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Abstract. Many common programming tasks, like connecting to a database, drawing an image, 
or reading from a file, are long implemented in various frameworks and are available via 
corresponding Application Programming Interfaces (APIs). However, to use them, a software 
engineer must first learn of their existence and then of the correct way to utilize them. 
Currently, the Internet seems to be the best and the most common way to gather such 
information. Recently, a deep-learning-based solution was proposed in the form of DeepAPI 
tool. Given English description of the desired functionality, sequence of Java function calls is 
generated. In this paper, we show the way to apply this approach to a different programming 
language (C# over Java) that has smaller open code base; we describe techniques used to 
achieve results close to the original, as well as techniques that failed to produce an impact. 
Finally, we release our dataset, code and trained model to facilitate further research. 
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1. Introduction 
When writing code, software developers often utilize various libraries via APIs. Since 
the problems being solved in this manner are usually similar for most users, their 
solutions form stable patterns of API invocations. 
API mining is a long-established line of research aimed at extracting these API usage 
trends from source code. The importance of the task lies in the fact that generally 
developers spend a lot of time trying to learn frameworks’ APIs in order to utilize 
them efficiently. A field study has found that developers often struggle to map a task 
from problem domain to the terminology of the API [1]. In another survey 67.6% of 
respondents identified that learning APIs is hindered by inadequate or absent 
resources [2]. 
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Usually, when facing such problems, developers turn to general web search engines. 
However, those are not optimized for programming-related queries and thus tend to 
be inefficient [3]. 
An alternative lies in various approaches based on statistical analysis of source code. 
They can provide sequences of API methods that are often used together [4], mine 
API specifications in the form of automata [5], synthesize relevant code snippets [6]. 
Deep API Learning [7] is a recent deep learning-based take on the problem that 
reports state-of-the-art results. The authors formulate the problem of providing API 
patterns satisfying users’ needs as a translation one. Input language, in which user 
describes desired functionality, is English, and the output language is one of API 
sequences: API calls are words of the language, ordered sequences of these calls form 
sentences. For example, English sentence “generate random int” could be translated 
to the language of Java API as “Random.new Random.nextInt”, which corresponds 
to the construction of an object of type Random and subsequent call of its nextInt 
method. 
DeepAPI tool targets exclusively Java programming language and reportedly 
performs well. Benefits of the approach come from the usage of deep recurrent neural 
networks. Thanks to them, trained model can distinguish synonyms and impact of 
word sequence (for example, it can distinguish queries convert string to int and 
convert int to string). 
However, the authors identify several threats to validity, including possible failure 
when extending the approach to other programming languages. 
Our main goals are to test this threat, thus appraising generality of the approach, and 
to consider possible improvements. We choose C# as a target language due to its 
general similarity to Java, aiming to make a first step towards more different — and 
therefore challenging — target languages. 
However even in our case simple copying of DeepAPI approach leads to bad results, 
and constructing well-working model proves to be far from trivial. In this paper, we 
describe our experience of extending the proposed approach to C#. 
To achieve our goals we collect dataset of 2,886,309 training samples from open 
source projects’ code and use it to first train a model with the architecture of DeepAPI 
(attaining the result of 10.94 BLEU), and then tune parameters to achieve BLEU 
26.26. After that, we introduce data preprocessing, which reduces dataset size to 
1,397,597, but improves its quality and increases BLEU metric to 46.99. Finally, we 
employ transfer learning on an alternative dataset of method names and achieve the 
best results of 50.14 BLEU, which is fairly close to the 54.42 reported by DeepAPI 
on Java dataset. 
Additionally we ask professional developers to evaluate output of our model on 
several queries, which shows that on average our model, DeepAPI#, performs as well 
as DeepAPI. 
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Our main contributions are: 
 reproduction of the DeepAPI experiment with a different dataset; 
 modification of the approach via programming-language-independent data 

preprocessing which leads to results, comparable to original, despite lack of 
data; 

 collection of C# dataset of commented methods and publishing of it for the 
benefit of the future research in the area; 

 employment of transfer learning techniques for additional improvement of 
the results. To the best of our knowledge, we are the first to investigate 
transfer learning in the area of API mining. 

The paper is organized as follows: in section 2 we outline DeepAPI model 
architecture. Next, in section 3 collection of the dataset needed for model training is 
discussed and additional preprocessing steps are introduced. We describe our 
application of transfer learning to the problem in section 4. Technical details of model 
training are reported in section 5, which is followed by section 6, where evaluation 
results are described. We finish the paper with section 7, where we report work done 
on related problems and discuss ways in which existing research differs from ours. 

