On the verification of strictly deterministic
behavior of Timed Finite State Machines

E.M. Vinarskii <vinevg2015@gmail.com>
V.A. Zakharov <zakh@cs.msu.su>

Lomonosov Moscow State University,
GSP-1, Leninskie Gory, Moscow, 119991, Russia

Abstract. Finite State Machines (FSMs) are widely used as formal models for solving
numerous tasks in software engineering, VLSI design, development of telecommunication
systems, etc. To describe the behavior of a real-time system one could supply FSM model with
clocks — a continuous time parameters with real values. In a Timed FSM (TFSM) inputs and
outputs have timestamps, and each transition is equipped with a timed guard and an output
delay to indicate time interval when the transition is active and how much time does it take to
produce an output. A variety of algorithms for equivalence checking, minimization and test
generation were developed for TFSMs in many papers. A distinguishing feature of TFSMs
studied in these papers is that the order in which output letters occur in an output timed word
does not depend on their timestamps. We think that such behavior of a TFSM is not realistic
from the point of view of an outside observer. In this paper we consider a more advanced and
adequate TFSM functioning; in our model the order in which outputs become visible to an
outsider is determined not only by the order of inputs, but also by de lays required for their
processing. When the same sequence of transitions is performed by a TFSM modified in a such
way, the same outputs may follow in different order depending on the time when corresponding
inputs become available to the machine. A TFSM is called strictly deterministic if every input
timed word activates no more than one sequence of transitions (trace) and for any input timed
word which activates this trace the letters in the output words always follows in the same order
(but, maybe, with different timestamps). We studied the problem of checking whether a
behavior of an improved model of TFSM is strictly deterministic. To this end we showed how
to verify whether an arbitrary given trace in a TFSM is steady, i.e. preserves the same order of
output letters for every input timed word which activates this trace. Further, having the criterion
of trace steadiness, we developed an exhaustive algorithm for checking the property of strict
determinacy of TFSMs. Exhaustive search in this case can hardly be avoided: we proved that
determinacy checking problem for our model of TFSM is co-NP-hard.

Keywords: Timed Finite State Machines; strictly deterministic behavior
DOI: 10.15514/ISPRAS-2018-30(3)-22

For citation: Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic
behaviour of Timed Finite State Machines. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3,
2018, pp. 325-340. DOI: 10.15514/ISPRAS-2018-30(3)-22

325

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

1. Introduction

Finite State Machines (FSMs) are widely used as formal models for analysis and
synthesis of information processing systems in software engineering, VLSI design,
telecommunication, etc. The most attractive feature of this model of computation is
its simplicity — many important synthesis and analysis problems (equivalence
checking, minimization, test derivation, etc.) for classical FSMs can be solved in time
which is almost linear or quadratic of the size of an FSM under consideration.

The concept of FSM is rather flexible. Since in many applications time aspects such
as durations, delays, timeouts are very important, FSMs can be augmented with some
additional features to describe the dependence of the behavior of a system on events
occurring in real time. One of the most advanced timed extension of FSMs is the
concept of Timed Automata which was developed and studied in [1]. Timed
Automata are supplied with clocks (timers) for indicating real time moments,
measuring durations of events, providing timeout effects. Transitions in such
automata depends not only on the incoming of the outside messages and signals but
also on the values of clocks. Further research showed that this model of computation
is very expressive and captures many important features of real-time systems
behavior. On the other side, Timed Automata in the full scope of their computing
power are very hard for analysis and transformations. The reachability problem for
Timed Automata is decidable [2], and, therefore, this model of computation is suitable
for formal verification of real-time computer systems. But many other problems such
as universality, inclusion, determinability, etc. are undecidable (see [2], [8]), and this
hampers considerably formal analysis of Timed Automata.

When a Timed Automaton is capable to selectively reset timers, it can display rather
sophisticated behavior which is very difficult for understanding and analysis. In some
cases, such ability is very important; see, e.g. [9]. But a great deal of real-time
programs and devices operate with timers much more simply: as soon as such a device
switches to a new mode of operation (new state), it resets all timers. Timed Finite
State Machines (TFSM) of this kind were studied in [5], [10], [13], [14]. TFSM has
the only timer which it resets "automatically” as soon as it moves from one state to
another. On the other hand, TFSMs, in contrast to Timed Automata introduced in [1],
operate like transducers: they receive a sequence of input signals augmented with
their timestamps (input timed word) and output a sequence of responses also labeled
by timestamps (output timed word). The timestamps are real numbers which indicate
the time when an input signal becomes available to a TFSM or an output response is
generated. Transitions of a TFSM are equipped with time guards to indicate time
intervals when transitions are active. Therefore, a reaction of a TFSM to an input
signal depends not only on the signal but also on its timestamp. Some algorithms for
equivalence checking, minimization and test generation were developed for TFSMs
in [6], [5], [13], [14], [15]. It can be recognized that this model of TFSM combines a
sufficient expressive power for modeling a wide class of real-time information
processing systems and a developed algorithmic support.

