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Abstract. Finite State Machines (FSMs) are widely used as formal models for solving 
numerous tasks in software engineering, VLSI design, development of telecommunication 
systems, etc. To describe the behavior of a real-time system one could supply FSM model with 
clocks — a continuous time parameters with real values. In a Timed FSM (TFSM) inputs and 
outputs have timestamps, and each transition is equipped with a timed guard and an output 
delay to indicate time interval when the transition is active and how much time does it take to 
produce an output. A variety of algorithms for equivalence checking, minimization and test 
generation were developed for TFSMs in many papers. A distinguishing feature of TFSMs 
studied in these papers is that the order in which output letters occur in an output timed word 
does not depend on their timestamps. We think that such behavior of a TFSM is not realistic 
from the point of view of an outside observer. In this paper we consider a more advanced and 
adequate TFSM functioning; in our model the order in which outputs become visible to an 
outsider is determined not only by the order of inputs, but also by de lays required for their 
processing. When the same sequence of transitions is performed by a TFSM modified in a such 
way, the same outputs may follow in different order depending on the time when corresponding 
inputs become available to the machine. A TFSM is called strictly deterministic if every input 
timed word activates no more than one sequence of transitions (trace) and for any input timed 
word which activates this trace the letters in the output words always follows in the same order 
(but, maybe, with different timestamps). We studied the problem of checking whether a 
behavior of an improved model of TFSM is strictly deterministic. To this end we showed how 
to verify whether an arbitrary given trace in a TFSM is steady, i.e. preserves the same order of 
output letters for every input timed word which activates this trace. Further, having the criterion 
of trace steadiness, we developed an exhaustive algorithm for checking the property of strict 
determinacy of TFSMs. Exhaustive search in this case can hardly be avoided: we proved that 
determinacy checking problem for our model of TFSM is co-NP-hard. 
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1. Introduction 
Finite State Machines (FSMs) are widely used as formal models for analysis and 
synthesis of information processing systems in software engineering, VLSI design, 
telecommunication, etc. The most attractive feature of this model of computation is 
its simplicity — many important synthesis and analysis problems (equivalence 
checking, minimization, test derivation, etc.) for classical FSMs can be solved in time 
which is almost linear or quadratic of the size of an FSM under consideration. 
The concept of FSM is rather flexible. Since in many applications time aspects such 
as durations, delays, timeouts are very important, FSMs can be augmented with some 
additional features to describe the dependence of the behavior of a system on events 
occurring in real time. One of the most advanced timed extension of FSMs is the 
concept of Timed Automata which was developed and studied in [1]. Timed 
Automata are supplied with clocks (timers) for indicating real time moments, 
measuring durations of events, providing timeout effects. Transitions in such 
automata depends not only on the incoming of the outside messages and signals but 
also on the values of clocks. Further research showed that this model of computation 
is very expressive and captures many important features of real-time systems 
behavior. On the other side, Timed Automata in the full scope of their computing 
power are very hard for analysis and transformations. The reachability problem for 
Timed Automata is decidable [2], and, therefore, this model of computation is suitable 
for formal verification of real-time computer systems. But many other problems such 
as universality, inclusion, determinability, etc. are undecidable (see [2], [8]), and this 
hampers considerably formal analysis of Timed Automata. 
When a Timed Automaton is capable to selectively reset timers, it can display rather 
sophisticated behavior which is very difficult for understanding and analysis. In some 
cases, such ability is very important; see, e.g. [9]. But a great deal of real-time 
programs and devices operate with timers much more simply: as soon as such a device 
switches to a new mode of operation (new state), it resets all timers. Timed Finite 
State Machines (TFSM) of this kind were studied in [5], [10], [13], [14]. TFSM has 
the only timer which it resets "automatically” as soon as it moves from one state to 
another. On the other hand, TFSMs, in contrast to Timed Automata introduced in [1], 
operate like transducers: they receive a sequence of input signals augmented with 
their timestamps (input timed word) and output a sequence of responses also labeled 
by timestamps (output timed word). The timestamps are real numbers which indicate 
the time when an input signal becomes available to a TFSM or an output response is 
generated. Transitions of a TFSM are equipped with time guards to indicate time 
intervals when transitions are active. Therefore, a reaction of a TFSM to an input 
signal depends not only on the signal but also on its timestamp. Some algorithms for 
equivalence checking, minimization and test generation were developed for TFSMs 