2. DeepAPI model 
We borrow general model structure from DeepAPI, which is itself based on recent 
advancements in neural machine translation. Here we will provide only an overview, 
for details please refer to the original paper [7] and our previous research-in-progress 
paper [8]. 
Since the goal is to generate one sequence of words based on another, the task falls 
in the category of Sequence-to-Sequence learning [9]. One of the best architectures 
for the task is an Encoder-Decoder network [10]. 
It consists of two recurrent neural networks (Recurrent neural network is a special 
class of neural networks where unit can be connected to itself, thus allowing its state 
to serve the role of memory). Encoder network reads input sequence, Decoder 
generates output one. The process goes as following. 
Encoder reads input word by word, embeds each one in a high-dimensional space and 
sequentially updates its hidden state, which by the end of the sentence contains 
language-independent idea of the input sentence. This state (also known as context 
vector) is then passed to the Decoder, which based on it and the last generated word 
generates words one by one until a special end-of-sequence token is outputted. 
An example of such model at work can be seen in Fig. 1. In the image states of 
networks are rolled out in time, so for example RNN1, RNN2, RNN3 is the RNN state 
at time steps 1, 2, 3. Note that Encoder and Decoder consist of different RNNs and 
work in different time windows: at first, Encoder RNN makes 3 steps in time and then 
Decoder RNN makes 3 steps in time. 
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Fig. 1. RNN Encoder-Decoder workflow 

The benefits of this model include synonym handling (words used in the similar 
contexts get embedded near each other), successful processing of long inputs thanks 
to the memorizing ability of the recurrent networks, and finally appreciation of word 
sequence impact. 
One major downside of such a model is the need for a large amount of sentence pairs 
describing the same functionality in two languages (“generate random number”, 
“Random.new Random.Next”). Format of the API language description is reported in 
the point 3.1.3. 
Source of such data can be methods’ documentation comments (that in C# are XML-
based and contain summary section, in which brief description of the method’s 
functionality should be supplied) and corresponding API calls made in the method 
body. Details of the dataset collection are described in section 3. 
There are several improvements of the Encoder-Decoder architecture that were shown 
to reliably improve results. 

 Using Bidirectional Encoder leads to input being processed twice: in 
normal order and in reverse, resulting in 2 context vectors, which are then 
concatenated to get final context vector [11]. 

 Attention mechanism [12] allows decoder to focus on different input words 
when generating different output ones. 

In the original DeepAPI paper an additional improvement is introduced in the form 
of a regularization term punishing generation of the most widespread and therefore 
probably problem-irrelevant API calls, such as logging ones. We have not tried such 
regularization since its reported impact on BLEU score is minimal. We leave testing 
of this enhancement for future research. 
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3. Dataset 

3.1 Dataset collection 
To train the model, we need to gather large amount of pairs (English description of 
functionality, API description). One way to do it is to process open source projects, 
looking for methods with documentation comments, extracting summary sections and 
linearizing interesting parts of ASTs (i.e. API calls). The processing of individual 
methods is described in section 3.1.3. 
GitHub1 is one of the most popular open source project hostings. Following DeepAPI 
authors, we construct our dataset from data published there. 
We attempted to augment GitHub data with data from alternative sources. In our 
previous paper [8] we proposed using Nuget2  – a repository of compiled C# packages. 
However we eventually found out that compared to GitHub it does not provide much 
data, and what samples it provides often duplicate ones collected from GitHub. So we 
discontinued using Nuget as data source. 
There are other sites with published open source projects, for example, Codeplex3 and 
SourceForge4. Unfortunately, we found there only a small amount of C# projects, 
many of which gradually migrate to GitHub, or have already done so. These hosting 
sites also lack search APIs that are essential for the automatic collection of our dataset. 
So the potentially small amount of additional data is nontrivial to collect, and 
therefore we choose to ignore these alternative sources. 
We collect dataset from GitHub in several steps: 

1) obtain a list of repositories relevant to us; 
2) download these repositories; 
3) process them, extracting from methods with documentation comments 

these comments, linearized in a special way API calls, types and names of 
method parameters. 

The architecture overview can be seen in Fig. 2. Let us discuss every step in detail. 

3.1.1 Obtaining list of relevant repositories 
We are interested in repositories in C# language. Similar to the original paper, we 
would like to consider only projects that have at least one star in order to filter unused 
or toy projects. Both these requirements can be satisfied when setting specific 
parameters of GitHub Search API. 

                                                           
1 github.com 
2 nugget.org 
3 archive.codeplex.com 
4 sourceforge.net 
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Fig. 2. Dataset gathering workflow 

Using this API via Octokit.rb5 library, we retrieve 140,990 URLs of relevant projects 
created from 2012 to 2017. This contrasts to the original paper that reports working 
with 442,928 Java repositories. Therefore, we initially have approximately 3 times 
less projects to work with. This lack of data can potentially be a significant obstacle 
when transferring the approach to other languages with smaller open code bases. 
Search API also poses several technical difficulties. 
Firstly, it returns no more than 1,000 results for any search request. To go around this 
restriction, we set additional parameter limiting repository creation date to a short 
span of time, for example, “2016-01-01 .. 2016-01-08”. Every our requests covers 8 
days, which we find short enough a period that no more than 1,000 repositories are 
created during it. 
Secondly, Search API limits number of requests per minute by 30. In order not to 
exceed this limit, our script sleeps for 2 seconds after each request. 
We store repositories list and the rest of our data in a SQLite database6. 