326

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

As it was noticed above a behavior of a TFSM is characterized by a pair sequences:
an input timed word and a corresponding output timed word. A distinguishing feature
of TFSMs studied in [5], [10], [13], [14], [15] is that an output timed word is formed
of timestamped output letters that follows in the same order as the corresponding
input letters regardless of their timestamps. Meanwhile, suppose that a user of some
file management system gives a command «Save» and immediately after that a
command «Exit». Then if a file to be saved is small then the user will observe first a
response «File is saved» and then a notification «File Management System is closed».
But if a file has a considerable size then it takes a lot of time to close it. Therefore, it
can happen that a user will detect first a notification «File Management System is
closed» and then, some time later, he/she will be surprised to find an announcement
«File is saved». Of course, the user may regard such behavior of the system enigmatic.
But much worse if the order in which these notifications appear may vary in different
sessions of the system. If a File Management System interacts with other service
programs such an interaction will almost certainly lead to errors. However, if a
behavior of TFSMs is defined as in the papers referred above then such a model can
not adequately capture behavioral defects of real-time systems, similar to the one that
was considered in the example.

To avoid this shortcoming of conventional TFSMs and to make their behavior more
“realistic” from the point of view of an outside observer we offer some technical
change to this model. We will assume that an output timed word consists of
timestamped letters, and these letters always follow in ascending order of their
timestamps regardless of an order in which the corresponding input letters entered a
TFSM. In this model it may happen so that an input b follows an input a but a
response to b appears before a response to a is computed. Clearly, the defect with
File Management System discussed above becomes visible to an outside observer
“through” the model of TFSMs thus modified.

At first sight, it may seem that this change only slightly complicates the analysis of
the behavior of such models. But this is a false impression. In the initial model of
TFSM the formation of an output timed word is carried out by local means for each
state of the system. In our model this is a global task since to find the proper position
of a timestamped output letter one should consider the run of TFSM as a whole.
Therefore, even the problem of checking whether a behavior of an improved model
of TFSM is deterministic can not be solved as easy and straightforwardly as in the
case of the initial model of TFSM.

It should be noticed that the property of deterministic behavior is very important in
theory real-time machines. As it was said above, universality, inclusion and
equivalence checking problems are undecidable for Timed Automata in general case
[2] but all these problems have been shown to be decidable for deterministic Timed
Automata [3], [11]. However, testing whether a Timed Automaton is determinable
has been proved undecidable [8]. Understanding and coping with these weaknesses
have attracted lots of research, and classes of timed automata have been exhibited,
that can be effectively determinized [3], [12]. A generic construction that is applicable

327

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

to every Timed Automaton, and which, under certain conditions, yields a
deterministic Timed Automaton, which is language-equivalent to the original timed
automaton, has been developed in [4].

We studied the determinacy checking problem for improved TFSMs and present the
results of our research in this paper. First, we offer a criterion to determine whether a
given sequence of transition (trace) in a TFSM is steady, i.e. for any input timed word
which activates this trace the letters of output words always follow in the same order
(but, maybe, with different timestamps). Then, using this criterion we developed an
exhaustive algorithm for checking the property of strict determinacy of TFSMs. This
property means that every input timed word activates no more than one trace and all
traces in a TFSM are steady. Exhaustive search, although been time consuming, can
hardly be avoided in this case: we proved that determinacy checking problem for
improved version of TFSMs is co-NP-hard by polynomially reducing to its
complement the subset-sum problem [7] which is known to be NP-complete.

The structure of the paper is as follows. In Section II we define the basic notions and
introduce an improved concept of TFSM (or, it would be better said, a concept of
TFSM with an improved behavior). In Section III we present necessary and sufficient
conditions for steadiness of traces in a TFSM and show how to use this criterion to
check whether a given TFSM is strictly deterministic. Section IV contains the results
on the complexity of checking the properties of strictly deterministic behavior of
TFSM. In the Conclusion we briefly outline the consequences of our results and topics
for further research.

2. Formatting overview

Consider two non-empty finite alphabets I and O; the alphabet [is an input alphabet
and the alphabet O is an output alphabet. The letters from I can be regarded as
control signals received by some real-time computing system, whereas the letters
from O may be viewed as responses (actions) generated by the system. A finite
sequence W = iy, iy, ..., i of input letters is called an input word, whereas a
sequence Z = 04, 04, ..., 0, of output letters is called an output word. As usual, the
time domain is represented by the set of non-negative reals Ry. The set of all
positive real numbers will be denoted by R*. When such a system receives a control
signal (a letter i) its output depends not only on the input signal i but also on

e acurrent internal state of the system,

e atime instance when i becomes available to a system, and

e time required to process the input (output delay).

These aspects of real-time behavior can be formalized with the help of timestamps,
time guards and delays. A timestamp as well as a delay is a real number from R*. A
timestamp indicates a time instance when the system receives an input signal or
generates a response to it. A delay is time the system needs to generate an output
response after receiving an input signal. A time guard is an interval g = (u, v), where
€{(G[} Y€]}, and u,v are timestamps such that 0 < u < v. Time intervals

328

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

indicate the periods of time when transitions of a system are active for processing
input signals. As usual, the term time sequences is reserved for an increasing sequence
of timestamps. For the sake of simplicity we will deal only with time guards of the
form (u, v]: all the results obtained in this paper can be adapted with minor changes
to arbitrary time guards.

