT 
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    Architectural information 

VARIABLES 

    reached – a set of states that have been reached; 

    waitlist – a set of states to be explored; 

BEGIN 

    initState = getInitialState(CFA); 

    addStateToWaitlist(initState); 

    // Traverse through all CFA nodes. 

    LOOP WHILE waitlist ≠ 0 // External loop. 

        curState = getAndRemoveStateFromWaitlist();             

        // Get all reachable successors of the current state. 

        successors = getAbstractSuccessors(curState); 

        // Traverse through all reachable successors.  

        FOR EACH nextState IN successors // Internal loop. 

            IF isTargetState(nextState) 

                path = getPathToState(nextState); 

                IF isPathFeasible(path) = FALSE 

                    // Refine the path. 

                    performRefinementForPath(path, 

                        reached, waitlist); 

                    BREAK // Go to external loop. 

                END IF 

            END IF 

            merge(nextState, reached); 

            update(reached); 

            addStateToWaitlist(nextState); 

        END FOR EACH 

    END LOOP 

END 
Fig. 2. The main algorithm for extracting the architectural information from source code 

Further in internal loop the main algorithm traverses through all reachable successors 
for the current state. At this part of algorithm, a successor is called as a “nextState”. 
The algorithm checks whether a nextState is a target state. If it is a target state, the 
algorithm calculates a path in ARG from the initial state to the current target state and 
checks its feasibility using function “isPathFeasible”. In a classical CEGAR 
algorithm a path in a program to be explored is called a counterexample and it means 
a path to the error state. In the current algorithm it is just a path to the target state we 
need to explore. 

The algorithm of function “isPathFeasible” is shown in Fig. 4. To check the path 

Lesovoy S.L. Extracting architectural information from source code of ARINC 653-compatible application software 
using CEGAR-based approach. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 31-46 

40 

feasibility the algorithm consecutively passes through all edges of the path, starting 
from the initial state. The algorithm analyses the operations for each edge. To track 
all program variables, for each state on the path the full precision is set, i.e. the 
algorithm performs the feasibility check for a path with the full precision. 

 
FUNCTION getAbstractSuccessors 

INPUT 

    curState // Current state. 

RETURN 

    reachableSuccessors // All reachable successors. 

BEGIN 

    // Get all successors of the current state. 

    allCFASuccessors = getAllSuccessors(curState); 

    FOR EACH successor IN allCFASuccessors 

        edge = getEdge(curState, successor); 

        precision = getPrecisionForState(curState); 

        IF handleEdge(edge, precision) = TRUE 

            // Add  successor to reachableSuccessors. 

            addToSet(reachableSuccessors, successor); 

        END IF 

    END FOR EACH 

    RETURN reachableSuccessors; 

END 
Fig. 3. The algorithm of function getAbstractSuccessors 

 

Each edge on the path is handled with the function “handleEdge” that was already 
described above. For a conditional branch the function “handleEdge” may return 
FALSE if logical condition is not satisfied. The path is not feasible if for any edge on 
the path the logical condition is not satisfied. In this case the function “isPathFeasible” 
returns FALSE. In all other cases the path is feasible. If the path is feasible then at the 
last state of the path the values for all program variables assigned on this path are 
known. The last edge and the last state of the path is passed to a function 
“handleApexCall”. 

 
FUNCTION isPathFeasible 

INPUT 

    path 

RETURN 

    TRUE – path is feasible; 
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    FALSE – path is not feasible;     

BEGIN 

    // Traverse through all edges. 

    FOR EACH edge IN path 

        precision = FULL; 

        IF handleEdge(edge, precision) = FALSE 

            RETURN FALSE 

        END IF 

        IF isLastEdge(edge, path) = TRUE 

            lastState = getSuccessor(edge); 

            handleApexCall(edge, lastState); 

        END IF 

    END FOR EACH 

    RETURN TRUE 

END 
Fig. 4. The algorithm of function isPathFeasible 

The last edge contains the information about the APEX call. The last state contains 
values for all program variables on the path. The function “handleApexCall” extracts 
all architectural information including the function name for the last APEX call, 
values for its argument and call stack. It is important to note that the algorithm extracts 
architecture information only from the APEX calls that belong to a feasible paths. 
The algorithm collects the architectural information for each APEX call and uses it 
as output data. The format of the output data will be described in the next section. 