3.1.2 Downloading repositories 
Having gathered repository list, we can start cloning them with git. We set clone depth 
to 1 to speed up the process. 

                                                           
5 github.com/octokit/octokit.rb 
6 sqlite.org 
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After download, we search for solution files — special files that encompass source 
code files, as well as store project dependencies. We process these files in the next 
step. 

3.1.3 Extracting data 
C# type system is problematic for our purposes compared to Java because of the 
implicit type “var” introduced in version 3.0. As a consequence of its existence, code 
needs to be compiled in order for the type of a variable to be determined correctly, as 
opposed to Java where name of the variable’s type or supertype is evident from its 
declaration. This need for compilation limits number of projects we can process. 
For compilation and syntax tree processing, we use Roslyn7 — an open source C# 
compiler developed by Microsoft. To compile a project we need it to satisfy two 
requirements: 

1) no manual actions are necessary for its build and compilation; 
2) a solution file, encompassing source code files, must exist. 

In order to compile more projects, we employ Nuget to restore project dependencies 
prior to compilation. 
About 80.6% percent of repositories contain solution files, and of those 47.1% could 
be compiled. 
After compilation, we process projects in the following fashion: 

1) find methods with documentation comments; 
2) store whole comment and summary section; 
3) walk syntax tree of the method body, collecting API call sequence; 
4) store method name; 
5) store parameter types and names, which we think can potentially provide 

valuable information, but are not used in this work. 
An example of extracting data from method with documentation comment is provided 
in Fig. 3. 
We construct API sequence similarly to the original paper. We traverse the tree in the 
way an interpreter might traverse it during execution, e.g. depth-first post order, 
processing method call’s arguments before processing the call itself, and so on. When 
encountering constructor invocation new C(), we add C.new to the API sequence. 
When encountering method call o.m() where o is an instance of a class C, we add C.m 
to the API sequence. Additionally, when encountering if-else statement, we firstly 
process condition expression, then if-branch statements and finally else-branch 
statements. 
We introduce one additional step to this scheme: when encountering try-with-
resources node, we save the class C of an object being created in the try node and 

                                                           
7 github.com/dotnet/roslyn 
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after processing everything inside try branch we add C.Dispose to the API sequence. 
While it is easier for a programmer to rely on the language feature of try-with-
resources block to take care of finalization of the resources, this construct is not 
always used, and we think that our model should know that certain sequences of API 
calls end with finalization call. 
Eventually we obtain 2,886,309 pairs of English descriptions and API sequences. 
However, this number is not directly comparable to the 7,519,907 methods reported 
in the DeepAPI paper. The authors explained to us (in an e-mail) that 7,519,907 is the 
amount of data after filtering out-of-vocabulary words, the step which in our 
experience removes certain samples entirely, significantly reducing size of the 
dataset. 
Our preprocessing and the final size of dataset is discussed in the further section. 

 

Fig. 3. Example of data extraction 

3.2 Data preprocessing 
Upon inspecting the gathered data we conclude that it can be improved prior to being 
used for model training. By introducing following preprocessing steps we aim to 
make the training easier and the results consequently better - a notion supported by 
our experiments (see section 6). 
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3.2.1 Language detection 
We consider our model to work with English language as input, however, many 
comments are not in it. Therefore, we try to filter out non-English comments using a 
language detection package8. 
We find, however, that some English sentences are recognized as non-English. In our 
opinion, most likely reasons are extreme shortness of sentences used for language 
detection and uncommon profession-specific programmers’ vocabulary. We do not 
want to decrease dataset size by filtering out comments incorrectly recognized as non-
English, and so we change our filtering approach. 
Instead of leaving only sentences recognized as English, we remove ones that are 
reported to be in a set of well-recognizable languages (which we deduce by hand 
examination) that occur in our dataset most often. Languages, sentences in which we 
remove, are Chinese, Korean, Japanese, Russian, German and Polish (reported in the 
order of decreasing frequency). As a side note, the reason for good recognition of said 
languages probably lies in them having alphabets different from the English one. 
Such filtering leads to vocabulary containing mostly English words. It reduces 
training size from 2,886,309 pairs to 2,606,424. 

3.2.2 Leaving only distinct pairs 
The percent of unique pairs is about 86.6%. Note that we consider two pairs distinct 
even if English descriptions coincide while API descriptions do not, and vice versa. 
We could identify several reasons for occurrence of repetitions: 

 auto-generated code and comments (Windows Forms are especially 
ubiquitous); 

 libraries being copied to the project sources instead of being linked as 
dependencies. 

This step reduces amount of training instances from 2,606,424 to 2,259,653. 