Let w=x4,%,,..x, and T = 4,5, ..., t, be an input (output) word and a time
sequence, respectively, of the same length. Then a pair (w, T) is called a timed word.
Every pair of corresponding elements x; and tj, 1 < j < n, indicates that an input
signal (or an output response) x; appears at time instance ;. In order to make this
correspondence clearer we will often write timed words as sequences of pairs
(w, 1) = (ig, t1), (i, t3), ..., (in, t,) whose components are input signals (or output
responses) and their timestamps.

A Finite State Machine (FSM) over the alphabets I and O is a triple M = (S, S;,, p)
where S is a finite non-empty set of states, s, 1s an initial state,p € (S X I X 0 X S)
is a transition relation. A transition (s, i, 0, s") means that FSM M when being at the
state s and receiving an input signal i moves to the state s’ and generates the output
response 0.

FSMs can not measure time and, therefore, they are unsuitable for modeling the
behavior of real-time systems. The authors of [1] proposed to equip FSMs with clocks
— variables which take non-negative real values. To manipulate with clocks
machines use reset instructions, timed guards and output delays. Time guards indicate
time intervals when transitions are active for processing input signals. An output
delay indicates how much time does it take to process an input. Thus, every transition
in such a machine is a quadruple (input, timed guard, output,delay). Input
signals and output responses are accompanied by timestamps. If an input is marked
by a timestamp which satisfies the time guard then the transition fires, the machine
moves to the next state and generates the output. This output is marked by a timestamp
which is equal to the timestamp of the input plus the delay. For real-time machines of
this kind usual problems from automata theory (equivalence and containment
checking, minimization, etc.) may be set up and solved. The minimization problem
for real-time machines is very important, since the complexity of many analysis and
synthesis algorithms depend on the size of machines. In [14] this problem was studied
under the so called "slow environment assumption”: next input becomes available
only after an output response to the previous one is generated.

In this paper, we consider a more advanced real-time machine; in this model the order
in which outputs become visible to an outside observer is determined not only by the
order in which inputs follow, but also by the delay required for their processing. When
the same sequence of transitions is performed by such a machine the same outputs
may follow in different order depending on the arriving time of the corresponding
inputs. Our main goal is to develop equivalence checking and minimization
algorithms for real-time machines of this kind. But, as the results of Automata Theory
show, these problems may have efficient solution only for deterministic machines.

329

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

Thus, our first step toward the solution of these problems is to find a way to check if
the behavior of a machine is deterministic.

But there is also another reason to study the problem of checking the determinism of
the behavior of real-time machines. Unlike traditional discrete models of
computation, the behavior of real-time machines depends not only on the control
signals as such, but also on the time of their arrival. However, the latter factor has a
greater degree of uncertainty. In most cases, in practice, it is desirable to reduce the
effect of this uncertainty to a minimum. Therefore, the determinacy checking problem
for real-time machines can be considered as a special version of the verification
problem — checking that the time factor does not have an unforeseen influence on
the behavior of the system.

Formally, by Timed FSM (TFSM) over the alphabets I and O we mean a quadruple
M = (S, sin, G, p) where:

. S is a finite non-empty set of states,

« Sin 1S an initial state.

« Gisasetof timed guards,

« PES(SXIXO0XSXGXR")is a transition relation.

A transition (s, i,0,s’, g, d) should be understood as follows. Suppose that TFSM
receives the input letter i marked by a timestamp ¢ when being at the state s. If the
previous letter has been delivered to the TFSM at time tsuchthatAt=t—"t € g
then the TFSM moves to the state s’ and outputs the letter o marked with the
timestamp T = t + d. When algorithmic and complexity issues of TFSM’s analysis
and synthesis are concerned then we assume that time guards and delays are rational
numbers, and the size of a TFSM is the length of a binary string which encodes all
transitions in the TFSM.

A trace tr in TFSM M is a sequence of transitions
(50,a4,bq,51, (U, V1], d1), ., (Sn_1, Ay, by, Sp, (U, V4], dyy), Where every state s;,
0 <j <m, is an arrival state of one transition and a departure state of the next
transition. We say that the trace tr converts an input timed word a =
(aq,ty), (ay, ty), ..., (a, t,) to the timed output word B =
(bjl’ T1), (bjz'TZ)' . (bjn’ Tn), iff

. tj — tji—1 € (u;,v;] holds for all j, 1 < i < n (it is assumed that t, = 0);

. B is such a permutation of the sequence y = (by, t; + dy), (b, t, +
dy), ..., (by, t,, + d;,) that the second components of the pairs 74, T, ..., Tp,
constitute a time sequence.

Clearly, for every trace tr and an input timed word « its conversion £ (if any) is
determined uniquely; such a conversion will be denoted as conv(tr,). If
conv(tr, a) is defined then we say that the input timed word « activates the trace

330

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

tr. We will say that the output word b; , b;, ..., b; is a plain response to the input

timed word @ on the trace tr; it will be denoted as resp(tr,).

i, (0.5, 2]/ (01, 4) m i, (1.5,2]/(02, 3) m i, (1,1.5]/(og, 1)
Fig.1 TFSM M
Consider, for example, a TFSM M depicted in Fig. 1 and a trace
tr = (S0,i,51,01,(0.5,2],4),(s1,i,52,0,,(1.5,2],3),

(Sz, i, S§3,03, (1, 1. 5], 1)
in this TFSM. Then this trace

1. accepts an input timed word a; = (i, 1), (i, 2.7), (i, 4.1) and converts it to the
output timed word B; = (04, 5), (03,5.1), (05, 5.7); thus, the plain response of
M to @y is Wy = 04, 03, 03;

2. accepts an input timed word a, = (i, 1.5), (i, 3.2), (i, 4.3) and converts it to
the output timed word 8, = (03, 5.3), (04, 5.5), (02, 6.2), and the plain
response of M to a, is w, = 03, 01, 0, which is different from wy;

does not accept an input timed word a3 = (i, 2.3), (i, 4), (i, 6).