in [6], [5], [13], [14], [15]. It can be recognized that this model of TFSM combines a 
sufficient expressive power for modeling a wide class of real-time information 
processing systems and a developed algorithmic support. 
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As it was noticed above a behavior of a TFSM is characterized by a pair sequences: 
an input timed word and a corresponding output timed word. A distinguishing feature 
of TFSMs studied in [5], [10], [13], [14], [15] is that an output timed word is formed 
of timestamped output letters that follows in the same order as the corresponding 
input letters regardless of their timestamps. Meanwhile, suppose that a user of some 
file management system gives a command «Save» and immediately after that a 
command «Exit». Then if a file to be saved is small then the user will observe first a 
response «File is saved» and then a notification «File Management System is closed». 
But if a file has a considerable size then it takes a lot of time to close it. Therefore, it 
can happen that a user will detect first a notification «File Management System is 
closed» and then, some time later, he/she will be surprised to find an announcement 
«File is saved». Of course, the user may regard such behavior of the system enigmatic. 
But much worse if the order in which these notifications appear may vary in different 
sessions of the system. If a File Management System interacts with other service 
programs such an interaction will almost certainly lead to errors. However, if a 
behavior of TFSMs is defined as in the papers referred above then such a model can 
not adequately capture behavioral defects of real-time systems, similar to the one that 
was considered in the example. 
To avoid this shortcoming of conventional TFSMs and to make their behavior more 
“realistic” from the point of view of an outside observer we offer some technical 
change to this model. We will assume that an output timed word consists of 
timestamped letters, and these letters always follow in ascending order of their 
timestamps regardless of an order in which the corresponding input letters entered a 
TFSM. In this model it may happen so that an input ࢈ follows an input ࢇ but a 
response to ࢈ appears before a response to ࢇ is computed. Clearly, the defect with 
File Management System discussed above becomes visible to an outside observer 
“through” the model of TFSMs thus modified. 
At first sight, it may seem that this change only slightly complicates the analysis of 
the behavior of such models. But this is a false impression. In the initial model of 
TFSM the formation of an output timed word is carried out by local means for each 
state of the system. In our model this is a global task since to find the proper position 
of a timestamped output letter one should consider the run of TFSM as a whole. 
Therefore, even the problem of checking whether a behavior of an improved model 
of TFSM is deterministic can not be solved as easy and straightforwardly as in the 
case of the initial model of TFSM. 
It should be noticed that the property of deterministic behavior is very important in 
theory real-time machines. As it was said above, universality, inclusion and 
equivalence checking problems are undecidable for Timed Automata in general case 
[2] but all these problems have been shown to be decidable for deterministic Timed 
Automata [3], [11]. However, testing whether a Timed Automaton is determinable 
has been proved undecidable [8]. Understanding and coping with these weaknesses 
have attracted lots of research, and classes of timed automata have been exhibited, 
that can be effectively determinized [3], [12]. A generic construction that is applicable 
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to every Timed Automaton, and which, under certain conditions, yields a 
deterministic Timed Automaton, which is language-equivalent to the original timed 
automaton, has been developed in [4]. 
We studied the determinacy checking problem for improved TFSMs and present the 
results of our research in this paper. First, we offer a criterion to determine whether a 
given sequence of transition (trace) in a TFSM is steady, i.e. for any input timed word 
which activates this trace the letters of output words always follow in the same order 
(but, maybe, with different timestamps). Then, using this criterion we developed an 
exhaustive algorithm for checking the property of strict determinacy of TFSMs. This 
property means that every input timed word activates no more than one trace and all 
traces in a TFSM are steady. Exhaustive search, although been time consuming, can 
hardly be avoided in this case: we proved that determinacy checking problem for 
improved version of TFSMs is co-NP-hard by polynomially reducing to its 
complement the subset-sum problem [7] which is known to be NP-complete. 
The structure of the paper is as follows. In Section II we define the basic notions and 
introduce an improved concept of TFSM (or, it would be better said, a concept of 
TFSM with an improved behavior). In Section III we present necessary and sufficient 
conditions for steadiness of traces in a TFSM and show how to use this criterion to 
check whether a given TFSM is strictly deterministic. Section IV contains the results 
on the complexity of checking the properties of strictly deterministic behavior of 
TFSM. In the Conclusion we briefly outline the consequences of our results and topics 
for further research. 