3.2.3 Repetition contraction  
In some API sequences an API call is repeated several times in a row. This could 
happen as a result of our AST linearization in a situation where, for example, an API 
call is made with different parameters in branches of an if-else statement. Since we 
do not record call parameters and when linearizing if-else statement save API calls 
from both branches, this may lead to an API call repeating twice in the resulting 
sequence. End user would not care about such repetitions in the output of the model, 
so we remove them before training, leaving only one copy of API call in a row. 
This step does not influence amount of data, but rather is intended to improve quality 
of the existing training samples 

                                                           
8 github.com/Mimino666/langdetec 
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3.2.4 Vocabulary filtering 
Similar to the original paper, we create vocabularies of 10,000 most popular words in 
each language, and filter out the rest. If after filtering no words are left in either 
English description or API one, we remove the pair altogether. 
This step reduces training dataset size significantly, from 2,259,653 to 1,397,597. 

3.2.5 Stemming 
Additionally we experiment with, but eventually discard a preprocessing step of 
stemming. 
Stemming is the process of reducing inflected words to their bases. We intended to 
use it, as is usual, to decrease vocabulary by replacing multiple word forms with the 
root. 
In our case it fails to provide improvement and instead makes results worse. A 
possible explanation may lie in the fact that stemming model was trained on regular 
words, not ones specific for software development and therefore works badly with 
this unusual vocabulary. 
We discuss impact of the preprocessing steps in section 6. 
The final size of our dataset is 1,397,597 pairs, which is more than 5 times smaller 
than 7,519,907 pairs used for training in the original paper. Even if only preprocessing 
from the original paper is used (i.e. vocabulary filtering and nothing else), dataset size 
is 1,692,898 (of which 1,434,805 pairs are unique). We consider this a significant 
problem that very probably makes achieving comparable results harder and takes a 
great toll on the model performance. 
For easy reproduction of our research and for conduction of new experiments in the 
area, we provide our dataset9, as well as the code used to collect10 and preprocess11 it. 

4. Transfer learning for API mining 
Broadly speaking, transfer learning is utilizing knowledge gained in one problem to 
solve another. It is often used in NLP [13] and neural machine translation, especially 
in the contexts where data is scarce [14]. Since our situation is one of lacking data (as 
shown by an experiment in section 6), we decided to investigate this idea. 

4.1 Alternative dataset 
To apply transfer learning to our problem of generating API calls given English 
description, we need to train a model for a task that is different, yet very similar. 
As already mentioned, the DeepAPI paper proposes method body as a source of API 
description of the functionality and method comment as a source of the English one. 
But there is another description for a method functionality beside its comment — its 
                                                           
9 kaggle.com/awesomelemon/csharp-commented-methods-github 
10 github.com/AwesomeLemon/api-extraction 
11 github.com/AwesomeLemon/api-extraction-scripts 
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name. Combined with class name, it seems descriptive of the method’s contents. 
While not forming proper natural language sentences, these names could provide 
crude approximations. 
Examples of correspondence between comments and names of the methods are 
provided in Table 1. It can be seen that generally tokenized names are very similar to 
summary sections of documentation comments. However, this is not always the case. 
In the last two examples despite similarity between comment and name, essential 
information is missing from the tokenized name. In the first of these samples key 
word is “Matches”, without it tokenized method name loses meaning. In the second 
one “Dword” is separated to “d” and “word” due to the tokenizing technique. When 
we tokenize method name, we assume that naming guidelines are followed and 
therefore first letter of the method name and first letters of every word in the name 
are capitalized. Here this leads to a wrong division of words and thus vital information 
disappears, making description senseless. 
However, in most cases method names tokenized in this way are similar to comments 
and thus provide relatively good description of method contents. 
We start exploration of this alternative dataset by simply training a model on it with 
the best parameters and our preprocessing. Results are not very good (model №4 in 
Table 2; the table is discussed minutely in section 6). 
We conclude that comments indeed seem to be more descriptive of method contents 
than method names. But can we utilize this new dataset nonetheless? 
Table 1. Comparison between method names and comments 

Full method name Tokenized method name Summary section of 
documentation comment 

Method name corresponds to comment well 
ManagedFusion. 
Serialization. 
JsonSerializer.Serialize 

json serializer 
serialize Serializes to JSON 

MathNet.Symbolics. 
Packages.Standard. 
Structures. 
ComplexValue.Cosine 

complex value 
cosine 

Trigonometric 
Cosine of an angle 
in radians 

StickyDesk. 
Utilities.ResizeBitmap 

utilities resize 
bitmap 

Resizes a bitmap 
image 

Nini.Config. 
IniConfigSource. 
RemoveSections 

ini config 
source remove 
sections 

Removes all INI 
sections that were 
removed as configs 

Method name corresponds to comment badly 
Spark.Parser. 
CharGrammar. 
StringOf 

char grammar 
string of 

Matches a string of 
characters 

TagLib.Asf. 
DescriptionRecord. 
ToDWord 

description 
record to d 
word 

Gets the DWORD 
value contained in 
the current instance. 
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4.2 Applying transfer learning for model improvement 
We hypothesize that the alternative method names dataset contains valuable 
information about correspondence between English words and API calls. 
In terms of transfer learning, we can consider both our source task and target task to 
be the same, namely to generate API call sequence given English description of it. 
The difference lies in the datasets. When training for the source task, we can use the 
alternative dataset of pairs (Tokenized method name, API call sequence). Then we 
can utilize gained knowledge when training the model for the target task, which 
makes use of the original dataset of pairs (Documentation comment summary, API 
call sequence). 
Therefore, we train a model on the alternative dataset, and then use learned weights 
for initializing the model to be trained on the standard dataset, which is a technique 
known as pretraining. 
In addition, we wonder if we can similarly bootstrap learning without using an 
alternative dataset. We perform an experiment by training the model on the comments 
dataset and using it for initialization and training on the same dataset. 
We evaluate impact of both approaches in section 6. 