3. Steady traces and strictly deterministic TFSMs

As can be seen from the above example, a pair of input timed words that differ only
in timestamps of input signals may activate the same trace in a TFSM, although plain
responses of TFSM to these words are different. Generally speaking, there is nothing
unusual in this: in real-time models not only the input signals, but also the values of
timers influence a run of a model. Nevertheless, in many applications it is critically
important to be sure that the behavior of a real-time system is predictable: once a
system choose a mode of computation (i.e. a trace in TFSM) it will behave in a similar
way (i.e. give the same plain response) in all computations of this mode. Traditionally,
computer systems in which for any input data the processing mode is uniquely
determined by the system are called deterministic. But for our model of real-time
systems this requirement should be clarified and strengthened. For this purpose, we
introduce the notion of steady traces and the property of strict determinacy of a real-
time system.

A trace tr in TFSM M is called steady if resp(tr,a,) = resp(tr, a,) holds for
every pair of input timed words a; and a, that activate tr. Thus, the order of the
output letters generated by a steady trace does not depend on the small deviations of
the timestamps of the input signals. A TEFSM M = (S, s;, G, p) is called deterministic
iff for every pair of transitions (s,i1,04, 8", (Uq,v1],dy) and
(S, iz,Oz,S”, (uz,vZ],dz) in P either il * iz, or (ul,v1] n (uz,vZ] = Q) This
requirement means that every timestamped input letter can activate no more than one
transition from an arbitrary given state s. It also implies that every input timed word

331

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

can activate no more than one trace in M. A deterministic TFSM is called strictly
deterministic iff every initial trace in M which starts from the initial state s;, is steady.
It is easy to see that TFSM, depicted in Fig. 1, is not strictly deterministic.

The Strict Determinacy Checking Problem (in what follows, SDCP) is that of
checking, given a TFSM, if it is strictly deterministic. It is easy to check whether a
TFSM is deterministic by considering one by one all pairs of transitions that emerge
from the same state. But local means alone are not enough to check whether a given
trace in a TFSM is steady. A simple criterion for steadiness of traces is presented as
a Theorem below.

Let a sequence of transitions
(SO' i1; $1,01, (ulr 171), dl)' e (sn—li inﬂ Sn, On, (unr vn)r dn)
be a trace tr in a TFSM M. Then the following theorem holds.

Theorem 1. 4 trace tr is steady iff for all pairs of integers k,m such that 1 < k <
m < n at least one of the two inequalities dy — dp < YLy U or dy — dpy >
errik+1 v] holds.

Proof. (=) Suppose that there exists a pair k,m such that 1 <k <m <n, and a
double inequality holds:

m m
j=k+1 j=k+1

Then we use two positive numbers 1 =d) — dp, — Xjle 1 U and & =£ and
consider a behaviour of a TFSM M in the input timed words

k k k m
a = (i1, 171), ey (ik,z v]-), (ik+1,z v]' + Upq + 8), ey (im,z 17]' + Z u] + S),
j=1 j=1 j=1 j=k+1
k k+1 m
& = (2,01, s (o) 9D, s) O (s)).
j=1 j=1 j=1

It is easy to see that both words activate tr.

The trace tr converts the timed input word &4 to the timed output word
conv(tr,a’) =, (0,0, T'), o (01, T'1), ...

such that T'p, = ¥} v + X201 (Uj + €) + dpy, and T’y = Tf_; v; + d. In this

timed output word, the output letter o, follows the output letter o,,, since

’ ’ = r(m—k)
T —T, = dy— dy — Z w+ (m—Ie =71 - > 0.
j=k+1
Hence, resp(tr,a’) = -+, 0p, ..., 0, ...

332

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

On the other hand, the trace tr converts the timed input word a” to the timed output
word

conv(tr,a”) =, (0, T"}), .., (0, T"), ...
such that T") = Z]’-‘zl vj+dgand T",, = Y711 vj + dyp,. In this timed output word

the output letter 0,,, follows the output letter o, since
m

T"m_T"k = dm_dk = z V;

=0

j=k+1
Therefore, resp(tr,a”) = -, 0y, ..., Oy, ...
Thus, we got evidence that the trace tr is not steady.

(<) Suppose that the trace tr is not steady. Then there exists a pair of timed input
words &' = (iq,t')), ..., (ip, t'n) and a” = (iy, t"1), ..., (i, t",) such that both
words activate the trace tr and resp(tr,a’) # resp(tr,a"). Consequently, there
exists a pair of output letters 0,, and 0, such that
conv(tr,a’) =, (01, T'1), e, (0, T'), -
conv(tr,a”) =, (0, T"), o, (01, T"}),
Such permutation of output letters is possible iff the following inequalities hold
ty+d, =T, <T,=t,+d,,
t'y+d, =T, >T', =t', +d,.
But since both input timed words @’ and a” activate tr, we have the following
chain of inequalities:

m m
Z w <T'p —T' <dy—dp <Tp — T < Z v}
j=k+1 j=k+1
Thus, if tr is not steady then there exists a pair of integers suchthat1 <k <m<n
and

m m
j=k+1 j=k+1
holds.
End proof.