If the algorithm has detected that a path is infeasible, then it will refine this path. 
During refinement procedure the precision for some abstract states of the path are 
changed by adding variables for tracking. The refinement procedure is described in 
detail in [7]. Finally, the algorithm will update the ARG in such a way that will 
eliminate the infeasible path or its part for the further analysis. 

At the end of the internal loop the algorithm  tries to merge the nextState with already 
reached states, updates reached states and adds the last explored state (nextState) to 
“waitlist”. These steps are described in details in [7] (see section “Reachability 
Algorithm for CPA”). 

The described above steps of internal loop are being repeated for each reachable 
successor of the current state. 

Then the algorithm leaves the internal loop and continues its execution by taking the 
first step on the main loop. It takes the next state from “waitlist” variable and repeats 
all steps already described above. The algorithm terminates when all ARG abstract 
states have been processed. 
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3.4 Output format 
The algorithm keeps the collected architectural information in the internal format. For 
further processing the architectural information has to be transformed to the external 
representation. The export format depends on the tool that is used for creation the 
architecture models. The architectural information can also be exported to human-
readable format. In Fig. 5 the architectural information extracted by the algorithm 
from the source code fragment in Fig. 1 is presented in a human-readable format. The 
presented architectural information is divided onto sections. The first section contains 
information about ARINC653 processes. There are two processes with names 
Proc_10_Hz and Proc_Monitor. Below the process name there are the list of its 
attributes. On the Fig3 there are only three attributes are presented: PROCESS_ID,  
ENTRY_POINT and  PERIOD. PROCESS_ID is a serial number of the process 
inside a partition.  ENTRY_POINT is a name of the function that is being called when 
the process is started. PERIOD shows the period’s duration in milliseconds. 
INFINITE_TIME_VALUE in source code corresponds to aperiodic process. The next 
sections contain the information about other ARINC653 objects created in the source 
code. 
ARINC653_SAMPLING_PORTS section shows three sampling ports and its 
attributes. 
ARINC653_SAMPLING_MESSAGES section shows what processes are using 
sampling ports for sending (WRITE subsection) and for receiving (READ subsection) 
messages. For example the port DATA_OUT is used by the first process (function 
Run_10_Hz) for sending messages. 
ARINC653_EVENTS contains information about the events that have been created 
and used in the source code.  
ARINC653_EVENTS section has three subsections: SET_EVENT, WAIT_EVENT 
and RESET_EVENTS. The name of the subsection corresponds to the APEX call. 
For example, a subsection SET_EVENT corresponds to APEX call SET_EVENT that 
activate an event. 
 
==ARINC653_PROCESSES== 
Proc_10_Hz 
  PROCESS_ID: 0 
  ENTRY_POINT: Run_10_Hz(0) 
  PERIOD = 100 ms 
  … 
Proc_Monitor 
  PROCESS_ID: 1 
  ENTRY_POINT: Run_Monitor(1) 
  APERIODIC 
  … 
==ARINC653_SAMPLING_PORTS== 
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1) RAW_DATA 
  MAX_MESSAGE_SIZE = 128 
  PORT_DIRECTION = DESTINATION 
  REFRESH_PERIOD = 1000 
… 
2) DATA_OUT 
… 
3) STATUS 
… 
==ARINC653_SAMPLING_MESSAGES== 
=WRITE= 
1) PORT_NAME=DATA_OUT;    
    ENTRY_POINT=Run_10_Hz(0); 
2) PORT_NAME=STATUS;  
    ENTRY_POINT=Run_Monitor(1); 
=READ= 
1) PORT_NAME=RAW_DATA;  
    ENTRY_POINT=Run_10_Hz(0); 
 
==ARINC653_EVENTS== 
=SET_EVENT= 
1) EVENT_NAME=Wakeup;  
    ENTRY_POINT=Run_10_Hz(0) 
=WAIT_EVENT= 
1) EVENT_NAME=Wakeup;      
    ENTRY_POINT=Run_Monitor(1) 
=RESET_EVENTS=  
... 

Fig. 5. The architectural information in human-readable format. 