5. Model training 
Per description in section 2, original authors use Encoder-Decoder architecture. As 
implementation of RNN they choose GRU [10]. They use 1-layered model with 1,000 
hidden units and 120 dimensions for word embedding. To train the model, 
GroundHog12 is used. 
GroundHog since then has been discontinued, instead we use popular modern 
framework OpenNMT [15] that is designed specifically to train neural translation 
models. 
We start training from the architecture reported in the original paper. After getting 
bad results we go on and empirically tune parameters, eventually arriving at following 
values. As RNN implementation we use LSTM [16] — a more complex model than 
GRU, with on-par performance, which is highly dependent on the problem. In our 
task it performs better. We find that 1 layer makes model not complex enough to work 
with C#, and since it is known that adding more layers increases model’s learning 
ability [17], we introduce additional layers to the total of 3, which impacts results 
positively. We leave number of hidden units at 1,000 and word embedding at 120 
dimensions. 
For training, Stochastic Gradient Descent [18] is used with batch size of 32 and 
exponential learning rate decay. We initialize learning rate to be 1.0 and start 
multiplying it by 0.7 after every epoch, starting from the sixth one. Every model is 
trained for approximately 25 epochs on the server equipped with one Nvidia GTX 
1070 GPU. 

                                                           
12 github.com/pascanur/GroundHog 
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For model testing we separate 12,000 random pairs of descriptions from the dataset; 
the rest is used for training. We publish our trained model for easy reproduction of 
the results13. 
After training, when translating queries to API sequences we follow original authors 
in using beam search [19], a heuristic search algorithm popular in statistical 
translation. Instead of generating only the most probable word on every step, we 
generate multiple, and then keep only several most probable sequences. This 
approach solves the problem of discarding good translation sequences because of 
some sub-optimal words. 

6. Evaluation 

6.1 Metrics 
In the area of API mining there are no universally adopted metrics. For better 
comparison to the original paper we follow in its steps and calculate BLEU score [20] 
for intrinsic evaluation, FRank score [6] and Precision@N for extrinsic one. 

6.1.1 BLEU 
BLEU is a standard metric used in machine translation to evaluate how closely 
generated translation resembles reference one. It does not consider grammar or others 
high-level features, instead calculating corrected geometric mean of n-gram precision 
on the whole test set [20]. 
Since we expect the model to generate sequences of API calls similar to the ones 
extracted from human-written source code, n-gram approach is applicable to our 
situation. The theoretical foundations of the metric stand in our case, despite target 
language being language of API calls rather than natural language. 
BLEU is reported on the scale from 0 to 100, where higher score corresponds with 
bigger similarity between generated and reference sequences. 

6.1.2 FRank 
FRank metric value is the position of the first relevant result in the ranked list, as 
decided by a human evaluator. Such a metric is justified by two facts. Firstly, good 
scores of it show that the model has solved exactly the problem we intended for it, 
i.e. the problem of translating from English to relevant API calls. It was possible for 
the model to learn a target function uninteresting for us, in which case human 
evaluators would not find in model output API calls, relevant to the input. 
Secondly, it is known that humans scan through ranked results from top to 
bottom [21], thus making it a desired trait for a model to rank relevant output higher. 

                                                           
13 public-resources.ml-labs.aws.intellij.net.s3.amazonaws.com/deep-api-sharp/deep-api-
sharp-model.t7 

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS, 
vol. 30, issue 3, 2018, pp. 63-86 

76 

In our case FRank is measured on the scale from 1 to 10 (since similar to the DeepAPI 
paper, our model generates 10 outputs for every query), where lower is better. Where 
models fail to provide relevant results, FRank is considered to be 11. 

6.1.3 Precision@N 
Precision@N measures percentage of the relevant results in the first N outputs 
produced by the system. Following DeepAPI, we report Precision@5 and 
Precision@10 (note that the term used in the DeepAPI paper is “relevancy ratio N”, 
which does not seem to be an established term). 
This metric is reported on the scale from 0 to 100, where higher is better. 