Now, having the criterion for steadiness of traces, we can give a solution to SDCP for
TFSMs. Let TFSM M = (S, 5, G, p) be a deterministic TFSM. Denote by u,,;,, the
greatest lower bound of all left boundaries used in the time guards of M. In our model
of TFSM u,,,;, > 0. Let d,,;, and d;,4, be the minimum and the maximum output
delays occurred in the transitions of M. A theorem below gives necessary and
sufficient conditions for the behaviour of M to be strictly deterministic.

333

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

Theorem 2. A deterministic TFSM M is strictly deterministic iff all its traces of length

— I-dmax —dmin

p, where p |, are steady.

Umin

Proof. The necessity of conditions is obvious.

We prove the sufficiency of conditions by contradiction. Suppose that all traces of
length less or equal p are steady but TFSM M is not. Then there exists such a trace
tr in M which is not steady. Then, by Theorem 1, this trace is a sequence of transitions
(sj-1,ij, 85, bj, (u),vj],d;), 1 < j < m, such that for some pair of integers m and k,
where 1 < k < m < n, two inequalities

m m
Zudek—deZvj
j=k+1 j=k+1

hold. It should be noticed, that, by the same Theorem 1, the trace tr’ which includes
only the transitions (s;j_q,ij,Sj, bj, (u;,vj],d;),m < j < k, is not steady as well.
Hence, m — k > p, and we have the following sequence of inequalities

m

dmax_dmin = dm_dk = Z u; > P * Upin
j=k+1
. . . d —dmi
which contradicts our choice of p = [w .
min

End of proof.

As it follows from Theorems 1 and 2, to guarantee that a given TFSM M =
(S,5in, G, p) is strictly deterministic it is sufficient to consider all traces
(50, a1,b1,51, (U1, v1],d1), -, (Sn_1, Qn, by, Sp, (U, v,], dy,) in M, whose length n

— [dmax _dmin-l

does not exceed the value p defined in Theorem 2, and for every such

Umin

trace check that one of the inequalities dy — d, < Yj_,u; or dy —dy, > Yj,v;
holds. Thus, we arrive at
Corollary 1. Strict Determinacy Checking Problem for TFSMs is decidable.

4. Strict Determinacy Checking Problem for TFSMs is co-NP-hard

Clearly, the decision procedure, based on Theorem 2, is time consuming since p may
be exponential of the size of M and the number of traces of length p in TFSM M is
exponential of p. In this section we show that such an exhaustive search can hardly
be avoided because SDCP for improved version of TFSMs is co-NP-hard.

We are aimed to show that the complement of SDCP is NP-hard. To this end we
consider the Subset-Sum Problem (see [7]) which is known to be NP-complete and
demonstrate that this problem can be reduced in polynomial time to the complement
of SDCP for TFSMs.

The Subset-Sum Problem (SSP) is that of checking, given a set of integers Q and an
integer L, whether there is any subset Q', Q" < @, such that the sum of all its elements
334

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

is equal to L. More formally, the variant of the SSP we are interested in is defined as
follows. Let Q = mq, m,, ..., my be a sequence of positive integers, and L be also a
positive integer. A solution to (Q,L)-instance of SSP is a binary tuple z =
(04,05, ...,0y) such that Z}Vzl og;m; = L. In [7] it was proved that the problem of
checking the existence of a solution to a given (@Q, L)-instance of SSP is NP-complete.

0, {8, e] /{0, &)

o5 (1,2]/(0, L 4+)
So >

L, {my — e, my + €]/{L, §)

1, {mpy —e, mp + e]/{1, D) 0, {& el /{0, &)

0, (&,]/ (0, D) 1, {m N—1 — E¢¥rpr 9 +]/ {1, &)

Fig.2 TFSM M

Now, given a (Q, L)-instance of SSP, we show how to build a deterministic TFSM
M ;, such that it has an initial trace which is not strictly determined iff this instance
of SSP has a solution. Let D = Z}Vﬂ m;, and € and & be positive rational numbers
such that £ = 0(1/N?) and 6 = 0(&/N?). Consider a TFSM depicted in Fig. 2. This
machine operates over alphabets I =0 =1{0,1}. It has N+ 2 states
S0,S1, -»Sn Sn+1- The only transition (sg,0,0,s4,(1,2],L+ D) leads from the
initial state sy to s;. From each state s;,1<j<N, two transitions
(sj1,1,5j44,(m; — g,m; + €], 6) and (5, 0,0, 5,1, (8, €], 6) lead to the state s, 1.
The state sy is different: two transitions (sy, 1,1, Sy41, (my — & my + €], D) and
(55, 0,0,sy41, (6, €], D) lead this state to Sy 1.

First, we make some observations.