2. Formatting overview 
Consider two non-empty finite alphabets ܫ and ܱ; the alphabet ܫ is an input alphabet 
and the alphabet ܱ is an output alphabet. The letters from ܫ can be regarded as 
control signals received by some real-time computing system, whereas the letters 
from ܱ may be viewed as responses (actions) generated by the system. A finite 
sequence ݓ ൌ ݅ଵ, ݅ଶ, … , ݅ of input letters is called an input word, whereas a 
sequence ݖ ൌ ,ଵ ,ଶ … ,   of output letters is called an output word. As usual, the
time domain is represented by the set of non-negative reals Թ

ା. The set of all 
positive real numbers will be denoted by Թା. When such a system receives a control 
signal (a letter ݅) its output depends not only on the input signal ݅ but also on 

 a current internal state of the system, 
 a time instance when  becomes available to a system, and 
 time required to process the input (output delay). 

These aspects of real-time behavior can be formalized with the help of timestamps, 
time guards and delays. A timestamp as well as a delay is a real number from Թା. A 
timestamp indicates a time instance when the system receives an input signal or 
generates a response to it. A delay is time the system needs to generate an output 
response after receiving an input signal. A time guard is an interval ݃ ൌ ,ݑۦ  where ,ۧݒ
∋ۦ ሼሺ, ሾሽ, ۧ ∈ ሼሻ, ሿሽ, and ݑ, are timestamps such that 0 ݒ ൏ ݑ ൏  Time intervals .ݒ
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indicate the periods of time when transitions of a system are active for processing 
input signals. As usual, the term time sequences is reserved for an increasing sequence 
of timestamps. For the sake of simplicity we will deal only with time guards of the 
form ሺݑ,  ሿ: all the results obtained in this paper can be adapted with minor changesݒ
to arbitrary time guards. 
Let ࢝ ൌ ,࢞ ,࢞ ࣎ and ࢞… ൌ ,࢚ ,࢚ … ,  be an input (output) word and a time ࢚
sequence, respectively, of the same length. Then a pair ሺ࢝,  .ሻ is called a timed word࣎
Every pair of corresponding elements ࢞ and ࢚,      indicates that an input ,
signal (or an output response) ࢞ appears at time instance ࢚. In order to make this 
correspondence clearer we will often write timed words as sequences of pairs 
ሺ࢝, ሻ࣎ ൌ ሺ, ,ሻ࢚ ሺ, ,ሻ࢚ … , ሺ,  ሻ whose components are input signals (or output࢚
responses) and their timestamps. 
A Finite State Machine (FSM) over the alphabets ࡵ and ࡻ is a triple ࡹ ൌ ,ࡿۦ ,࢙  ۧ࣋
where ࡿ is a finite non-empty set of states, ࢙ is an initial state, ࣋ ⊆ ሺࡿ ൈ ࡵ ൈ ࡻ ൈ  ሻࡿ
is a transition relation. A transition ሺ࢙, , ,  when being at the ࡹ ሻ means that FSM′࢙
state ࢙ and receiving an input signal  moves to the state ࢙′ and generates the output 
response . 
FSMs can not measure time and, therefore, they are unsuitable for modeling the 
behavior of real-time systems. The authors of [1] proposed to equip FSMs with clocks 
— variables which take non-negative real values. To manipulate with clocks 
machines use reset instructions, timed guards and output delays. Time guards indicate 
time intervals when transitions are active for processing input signals. An output 
delay indicates how much time does it take to process an input. Thus, every transition 
in such a machine is a quadruple ࢚࢛ۦ, ,ࢊ࢘ࢇ࢛ࢍ	ࢊࢋ࢚ ,࢚࢛࢚࢛  Input .ۧ࢟ࢇࢋࢊ
signals and output responses are accompanied by timestamps. If an input is marked 
by a timestamp which satisfies the time guard then the transition fires, the machine 
moves to the next state and generates the output. This output is marked by a timestamp 
which is equal to the timestamp of the input plus the delay. For real-time machines of 
this kind usual problems from automata theory (equivalence and containment 
checking, minimization, etc.) may be set up and solved. The minimization problem 
for real-time machines is very important, since the complexity of many analysis and 
synthesis algorithms depend on the size of machines. In [14] this problem was studied 
under the so called "slow environment assumption”: next input becomes available 
only after an output response to the previous one is generated. 
In this paper, we consider a more advanced real-time machine; in this model the order 
in which outputs become visible to an outside observer is determined not only by the 
order in which inputs follow, but also by the delay required for their processing. When 
the same sequence of transitions is performed by such a machine the same outputs 
may follow in different order depending on the arriving time of the corresponding 
inputs. Our main goal is to develop equivalence checking and minimization 
algorithms for real-time machines of this kind. But, as the results of Automata Theory 
show, these problems may have efficient solution only for deterministic machines. 
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Thus, our first step toward the solution of these problems is to find a way to check if 
the behavior of a machine is deterministic. 
But there is also another reason to study the problem of checking the determinism of 
the behavior of real-time machines. Unlike traditional discrete models of 
computation, the behavior of real-time machines depends not only on the control 
signals as such, but also on the time of their arrival. However, the latter factor has a 
greater degree of uncertainty. In most cases, in practice, it is desirable to reduce the 
effect of this uncertainty to a minimum. Therefore, the determinacy checking problem 
for real-time machines can be considered as a special version of the verification 
problem — checking that the time factor does not have an unforeseen influence on 
the behavior of the system. 
Formally, by Timed FSM (TFSM) over the alphabets ࡵ and ࡻ we mean a quadruple 
ࡹ ൌ ሺࡿ, ,࢙ ,ࡳ  :ሻ where࣋

 ࡿ is a finite non-empty set of states, 
 ࢙ is an initial state. 
 ࡳ is a set of timed guards, 
 ࣋ ⊆ ሺࡿ ൈ ࡵ ൈ ࡻ ൈ ࡿ ൈ ࡳ ൈ Թାሻ is a transition relation. 