 
In the analyzed source call there is only one such a call for event with a name Wakeup. 
The ENTRY_POINT string contains a name of the ENTRY_POINT function where 
this call was made. In the real code the ENTRY_POINT function is determined using 
a call stack information. The serial number of the process is shown in parentheses. In 
the Fig.3 we can see that event Wakeup was set in function Run_10_Hz that belongs 
to the process with PROCESS_ID equal to 0 (Proc_10_Hz). From the section 
WAIT_EVENT, we can understand that the function Run_Monitor waits for the event 
Wakeup using APEX call WAIT_EVENT. The function  Run_Monitor belongs to 
process Proc_Monitor. So, we can see that the event Wakeup is used by two processes 
for synchronization. 
The representation of architectural information in the human-readable format is 
presented only for explaining the content of such information and is useful mainly for 
debug purposes. As it was mentioned above for further processing the architectural 
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information should be transformed to the format that is supported by the external 
tools. 

4 Results and conclusions 
The algorithm presented in the paper allows extracting architectural information from 
source code of ARINC 653-compatible application software. The main contribution 
of this paper is the application the ideas of counterexample and path feasibility check 
for the task of extracting the architectural information from source code. In the 
presented algorithm the task of extracting architectural information from source code 
has been solved by transforming it into the task of path feasibility check. 
The work of the algorithm is demonstrated on the simple example. By this moment 
the algorithm has been tested on the several software applications that are compatible 
with ARINC 653 specification. These applications contained up to 50 ARINC 653 
process and up to 30 objects for communications. 
The next task to be done is to extend the algorithm for extracting from source code 
the global variables that are used for communication between processes inside 
partition. It is also necessary to implement the algorithm of transformation of the 
architecture information to the architecture model. 
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Аннотация. Модельно-ориентированный подход к разработке позволяет построить 
архитектурную модель существующей системы по ее исходному коду. Построенная 
архитектурная модель существующей системы позволяет проанализировать ее 
различные статические и динамические характеристики, включая производительность, 
требуемые аппаратные ресурсы, надежность и другие. Архитектурные модели могут 
использоваться как для анализа, так и для повторного использования некоторых 
компонентов существующей системы в новом проекте. Во многих случаях такой подход 
позволяет избежать построения новой системы с нуля. Для создания архитектурных 
моделей могут использоваться различные языки моделирования. В данной работе 
используется язык анализа и проектирования архитектуры (AADL). Данная статья 
описывает алгоритм извлечения архитектурной информации из исходного кода ARINC 
653 совместимых программных приложений. Спецификация ARINC 653 определяет 
требования к программным компонентам для систем интегрированной модульной 
авионики (ИМА). Для доступа к различным сервисам операционной системы 
программные приложения используют прикладной исполняемый интерфейс. 
Архитектурная информация в исходном коде программных приложений совместимых с 
требованиями спецификации ARINC 653 включает процессы в каждом разделе, объекты 
для взаимодействия между процессами внутри и за пределами раздела, а также 
глобальные переменные. Для анализа исходного кода и получения архитектурной 
информации необходимо проанализировать все программные вызовы прикладного 
исполняемого интерфейса. Извлеченная архитектурная информация далее используется 
для построения архитектурных моделей системы. Для анализа исходного кода 
используется подход на основе алгоритма CEGAR (уточнение абстракции с помощью 
контрпримера), широко используемого при верификации программного обеспечения. 
Алгоритм CEGAR анализирует возможные пути исполнения программы, используя 
представление программы в виде абстрактного графа достижимости. В классическом 
алгоритме CEGAR исследуемый путь программы называется контрпримером и означает 
путь от начала программы до некоторого ошибочного состояния. Для подтверждения 
наличия ошибки в коде программы алгоритм CEGAR выполняет проверку 
достижимости для исследуемого пути. В программном инструменте CPAchecker 
базовый основанный на предикатах алгоритм CEGAR расширен для анализа явных 
значений переменных. В данной статье расширенный для анализа явных значений 
переменных алгоритм CEGAR используется для задачи извлечения архитектурной 
информации из исходного кода приложений. Основной вклад данной статьи 
заключается в применении идей контрпримера и проверки достижимости пути к задаче 
извлечения архитектурной информации из исходного кода приложений. 
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