6.2 BLEU evaluation 
In Table 2 we report results of our experiments in terms of BLEU score. We start 
experiments with model architecture reported in the original paper and achieve 
surprisingly bad results of 10.94 BLEU, which is significantly worse than 54.42 
BLEU reported in the paper. Since Java and C# are fairly similar, we expected 
original model to work better. Possible explanation may lie in the size of our dataset, 
which is more than 5 times smaller. 
Table 2. BLEU scores for various models 

№ Parameters Dataset Preprocessing 

Transfer 
learning 

from 
model 
№ 

BLEU 

Parameter tuning 
1 original comments - - 10.94 
2 tuned comments - - 26.26 

Data preprocessing 
3 tuned comments yes - 46.99 

Different datasets 
4 tuned names yes - 28.57 
5 tuned comments (part) yes - 36.63 
6 tuned comments and names yes - 44.31 

Transfer learning 
7 tuned comments yes 3 46.18 
8 tuned comments yes 4 50.14 

Model with tuned parameters achieves higher BLEU score of 26.26, which is still far 
from the original results. 
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After introduction of our preprocessing steps a 94% increase in BLEU is obtained, 
and the resulting score of 46.99 comes fairly close to the reported performance of the 
DeepAPI model. 
The best result is achieved by model №8, where we employ transfer learning 
techniques and pretrain the model on the alternative dataset of method names. 
Additional analysis of transfer learning application is presented in section 6.3. 
Model №4 was trained on the alternative dataset of method names (with the size of 
1,967,414 pairs) and yielded not outstanding BLEU score of 28.57. So our model 
performs worse on the alternative dataset, which is logical, given that descriptions 
there are not in grammatically correct English and sometimes do not provide good 
descriptions of functionality, as already discussed in section 4. 
To measure if number of training instances indeed impacts model result, as we 
hypothesized, we try to train the model on 800,000 samples as opposed to the usual 
1,397,597. This is the model №5, and it achieves 36.63 BLEU, which is worse than 
46.99 achieved under the same parameters, but bigger dataset size. This leads us to 
the conclusion that dataset size is vital for model performance. 

6.3 Transfer learning evaluation 
We ask several questions regarding our application of transfer learning techniques: 

1) Does it improve our results? 
2) Can we use the model itself for pretraining, without utilizing model trained 

on the alternative dataset? 
3) Is transfer learning necessary for performance improvement, or are instead 

our two datasets so similar that they could be merged and considered as one 
big dataset? 

We answer these questions with several experiments, and come up with following 
answers. 

1) Transfer learning leads to the best results achieved by us (model №8 with 
BLEU score of 50.14). 

2) A model with sub-optimal parameters (which we do not include in the table 
in order not to clutter it) is improved by approximately 2.5 BLEU when 
pretrained on itself. However, best model is not, as shown by performance 
of model №7, that achieves only 46.18 BLEU, which approximately equals 
the result of the model №3 used for pretraining. So bootstrapping with the 
dataset itself may make sense sometimes, but not always. Presumably, model 
№3 was trained so well that there was no room for improvement. 

3) We try to merge comments and names in one dataset, which we use for 
training model №6. Resulting BLEU score of 44.31 is better than using only 
names (28.57 BLEU, model №4), but worse than using only comments 
(46.99 BLEU, model №3). Thus we conclude that datasets are fairly different 
and should not be used together in a straightforward way. 
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6.4 Human evaluation 
DeepAPI reports FRank, Precision@5, Precision@10 on two types of queries: 
popular ones, that often occur in Bing search log [6], and ones designed to showcase 
abilities of the proposed approach, including handling of semantically similar 
requests, longer input handling, combination of several tasks. 
We would like to address a potential problem in evaluating the model on queries from 
the first group. While the DeepAPI paper reports that they do not occur in the training 
dataset, it seems unlikely since they were chosen for the perk of being popular, i.e. 
widespread, and authors do not mention filtering them out. 
We test the hypothesis that such popular queries occur in the dataset by searching for 
them in ours. In our training data most of these popular inputs occur multiple times 
as exact matches. For example, “copy file” occurs 14 times, “reverse string” occurs 7 
times, “execute sql statement” occurs 14 times. We conduct this search after filtering 
out non-unique pairs, so for these occurrences API calls do not coincide; however, 
they are very similar. Therefore, we believe that testing on such inputs makes little 
sense, because it essentially means testing on the training set, which speaks only about 
the model’s ability to memorize. That is expected from any model, and consequently 
is not very interesting. 
However, to show that our model is capable of that, we test on 5 of these queries (the 
first 5 queries in Table 3). 
However, more interesting is the inspection of the model’s ability to generalize, i.e. 
use gained knowledge to work with novel data. The model should be able to handle 
combined or semantically similar requests that are not included in the training data. 
We evaluate our model on 4 new queries, constructed for this exact purpose, and one 
such query from the DeepAPI paper. Since DeepAPI paper does not report results on 
4 new queries, we used online demo of the tool14 to generate corresponding 
sequences. 
To avoid conflict of interest, we ask 5 professional developers to evaluate extrinsic 
metrics for our model. Since the correspondence between query and model output is 
viewed differently by every developer and is up to debate, we consider relevant only 
those answers that were marked as relevant by at least 2 developers. 
In the Table 3 we report results of extrinsic evaluation. In general our model performs 
approximately the same as the original, which, having established importance of data 
and our lack of it, we consider an achievement. 
 