A transition ሺݏ, ݅, , ,′ݏ ݃, ݀ሻ should be understood as follows. Suppose that TFSM 
receives the input letter ݅ marked by a timestamp ݐ when being at the state ݏ. If the 
previous letter has been delivered to the TFSM at time ̂ݐ  such that ݐ߂ ൌ ݐ െ ݐ̂ ∈ ݃ 
then the TFSM moves to the state ݏ′ and outputs the letter  marked with the 
timestamp ߬ ൌ ݐ  ݀. When algorithmic and complexity issues of TFSM’s analysis 
and synthesis are concerned then we assume that time guards and delays are rational 
numbers, and the size of a TFSM is the length of a binary string which encodes all 
transitions in the TFSM. 
A trace ࢚࢘ in TFSM ࡹ is a sequence of transitions 
ሺ࢙, ,ࢇ ,࢈ ,࢙ ሺ࢛, ,ሿ࢜ ,ሻࢊ … , ሺି࢙, ,ࢇ ,࢈ ,࢙ ሺ࢛, ,ሿ࢜  ,࢙ ሻ, where every stateࢊ
 ൏  ൏  is an arrival state of one transition and a departure state of the next ,
transition. We say that the trace ࢚࢘ converts an input timed word ࢻ ൌ
ሺࢇ, ,ሻ࢚ ሺࢇ, ,ሻ࢚ … , ሺࢇ, ࢼ ሻ to the timed output word࢚ ൌ
ሺ࢈, ,ሻ࣎ ሺ࢈, ,ሻ࣎ … , ሺ࢈,  ሻ, iff࣎
ݐ • െ ିଵݐ ∈ ሺݑ, ,݆ ሿ holds for allݒ 1  ݅  ݊ (it is assumed that ݐ ൌ 0); 

ߛ is such a permutation of the sequence ߚ • ൌ ሺܾଵ, ଵݐ  ݀ଵሻ, ሺܾଶ, ଶݐ 
݀ଶሻ,… , ሺܾ, ݐ  ݀ሻ that the second components of the pairs ߬ଵ, ߬ଶ, … , ߬ 
constitute a time sequence. 

Clearly, for every trace ݎݐ and an input timed word ߙ its conversion ߚ (if any) is 
determined uniquely; such a conversion will be denoted as ܿݒ݊ሺݎݐ,  ሻ. Ifߙ
,ݎݐሺݒ݊ܿ  activates the trace ߙ ሻ is defined then we say that the input timed wordߙ
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,We will say that the output word ܾభ .ݎݐ ܾమ, … , ܾ is a plain response to the input 
timed word ߙ on the trace ݎݐ; it will be denoted as ݏ݁ݎሺݎݐ,  .ሻߙ

 
Fig.1 TFSM ࡹ 

Consider, for example, a TFSM ࡹ depicted in Fig. 1 and a trace  
࢚࢘ ൌ ሺ࢙, , ,࢙ , ሺ. , ሿ, ሻ, ሺ࢙, , ,࢙ , ሺ. , ሿ, ሻ,

ሺ࢙, , ,࢙ , ሺ, . ሿ, ሻ
 

in this TFSM. Then this trace 
1. accepts an input timed word ߙଵ ൌ ሺ݅, 1ሻ, ሺ݅, 2.7ሻ, ሺ݅, 4.1ሻ and converts it to the 

output timed word ߚଵ ൌ ሺଵ, 5ሻ, ሺଷ, 5.1ሻ, ሺଶ, 5.7ሻ; thus, the plain response of 
ଵݓ ଵ isߙ to ܯ ൌ ,ଵ ,ଷ  ;ଶ

2. accepts an input timed word ߙଶ ൌ ሺ݅, 1.5ሻ, ሺ݅, 3.2ሻ, ሺ݅, 4.3ሻ and converts it to 
the output timed word ߚଶ ൌ ሺଷ, 5.3ሻ, ሺଵ, 5.5ሻ, ሺଶ, 6.2ሻ, and the plain 
response of ܯ to ߙଶ is ݓଶ ൌ ,ଷ ,ଵ  ;ଵݓ ଶ which is different from

does not accept an input timed word ߙଷ ൌ ሺ݅, 2.3ሻ, ሺ݅, 4ሻ, ሺ݅, 6ሻ. 

3. Steady traces and strictly deterministic TFSMs 
As can be seen from the above example, a pair of input timed words that differ only 
in timestamps of input signals may activate the same trace in a TFSM, although plain 
responses of TFSM to these words are different. Generally speaking, there is nothing 
unusual in this: in real-time models not only the input signals, but also the values of 
timers influence a run of a model. Nevertheless, in many applications it is critically 
important to be sure that the behavior of a real-time system is predictable: once a 
system choose a mode of computation (i.e. a trace in TFSM) it will behave in a similar 
way (i.e. give the same plain response) in all computations of this mode. Traditionally, 
computer systems in which for any input data the processing mode is uniquely 
determined by the system are called deterministic. But for our model of real-time 
systems this requirement should be clarified and strengthened. For this purpose, we 
introduce the notion of steady traces and the property of strict determinacy of a real-
time system. 
A trace ࢚࢘ in TFSM ࡹ is called steady if ࢙ࢋ࢘ሺ࢚࢘, ሻࢻ ൌ ,࢚࢘ሺ࢙ࢋ࢘  ሻ holds forࢻ
every pair of input timed words ࢻ and ࢻ that activate ࢚࢘. Thus, the order of the 
output letters generated by a steady trace does not depend on the small deviations of 
the timestamps of the input signals. A TFSM ࡹ ൌ ሺࡿ, ,࢙ ,ࡳ  ሻ is called deterministic࣋
iff for every pair of transitions ሺ࢙, , , ,′࢙ ሺ࢛, ,ሿ࢜  ሻ andࢊ
ሺ࢙, , , ,″࢙ ሺ࢛, ,ሿ࢜  either ࣋ ሻ inࢊ ് ,࢛, or ሺ ሿ࢜ ∩ ሺ࢛, ሿ࢜ ൌ ∅. This 
requirement means that every timestamped input letter can activate no more than one 
transition from an arbitrary given state ࢙. It also implies that every input timed word 
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can activate no more than one trace in ࡹ. A deterministic TFSM is called strictly 
deterministic iff every initial trace in ࡹ which starts from the initial state ࢙ is steady. 
It is easy to see that TFSM, depicted in Fig. 1, is not strictly deterministic. 
The Strict Determinacy Checking Problem (in what follows, SDCP) is that of 
checking, given a TFSM, if it is strictly deterministic. It is easy to check whether a 
TFSM is deterministic by considering one by one all pairs of transitions that emerge 
from the same state. But local means alone are not enough to check whether a given 
trace in a TFSM is steady. A simple criterion for steadiness of traces is presented as 
a Theorem below. 
Let a sequence of transitions 