1) Since all transitions outgoing from the states 55, 1 < j < N, have the same delay

8, every trace from a state s, to a state s,, where 0 < k <€ < N, is strictly
deterministic.

2) Since § = 0(1/N*) and 0 < £ = 0(1/N?), for every k,1 < k < N, and a binary

tuple z = (0}, Ok+1, ---, Oy) the inequalities
N

§—-D<0<NS< z (0;(m; — &) + (1 — 0,)8)
j=k+1

335

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

hold. By Theorem 1, this implies that every trace from a state s, 1 < k < N, to the
state Sy.1 is strictly deterministic.
3) For the same reason the inequalities

k k
D+L—6>Zm, + ks=Z(a,-(m,+s)+(1—a,.)s)
=1 =1

hold for every k,1 < k < N, and a binary tuple z = (04, 03, ..., 0}). By Theorem 1,
this guarantees that every initial trace leading to a state s3,1 < k < N is strictly
deterministic.

As for the initial traces that lead to the state sy, ¢, due to our choice of € and &, we
can trust the following chain of reasoning. By definition, a (Q, L)-instance of SSP has
a solution z = (04,0, ...,0y) iff Z}‘lzl og;m; = L. The latter is possible iff two
following inequalities hold:

N N
Zajm,-—e+N6<L<Zaj(m,-)+N£ (1
j=1 j=1

By taking into account the relationships below
N N
Z(Uj(mj —&8+1-0)d) < Zdjml- — &€+ N6
j=1 j=1

N N
Zaj(mj) +N£:Z(0'j(mj+8)+(1—0'j)8),
j=1 j=1

we can conclude that (1) holds iff another pair of inequalities hold:
N N
Z(aj(mj —&)+(1-0)8) <L< Z(aj(m,- +&)+(1—0)e)
j=1 j=1

But in the context of observations 1) — 3) above, the latter inequalities, as it follows
from Theorem 1, provide the necessary and sufficient conditions that the initial trace
in TFSM M, activated by the input word z = (64,03, ...,0y) is not strictly
deterministic.

Thus, a (Q,L)-instance of SSP has a solution iff TFSM Mg, is not strictly
deterministic.

The considerations above bring us to

Theorem 3. SDCP for TFSMs is co-NP-hard.

5. Conclusion

The main contributions of this paper are

1. the development of a modified version of TEFSM which, in our opinion,
provides a more adequate model of real-time computing systems;

336

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

2. the introduction of the notion of strict deterministic behaviour of TFSM

and setting up the Strict Determinacy Checking Problem (SDCP) for a
modified version of TFSMs;

3. the establishing of an effectively verifiable criterion for the strict

determinacy property of TFSMs;

4. the proving that SDCP for TFSMs is co-NP-hard.

However, some problems concerning strict deterministic behavior of TFSMs still
remain open. They will be topics for our further research.

1.

In Sections [Sect3] and [Sect4] it was shown that SDCP for TFSMs is co-NP-
hard and in the worst case it can be solved in double exponential time by means
of a naive exhaustive searching algorithm based on Theorems 1 and 2. We think
that this complexity upper bound estimate is too much high. The question arises,
for what complexity class F SDCP for TFSMs is a F-complete problem. By
some indications we assume that SDCP for TFSMs is PSPACE-complete
problem.

As it can be seen from the proof of Theorem 3, SDCP for TFSMs is intractable
only if timed parameters of transitions (time guards and delays) depend on the
number of states in TFSM. But this is not a typical phenomenon in real-time
systems since in practice the performance of individual components of a system
does not depend on the size of the system. Therefore, it is reasonable to confine
ourselves to considering only such TFSMs, in which the time guards and the
delays are chosen from some fixed finite set. As it follows from Theorem 2, for
this class of TFSMs SDCP is decidable in polynomial time. One may wonder
what is the degree of such a polynomial, or, in other words, how efficiently the
strict determinacy property can be checked for TFSMs corresponded to real
systems.

In the model of TFSM besides the usual transitions there are also possible
timeout transitions. A timeout transition fires when a timestamped input letter
(i, t) can not activate any usual transition from a current state. In it was shown
that in some cases such timeout transitions can not be replaced by any
combination of ordinary transitions. In the future we are going to study how
SDCP can be solved for TFSMs with timeouts.

Acknowledgments

The authors of the article express their deep gratitude to V.V. Podymov and the
anonymous reviewers for their valuable comments and advice on improving the
article. This work was supported by the Russian Foundation for Basic Research, Grant
N 18-01-00854.

References
[1]. Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer Science, vol. 126,

1994, pp. 183-235.
337

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

[2].

[3].

[4].

[5].

[6].
[7].
[8].

338

Alur R., Madhusudan P. Decision Problems for Timed Automata: A Survey. In
Proceedings of the 4-th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’04), 2004, pp. 1-24.

Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Automata. In
Proceedings of the 6-th International Conference on Computer Aided Verification
(CAV’94), 1994, p 1-13.

Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata Determinizable?
In Proceedings of the 36-th International Colloquium on Automata, Languages, and
Programming (ICALP 2009), 2009, p. 43-54.

Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. In Proceedings of the
International Conference GANDALF, 2014, p. 203-216.

Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed Automata
Specifications. Formal Aspects of Computing, vol. 12, no. 5, 2000, p. 350-371.

Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. 35.5: The subset-sum problem.
Introduction to Algorithms (2-nd ed.), 2001.

Finkel O. Undecidable Problems about Timed Automata. In Proceedings of 4th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), 2006, p. 187-199.

. Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based Protocol. Computer

Networks, vol. 2, 1978, pp. 271-290.

. Merayo M.G., Nuunez M., Rodriguez 1. Formal Testing from Timed Finite State

Machines. Computer Networks, vol. 52, no 2, 2008, pp. 432-460.

. Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed Automata: Closing

a Decidability Gap. In Proceedings of the 19-th Annual Symposium on Logic in Computer
Science (LICS’04), 2004, pp. 54-63.

. Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with Integer Resets:

Language Inclusion and Expressiveness. In Proceedings of the 6-th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08), 2008,
pp. 78-92.

. Tvardovskii A., Yevtushenko N. Minimizing Timed Finite State Machines. Tomsk State

University Journal of Control and Computer Science, No 4 (29), 2014, pp. 77-83 (in
Russian).

. Tvardovskii A., Yevtushenko N., M. Gromov. Minimizing Finite State Machines with

Time Guards and Timeouts. Trudy ISP RAN/Proc. ISP RAS, vol. 29, issue 4, 2017,
pp. 139-154 (in Russian).

. Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation Strategies

for Systems with Timeouts. In Proceedings of the 11-th International Conference on
Quality Software, 2011, p. 141-149.

Bunapckuit E.M., 3axapos B.A. K nposepke cTporo JJeTepMHHHUPOBAHHOTO MOBEJICHHS BDEMEHHBIX KOHEUHBIX
aBToMatoB. Tpyoer UCIT PAH, Tom 30, Beim. 3, 2018 1., cTp. 325-340

K npoBepke cTporo neTepMMHUPOBAHHOIO NoBeaeHUs!
BpPeMeHHbIX KOHeYHbIX aBTOMaTOB

E.M.Bunapckuii <vinevg2015@gmail.com>
B.A. 3axapos < zakh@cs.msu.su >.
Mocxkogckuii 2ocyoapcmeennblil yHugepcumem umenu M.B. Jlomornocosa,
119991, Poccus, Mocksa, Jlenunckue 2opwi, 0. 1

AnHoTanmsi. KoHeuHble aBTOMAThl LIMPOKO NPUMEHSIOTCA B KaueCTBE MaTEeMaTHYECKUX
MoJeJell TpH pEIICHHH MHOTOYHMCICHHBIX 33Jad B O0JAacTH IpOrpaMMHPOBAHUS,
NIPOCKTUPOBAHUSA MUKPOIEKTPOHHBIX CXE€M U TEJIeKOMMYHUKAI[MOHHBIX cucteM. s
OIMCaHMs TIOBEJICHHS CHCTEM PEabHOTO0 BPEMEHH MOJIEb KOHEYHOTO aBTOMATa MOXET OBITh
paciupena J00aBlIeHUEM B He€ 4acoB - apaMeTpa HEMPEPLIBHOTO BPEMEHH, MOJIEITUPYEMOT0
BEILIECTBEHHOII NepeMeHHON. B aBTOMaTax peanpHOr0 BPEMEHH JJIsl BXOAHBIX U BBIXOAHBIX
CUTHAJIOB YKa3bIBACTCS BPEMS UX IOCTYIUICHUS U BBIIAYH, a EPEXO/AbI aBTOMATa CHAOKCHBI
ONMCAaHWEM 33/IePKEK, CBSI3AHHBIX C OXKHIAHHEM BXOAHBIX CHUTHATOB M (DOPMHPOBAHHEM
BBIXOJHBIX CUTHaNOB. Tak e, KaKk U Ul KIACCUYECKUX aBTOMATOB JUCKPETHOI'O BPEMCHH,
3aJaya MUHMMU3AIMM KOHEYHBIX aBTOMATOB pPEaJlbHOIO BPEMEHU BO3HUKAET BO MHOIHX
MIPUIOKEHUSIX ATOM MoJiesu BeluMciIeHu. [l Kaccuueckoil Mozieny aBToOMaToB pPeajlbHOro
BPEMEHH 3Ta 3ajaua yxe MoApoOHO paccMoTpeHa. B Hamed pabore Mbl npeniaraeM Goinee
CIIOKHYIO MOJIEINb: B HEH TMOPSIIOK CIE0BAHUS BBIXOJHBIX CUTHANIOB OMpPEETSIeTCs HE TONBKO
MOPAIKOM TOCTYIJIEHHS BXOJIHBIX CHUTHAJIOB, HO TaKXKe U 3aJepPKKOM, CBA3aHHOM C HX
o0paboTkoi. B 3Toif Monenu mpH BBHINOJHEHWH OOHOW W TOH K€ MOCIEAOBATEIBHOCTH
NIEPEXO0B BBHIXOJHBIE CHUTHAJIBI MOTYT BBIAABATHCS B PA3HOM IOPSAKE B 3aBUCHMOCTH OT
BPEMEHHU [IOCTYIUICHHS BXOIHBIX CUTHAJIOB. B HOBOM MOJeIl aBTOMAaTOB peallbHOI'O BPEMEHHU
pELIEHHI0 33Ja4d MHUHUMU3ALUM JOJDKHO IPEALIECTBOBATh U3YUCHHUE BOIPOCA CTPOroM
JETePMUHUPOBAHHOCTU - OJHO3HAUYHOCTH IIOBEJCHUS aBTOMaTa Ha OJHUX U TeX XKe
IIOCJIEIOBAaTEIBHOCTSX MEpeXofoB. B ImpeacTaBneHHON CTaThe NMPUBEICHBI U O0OOCHOBAHBI
HEOOXOIUMbIE U JOCTaTOYHBIE YCIOBHS CTPOTOH JETEPMUHHMPOBAHHOCTH aBTOMATOB
peanbHOrO BPEMEHHU, a TaKKEe MCCIEJOBaHbl BOIPOCHI, CBA3aHHBIE C PELICHHEM 3a1auH
MUHHMMU3ALMU 3TOH pa3HOBUAHOCTU aBTOMATOB.