Table 3. Extrinsic model evaluation 

Query 
DeepAPI DeepAPI# 

DeepAPI# output 
FRank P@5 P@10 FRank P@5 P@10 

convert int to 
string 2 40 90 1 80 50 CultureInfo.InvariantCulture 

Int64.ToString 
                                                           
14 211.249.63.55 
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convert string 
to int 1 100 100 3 40 60 Int32.TryParse 

get current 
time 10 10 10 1 60 40 DateTime.Now 

get files in 
folder 3 40 50 1 80 90 DirectoryInfo.GetFiles 

FileInfo.Name List.Add 

generate md5 
hash code 1 100 100 1 80 60 

MD5.Create Encoding.GetBytes 
MD5.ComputeHash 
Byte[].Length StringBuilder.Append 
StringBuilder.ToString 

copy a file 
and save it to 
a destination 

path 

1 100 100 2 40 40 File.Exists String.Equals File.Exists 
IO.File.Copy 

create socket 
and then send 

text 
1 100 90 3 20 10 

AddressFamily.InterNetwork 
SocketType.Stream 
ProtocolType.Tcp Socket.Connect 
Encoding.GetBytes Socket.Send 
SocketShutdown.Both 
Socket.Shutdown Socket.Close 

write text 
using socket - 0 0 1 100 100 ASCIIEncoding.GetBytes 

Socket.Send 

connect to 
database and 

execute 
statement 

1 80 50 6 0 30 

IDbConnection.Open 
IDbConnection.CreateCommand 
IDbCommand.CommandText 
IDbCommand.ExecuteScalar 
Convert.ToInt32 
Exception.ToString 
Console.WriteLine 
IDbConnection.Close 

download 
from url and 
save image 

3 20 20 1 60 50 
String.IsNullOrEmpty 
WebClient.DownloadFile 

Average 
scores 3.4 59 61 2.0 56 52  

Our model produces slightly less amount of relevant outputs (as shown by 
Precision@N scores), but ranks these outputs slightly higher (as shown by FRank). 
Good performance on the first 5 queries demonstrate that our model is capable or 
memorizing correct answers, and outputs to the second 5 queries show that it can 
manage long requests, that require performing several action, as well as semantically 
similar requests. 
However, both models are not very stable to slight semantic variations in the input. 
For example, query “create socket and then send text” is understood very well by 
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DeepAPI, while DeepAPI# produces low amount of relevant answers, and on the 
contrary, query “write text using socket” perplexes DeepAPI, that generates no 
socket-related calls in the top 10 results, while DeepAPI# generates only relevant 
output. 
Additionally it should be noted that while models’ outputs are not directly comparable 
due to different target languages, both models should still be able to correctly answer 
queries we are testing them on, since these tasks are fairly common and programming-
language-independent. 

6.5 Limitations 
As already discussed in the previous section, our model can be inconsistent and 
sensitive to query wording. While DeepAPI# is capable of understanding 
synonymous queries and generating similar relevant output, it does not generate 
exactly the same sequences. 
In addition, our model is data-hungry. While we do not artificially limit our 
vocabulary with standard C# library, as DeepAPI does with Java and JDK, we still 
observe that the model cannot take into account APIs with low amount of usages. It 
can work with extremely popular Math.NET and Json.NET, but not with many other 
frameworks, even though their APIs are included in the model dictionary. It remains 
an open problem for the further research to find ways to make model less data-hungry, 
or to fine-tune it for use of specific not very popular libraries. 

7. Related work 

7.1 API usage pattern mining 
This group of projects is primarily concerned with extracting common usages of the 
library. The first algorithm to mine API patterns was MAPO [22]. It starts with 
clustering API sequences, then for every cluster finds API calls that are the most 
frequent there and passes those to an API usage recommender, that ranks API calls 
according to their similarity to the code context. 
UP-Miner [23] improves upon MAPO by using API call sequence n-grams as a 
clustering metric and an additional clustering step. A near parameter-free approach 
PAM [4] significantly outperforms both MAPO and UP-Miner, introducing a 
probability model constructed in the form of a joint probability distribution over API 
calls observed in code and the underlying unobserved API patterns, used by 
developer. Acharya et al. [24] extract API patterns as partial orders, and unfortunately 
do not compare results to those of previous approaches. 
The differences of these projects from our work are twofold. Firstly, these models do 
not allow user to specify their exact needs (MAPO and UP-Miner take API call as 
input, but an API call can be utilized in more than one scenario, therefore using it as 
input can be ambiguous; PAM and framework of Acharya et al. do not ask for input). 
This leads to the output containing many samples irrelevant to user, while not 
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guaranteeing to provide those he was wishing for. Secondly, to use such models one 
needs to know beforehand which API calls (in case of MAPO and UP-Miner) or 
libraries (in case of PAM and framework of Acharya et al.) he is interested in. Our 
approach allows for recommendation of APIs to use, as well as the specifics of the 
usage. 