ሺ࢙, , ,࢙ , ,࢛ۦ ,ۧ࢜ ,ሻࢊ … , ሺି࢙, , ,࢙ , ,࢛ۦ ,ۧ࢜  ሻࢊ
 be a trace ࢚࢘ in a TFSM ࡹ. Then the following theorem holds. 
Theorem 1. A trace ࢚࢘ is steady iff for all pairs of integers , such that    ൏
  ࢊ at least one of the two inequalities  െ ࢊ  ∑ ࢛

ାୀ  or ࢊ െ ࢊ 
∑ ࢜
ାୀ  holds. 

Proof. (⇒) Suppose that there exists a pair , such that    ൏    and a ,
double inequality holds:  

 ࢛



ାୀ

൏ ࢊ െ ࢊ   ࢜



ାୀ

	. 

 Then we use two positive numbers ࢘ ൌ ࢊ െ ࢊ െ ∑ ࢛
ାୀ  and ࢿ ൌ ࢘


 and 

consider a behaviour of a TFSM ࡹ in the input timed words  

′ࢻ ൌ ሺ, ,ሻ࢜ … , ሺ,࢜



ୀ

ሻ, ሺା,࢜



ୀ

 ା࢛  ,ሻࢿ … , ሺ,࢜



ୀ

  ࢛



ାୀ

 ,ሻࢿ

″ࢻ ൌ ሺ, ,ሻ࢜ … , ሺ,࢜



ୀ

ሻ, ሺା,࢜

ା

ୀ

ሻ, … , ሺ,࢜



ୀ

ሻ.

 

 It is easy to see that both words activate ࢚࢘. 
The trace ࢚࢘ converts the timed input word ࢻ to the timed output word  

,࢚࢘ሺ࢜ࢉ ሻ′ࢻ ൌ ⋯ , ሺ, ,ሻ′ࢀ … , ሺ, ,ሻ′ࢀ … 
 such that ′ࢀ ൌ ∑ ࢜

ୀ  ∑ ሺ
ାୀ ࢛  ሻࢿ  ′ࢀ and ,ࢊ ൌ ∑ ࢜

ୀ   In this .ࢊ
timed output word, the output letter  follows the output letter  since  

′ࢀ െ ′ࢀ ൌ ࢊ െ ࢊ െ  ࢛



ାୀ

 ሺ െ ࢿሻ ൌ ࢘ െ
ሺ࢘ െ ሻ

  . 

 Hence, ࢙ࢋ࢘ሺ࢚࢘, ሻ′ࢻ ൌ ⋯ , …, ,  .…,



Винарский Е.М., Захаров В.А. К проверке строго детерминированного поведения временных конечных 
автоматов. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 325-340 

333 

On the other hand, the trace ࢚࢘ converts the timed input word ࢻ″ to the timed output 
word  

,࢚࢘ሺ࢜ࢉ ሻ″ࢻ ൌ ⋯ , ሺ, …,ሻ″ࢀ , ሺ, ,ሻ″ࢀ … 
 such that ″ࢀ ൌ ∑ ࢜

ୀ  ″ࢀ and ࢊ ൌ ∑ ࢜
ୀ   In this timed output word .ࢊ

the output letter  follows the output letter  since  

″ࢀ െ ″ࢀ ൌ ࢊ െ ࢊ ൌ  ࢜



ାୀ

  

Therefore, ࢙ࢋ࢘ሺ࢚࢘, ሻ″ࢻ ൌ ⋯ , , … ,  .…,
Thus, we got evidence that the trace ࢚࢘ is not steady. 
(⇐) Suppose that the trace ࢚࢘ is not steady. Then there exists a pair of timed input 
words ࢻ′ ൌ ሺ, ,ሻ′࢚ … , ሺ, ″ࢻ ሻ and′࢚ ൌ ሺ, ,ሻ″࢚ … , ሺ,  ሻ such that both″࢚
words activate the trace ࢚࢘ and ࢙ࢋ࢘ሺ࢚࢘, ሻ′ࢻ ് ,࢚࢘ሺ࢙ࢋ࢘  ሻ. Consequently, there″ࢻ
exists a pair of output letters  and  such that  

,࢚࢘ሺ࢜ࢉ ᇱሻࢻ ൌ ⋯ , ሺ, ,ሻ′ࢀ … , ሺ, ,ሻ′ࢀ …
,࢚࢘ሺ࢜ࢉ ᇳሻࢻ ൌ ⋯ , ሺ, ,ሻ″ࢀ … , ሺ, 	…,ሻ″ࢀ .