KimloueBble ¢JIOBa: KOHEYHbIE BpPEMEHHBIE aBTOMATBI, CTPOr0 JETEPMHUHHPOBAHHOE
MOBEJCHUE

DOI: 10.15514/ISPRAS-2018-30(3)-22

s ourupoBanmsi: Bunapckuit E.M., 3axapos B.A. K nposepke ctporo
JeTepMUHUPOBAHHOTO MTOBEJICHUS BpEMEHHBIX KOHEUHBIX aBToMaToB. Tpynsl UCII PAH, Tom
30, Beim. 3, 2018 r., ctp. 325-340 (ma anrmmiickoM s3bike). DOI: 10.15514/ISPRAS-2018-
30(3)-22

339

Vinarskii E.M., Zakharov V.A. On the verification of strictly deterministic behaviour of Timed Finite State Machines.
Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 325-340

Cnucok nutepatypbl

[1]. Alur R., Dill D. A Theory of Timed Automata. Theoretical Computer Science, vol. 126,
1994, pp. 183-235.

[2]. Alur R., Madhusudan P. Decision Problems for Timed Automata: A Survey. In
Proceedings of the 4-th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems (SFM’04), 2004, pp. 1-24.

[3]. Alur R., Fix L., Henzinger Th. A. A Determinizable Class of Timed Automata. In
Proceedings of the 6-th International Conference on Computer Aided Verification
(CAV’94), 1994, p 1-13.

[4]. Baier C., Bertrand N., Bouyer P., Brihaye T. When are Timed Automata Determinizable?
In Proceedings of the 36-th International Colloquium on Automata, Languages, and
Programming (ICALP 2009), 2009, p. 43-54.

[5]. Bresolin D., El-Fakih K., Villa T., Yevtushenko N. Deterministic Timed Finite State
Machines: Equivalence Checking and Expressive Power. In Proceedings of the
International Conference GANDALF, 2014, p. 203-216.

[6]. Cardell-Oliver R. Conformance Tests for Real-Time Systems with Timed Automata
Specifications. Formal Aspects of Computing, vol. 12, no. 5, 2000, p. 350-371.

[7]. Cormen T. H., Leiserson C. E., Rivest R. L., Stein C. 35.5: The subset-sum problem.
Introduction to Algorithms (2-nd ed.), 2001.

[8]. Finkel O. Undecidable Problems about Timed Automata. In Proceedings of 4th
International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), 2006, p. 187-199.

[9]. Fletcher J. G., Watson R. W. Mechanism for Reliable Timer-Based Protocol. Computer
Networks, vol. 2, 1978, pp. 271-290.

[10]. Merayo M.G., Nuunez M., Rodriguez I. Formal Testing from Timed Finite State
Machines. Computer Networks, vol. 52, no 2, 2008, pp. 432-460.

[11]. Ouaknine J., Worrell J. On the Language Inclusion Problem for Timed Automata: Closing
a Decidability Gap. In Proceedings of the 19-th Annual Symposium on Logic in Computer
Science (LICS’04), 2004, pp. 54-63.

[12]. Suman P.V., Pandya P.K., Krishna S.N., Manasa L. Timed Automata with Integer Resets:
Language Inclusion and Expressiveness. In Proceedings of the 6-th International
Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’08), 2008,
pp- 78-92.

[13]. A.C. Teapnosckuii, H.B. EBrymenko. K MuHMMH3auuu aBTOMAaTOB C BPEMEHHBIMU
orpaHuyeHusAMU. BecTHUK TOMCKOro rocyapCcTBEHHOTO YHHUBEpPCHUTETA. YIIPaBICHUE,
BBIYMCIIHTEINIbHAS TEXHUKA U HHpopMaTHKa, vol. 29, no 4, 2014, pp. 77-83.

[14]. Teapmosckuii A.C., Erymenko H.B., F'pomMos M.JI. MUHUMHU3aIMs aBTOMATOB C TaiiMayTamu
u BpeMeHHbIMH orpannuenusiMu. Tpynast UCIT PAH, Tom 29, b 4, 2017 1., cTp. 139-154.
DOI: 10.15514/ISPRAS-2017-29(4)-8..

[15]. Zhigulin M., Yevtushenko N., Maag S., Cavalli A. FSM-Based Test Derivation Strategies
for Systems with Timeouts. In Proceedings of the 11-th International Conference on
Quality Software, 2011, p. 141-149.

340