 

Such permutation of output letters is possible iff the following inequalities hold  
′࢚  ࢊ ൌ ′ࢀ ൏ ′ࢀ ൌ ′࢚  ,ࢊ
″࢚  ࢊ ൌ ″ࢀ  ″ࢀ ൌ ″࢚  .	ࢊ

 

But since both input timed words ࢻ′ and ࢻ″ activate ࢚࢘, we have the following 
chain of inequalities: 
 

 ࢛



ାୀ

൏ ″ࢀ െ ″ࢀ ൏ ࢊ െ ࢊ ൏ ′ࢀ െ ′ࢀ   ࢜



ାୀ

. 

Thus, if ࢚࢘ is not steady then there exists a pair of integers such that    ൏    
and  

 ࢛



ାୀ

൏ ࢊ െ ࢊ   ࢜



ାୀ

 

holds. 
End proof. 
Now, having the criterion for steadiness of traces, we can give a solution to SDCP for 
TFSMs. Let TFSM ࡹ ൌ ሺࡿ, ,࢙ ,ࡳ  the ࢛ ሻ be a deterministic TFSM. Denote by࣋
greatest lower bound of all left boundaries used in the time guards of ࡹ. In our model 
of TFSM ࢛  . Let ࢊ and ࢞ࢇࢊ be the minimum and the maximum output 
delays occurred in the transitions of ࡹ. A theorem below gives necessary and 
sufficient conditions for the behaviour of ࡹ to be strictly deterministic. 
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Theorem 2. A deterministic TFSM ࡹ is strictly deterministic iff all its traces of length 
 where , ൌ ࢊି࢞ࢇࢊڿ

࢛
  .are steady ,ۀ

Proof. The necessity of conditions is obvious. 
We prove the sufficiency of conditions by contradiction. Suppose that all traces of 
length less or equal  are steady but TFSM ࡹ is not. Then there exists such a trace 
 which is not steady. Then, by Theorem 1, this trace is a sequence of transitions ࡹ in ࢚࢘
ሺି࢙, , ,࢙ ,࢈ ሺ࢛, ,ሿ࢜ ,ሻࢊ      , and  such that for some pair of integers ,
where    ൏     two inequalities ,

 ࢛



ାୀ

 ࢊ െ ࢊ   ࢜



ାୀ

 

 hold. It should be noticed, that, by the same Theorem 1, the trace ࢚࢘′ which includes 
only the transitions ሺି࢙, , ,࢙ ,࢈ ሺ࢛, ,ሿ࢜ ,ሻࢊ     .is not steady as well ,
Hence, െ    and we have the following sequence of inequalities ,

࢞ࢇࢊ െ ࢊ  ࢊ െ ࢊ   ࢛



ାୀ

  ∗  ࢛

which contradicts our choice of  ൌ ࢊି࢞ࢇࢊڿ
࢛

 .ۀ

End of proof. 
As it follows from Theorems 1 and 2, to guarantee that a given TFSM ࡹ ൌ
ሺࡿ, ,࢙ ,ࡳ  ሻ is strictly deterministic it is sufficient to consider all traces࣋
ሺ࢙, ,ࢇ ,࢈ ,࢙ ሺ࢛, ,ሿ࢜ ,ሻࢊ … , ሺି࢙, ,ࢇ ,࢈ ,࢙ ሺ࢛, ,ሿ࢜   whose length ,ࡹ ሻ inࢊ
does not exceed the value  ൌ ࢊି࢞ࢇࢊڿ

࢛
 defined in Theorem 2, and for every such ۀ

trace check that one of the inequalities ࢊ െ ࢊ ൏ ∑ ࢛
ୀ  or ࢊ െ ࢊ  ∑ ࢜

ୀ  
holds. Thus, we arrive at 
Corollary 1. Strict Determinacy Checking Problem for TFSMs is decidable. 

4. Strict Determinacy Checking Problem for TFSMs is co-NP-hard 
Clearly, the decision procedure, based on Theorem 2, is time consuming since  may 
be exponential of the size of ܯ and the number of traces of length  in TFSM ܯ is 
exponential of . In this section we show that such an exhaustive search can hardly 
be avoided because SDCP for improved version of TFSMs is co-NP-hard. 
We are aimed to show that the complement of SDCP is NP-hard. To this end we 
consider the Subset-Sum Problem (see [7]) which is known to be NP-complete and 
demonstrate that this problem can be reduced in polynomial time to the complement 
of SDCP for TFSMs. 
The Subset-Sum Problem (SSP) is that of checking, given a set of integers ࡽ and an 
integer ࡸ, whether there is any subset ࡽ′, ′ࡽ ⊆  such that the sum of all its elements ,ࡽ
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is equal to ࡸ. More formally, the variant of the SSP we are interested in is defined as 
follows. Let ࡽ ൌ …,,  be also a ࡸ be a sequence of positive integers, and ࡺ,
positive integer. A solution to ሺࡽ, ࢠ ሻ-instance of SSP is a binary tupleࡸ ൌ
,࣌ۦ …,࣌ , ∑ such that ۧࡺ࣌ ࡺ࣌

ୀ  ൌ  In [7] it was proved that the problem of .ࡸ
checking the existence of a solution to a given ሺࡽ,  .ሻ-instance of SSP is NP-completeࡸ

 
Fig.2 TFSM ܯ 

Now, given a ሺࡽ,  ሻ-instance of SSP, we show how to build a deterministic TFSMࡸ
 such that it has an initial trace which is not strictly determined iff this instance ࡸ,ࡽࡹ
of SSP has a solution. Let ࡰ ൌ ∑ 

ࡺ
ୀ , and ࢿ and ࢾ be positive rational numbers 

such that ࢿ ൌ ࢾ ሻ andࡺ/ሺ ൌ  ሻ. Consider a TFSM depicted in Fig. 2. Thisࡺ/ࢿሺ
machine operates over alphabets ࡵ ൌ ࡻ ൌ ሼ, ሽ. It has ࡺ  states 
,࢙ ,࢙ … , ,࢙ ,࢙ା. The only transition ሺࡺ࢙ , , ,࢙ ሺ, ሿ, ࡸ   ሻ leads from theࡰ
initial state ࢙ to ࢙. From each state ࢙,    ൏  two transitions ,ࡺ
ሺ࢙, , , ,ା࢙ ሺ െ ,ࢿ  ,ሿࢿ ,࢙ሻ and ሺࢾ , , ,ା࢙ ሺࢾ, ,ሿࢿ  .ା࢙ ሻ lead to the stateࢾ
The state ࡺ࢙ is different: two transitions ሺࡺ࢙, , , ,ାࡺ࢙ ሺࡺ െ ࡺ,ࢿ  ,ሿࢿ  ሻ andࡰ
ሺࡺ࢙, , , ,ାࡺ࢙ ሺࢾ, ,ሿࢿ  .ାࡺ࢙ ሻ lead this state toࡰ
First, we make some observations. 
1) Since all transitions outgoing from the states ࢙,    ൏  have the same delay ,ࡺ
र, where ࢙ to a state ࢙ every trace from a state ,ࢾ ൏  ൏ र   is strictly ,ࡺ
deterministic. 
2) Since ࢾ ൌ ሻ and ࡺ/ሺ ൏ ࢿ ൌ , ሻ, for everyࡺ/ሺ  ൏    and a binary ,ࡺ
tuple ࢠ ൌ ,࣌ۦ ,ା࣌ … ,   the inequalities ۧࡺ࣌

ࢾ െ ࡰ ൏  ൏ ࢾࡺ   ሺ
ࡺ

ାୀ

ሺ࣌ െ ሻࢿ  ሺ െ  ሻࢾሻ࣌
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 hold. By Theorem 1, this implies that every trace from a state ࢙,      to the ,ࡺ
state ࡺ࢙ା is strictly deterministic. 
3) For the same reason the inequalities  

ࡰ ࡸ െ ࢾ 



ୀ

	 ࢿ	 ൌሺ


ୀ

ሺ࣌  ሻࢿ  ሺ െ  ሻࢿሻ࣌

hold for every ,    ൏ ࢠ and a binary tuple ,ࡺ ൌ ,࣌ۦ ,࣌ … ,  ,By Theorem 1 .ۧ࣌
this guarantees that every initial trace leading to a state ࢙,      is strictly ࡺ
deterministic. 
As for the initial traces that lead to the state ࡺ࢙ା, due to our choice of ࢿ and ࢾ, we 
can trust the following chain of reasoning. By definition, a ሺࡽ,  ሻ-instance of SSP hasࡸ
a solution ࢠ ൌ ,࣌ۦ ,࣌ … , ∑ iff ۧࡺ࣌ ࡺ࣌

ୀ  ൌ  The latter is possible iff two .ࡸ
following inequalities hold:  

࣌

ࡺ

ୀ

 	െ ࢿ	  ࢾࡺ ൏ ࡸ ൏࣌

ࡺ

ୀ

ሺሻ 	  ࢿࡺ

By taking into account the relationships below  

ሺ
ࡺ

ୀ

ሺ࣌ െ ሻࢿ  ሺ െ ሻࢾሻ࣌ ൏࣌

ࡺ

ୀ

 	െ ࢿ	  ࢾࡺ

࣌

ࡺ

ୀ

ሺሻ 	 ࢿࡺ ൌሺ
ࡺ

ୀ

ሺ࣌  ሻࢿ  ሺ െ ,ሻࢿሻ࣌

 

we can conclude that (1) holds iff another pair of inequalities hold:  

ሺ
ࡺ

ୀ

ሺ࣌ െ ሻࢿ  ሺ െ ሻࢾሻ࣌ ൏ ࡸ ൏ሺ
ࡺ

ୀ

ሺ࣌  ሻࢿ  ሺ െ  ሻࢿሻ࣌

 But in the context of observations 1) – 3) above, the latter inequalities, as it follows 
from Theorem 1, provide the necessary and sufficient conditions that the initial trace 
in TFSM ࡸ,ࡽࡹ activated by the input word ࢠ ൌ ,࣌ۦ …,࣌ ,  is not strictly ۧࡺ࣌
deterministic. 
Thus, a ሺࡽ,  is not strictly ࡸ,ࡽࡹ ሻ-instance of SSP has a solution iff TFSMࡸ
deterministic. 
The considerations above bring us to 
Theorem 3. SDCP for TFSMs is co-NP-hard. 

5. Conclusion 
The main contributions of this paper are 

1. the development of a modified version of TFSM which, in our opinion, 
provides a more adequate model of real-time computing systems; 

(1) 
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2. the introduction of the notion of strict deterministic behaviour of TFSM 
and setting up the Strict Determinacy Checking Problem (SDCP) for a 
modified version of TFSMs; 

3. the establishing of an effectively verifiable criterion for the strict 
determinacy property of TFSMs; 

4. the proving that SDCP for TFSMs is co-NP-hard. 
However, some problems concerning strict deterministic behavior of TFSMs still 
remain open. They will be topics for our further research. 
1. In Sections [Sect3] and [Sect4] it was shown that SDCP for TFSMs is co-NP-

hard and in the worst case it can be solved in double exponential time by means 
of a naive exhaustive searching algorithm based on Theorems 1 and 2. We think 
that this complexity upper bound estimate is too much high. The question arises, 
for what complexity class � SDCP for TFSMs is a �-complete problem. By 
some indications we assume that SDCP for TFSMs is PSPACE-complete 
problem. 

2. As it can be seen from the proof of Theorem 3, SDCP for TFSMs is intractable 
only if timed parameters of transitions (time guards and delays) depend on the 
number of states in TFSM. But this is not a typical phenomenon in real-time 
systems since in practice the performance of individual components of a system 
does not depend on the size of the system. Therefore, it is reasonable to confine 
ourselves to considering only such TFSMs, in which the time guards and the 
delays are chosen from some fixed finite set. As it follows from Theorem 2, for 
this class of TFSMs SDCP is decidable in polynomial time. One may wonder 
what is the degree of such a polynomial, or, in other words, how efficiently the 
strict determinacy property can be checked for TFSMs corresponded to real 
systems. 

3. In the model of TFSM besides the usual transitions there are also possible 
timeout transitions. A timeout transition fires when a timestamped input letter 
ሺ,  ሻ can not activate any usual transition from a current state. In  it was shown࢚
that in some cases such timeout transitions can not be replaced by any 
combination of ordinary transitions. In the future we are going to study how 
SDCP can be solved for TFSMs with timeouts. 
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К проверке строго детерминированного поведения 
временных конечных автоматов 
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Московский государственный университет имени М.В. Ломоносова, 
119991, Россия, Москва, Ленинские горы, д. 1 

Аннотация. Конечные автоматы широко применяются в качестве математических 
моделей при решении многочисленных задач в области программирования, 
проектирования микроэлектронных схем и телекоммуникационных систем. Для 
описания поведения систем реального времени модель конечного автомата может быть 
расширена добавлением в неё часов - параметра непрерывного времени, моделируемого 
вещественной переменной. В автоматах реального времени для входных и выходных 
сигналов указывается время их поступления и выдачи, а переходы автомата снабжены 
описанием задержек, связанных с ожиданием входных сигналов и формированием 
выходных сигналов. Так же, как и для классических автоматов дискретного времени, 
задача минимизации конечных автоматов реального времени возникает во многих 
приложениях этой модели вычислений. Для классической модели автоматов реального 
времени эта задача уже подробно рассмотрена. В нашей работе мы предлагаем более 
сложную модель: в ней порядок следования выходных сигналов определяется не только 
порядком поступления входных сигналов, но также и задержкой, связанной с их 
обработкой. В этой модели при выполнении одной и той же последовательности 
переходов выходные сигналы могут выдаваться в разном порядке в зависимости от 
времени поступления входных сигналов. В новой модели автоматов реального времени 
решению задачи минимизации должно предшествовать изучение вопроса строгой 
детерминированности - однозначности поведения автомата на одних и тех же 
последовательностях переходов. В представленной статье приведены и обоснованы 
необходимые и достаточные условия строгой детерминированности автоматов 
реального времени, а также исследованы вопросы, связанные с решением задачи 
минимизации этой разновидности автоматов. 

Ключевые слова: конечные временные автоматы; строго детерминированное 
поведение 
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