7.2 Generating source code from natural language 
Code generation based on natural language input is one of the holy grails of Computer 
Science. It could be seen as a more promising alternative to our problem: after all, 
rather than generate API call sequence and leave it to the software developer to write 
code utilizing it, it would be better to just generate code in the first place. 
However, current research in the area seems to be far from this dream. It mostly 
focuses on Domain Specific Languages [25], [26], which are simpler than general-
purpose programming languages and have by definition limited usage domain. 
Recent developments in generating code in general-purpose languages include works 
by Ling et al. [27] and Yin et al. [28]. The first paper proposes a novel approach of 
Latent Predictor Networks that allows for better copying of relevant key words from 
input to output. The second paper introduces a special version of Encoder-Decoder 
model, where Decoder is tailored to generate syntax trees as opposed to sequences. 
The main difference between these works and ours lies in the datasets. Ling et al. and 
Yin et al. report results on two datasets: code of Hearthstone cards and annotated 
Django code (Ling et al. also report results on the dataset of code of Magic the 
Gathering cards, but this dataset is semantically very similar to the Hearthstone one). 
The target code for the Hearthstone dataset is rather homogenous and limited to small 
subset of the wide variety that is the Python language, thus resembling code in DSL 
more than code in general-purpose language. And while Django dataset covers 
various usage scenarious, it contains impractically sesquipedalian natural language 
descriptions of every line of code. For example description of the line “for i in 
range(0, len(result)):” is “for every i in range of integers from 0 to length of 
result, not included”. The generation of code from descriptions several times longer 
than itself seems impractical. 
Our dataset, on the other hand, contains wide variety of API usages, described by 
reasonably long sentences like “Serializes to JSON”, which resemble real queries 
written by programmers in order to look up interesting APIs. 

7.3 Deep neural machine translation and source code 
Deep API Learning paper [7] itself was published in 2016, is widely cited, but little 
work has followed from it. The authors went on to successfully apply the neural 
machine translation approach to code migration between Java and C# [29], which 
shows that the proposed architecture can model both languages of API sequences 
well. 
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Lin et al. [30] similarly to us apply the Encoder-Decoder approach to a different target 
language, specifically Bash. They succeed, but it should be noted that their research 
problem is a simpler one in terms of target language used, since only 17 commands 
were selected from Bash. Together with command flags, types of open-vocabulary 
constants and logical connectives (&&, ||, parentheses) total output dictionary size 
does not exceed 300. To contrast that, our work is concerned with the same API 
dictionary size as original paper, which is 10,000 and therefore requires vastly bigger 
dataset and more complex model. 

8. Conclusion 
In this paper, we applied deep learning approach for recommendation of C# API calls, 
removing one of the threats to the validity of the paper that originally proposed this 
approach for Java. To achieve this goal, we collected massive dataset, introduced 
several data preprocessing steps, and finally employed transfer learning techniques. 
Extending DeepAPI approach turned out to be nontrivial even for a similar language. 
Nonetheless, its main idea of modelling API sequences with RNN Encoder-Decoder 
stands. 
Data preprocessing steps, suggested by us, are not dependent on C# and should 
therefore be applicable to any programming language, thus they should make 
extending the approach even to very different languages much easier. 
By releasing data, code and trained model we hope to allow for repeatability of the 
experiments and to inspire further research in the area. 
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Применение глубокого машинного обучения к синтезу 
цепочки вызовов C# 

А.Е. Чебыкин <a.e.chebykin@gmail.com> 
Я.А. Кириленко <jake.kirilenko@gmail.com> 
Математико-механический факультет,  

Санкт-Петербургский государственный университет 
Университетский пр., дом 28, Санкт-Петербург, 198504, Россия 

Аннотация. Большая часть стандартных для программирования задач — например, 
соединение с базой данных, отображение картинки, чтение файла — давно реализована 
в различных библиотеках и доступна через соответствующие Application Programming 
Interfaces (APIs). Однако чтобы воспользоваться ими, разработчик должен сначала 
узнать, что они существуют, а затем — как правильно с ними работать. В настоящее 
время Интернет кажется наилучшим и самым популярным источником подобной 
информации. Недавно был предложен другой подход, основанный на глубоком 
машинном обучении и реализованный в виде инструмента под названием DeepAPI. По 
описанию желаемой функциональности на английском языке он генерирует цепочку 
вызовов Java функций. В данной статье мы показываем, как подход может быть 
перенесен на другой язык программирования (C# вместо Java), на котором доступно 
меньше открытого кода; мы описываем техники, позволившие достичь результата, 
близкого к оригинальному, а также техники, которые не улучшили производительность. 



Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#. 
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86 

85 

Наконец, чтобы облегчить будущие исследования в области, мы публикуем наши набор 
данных, код и обученную модель. 
Ключевые слова: API; глубокое обучение; поиск кода; рекуррентная нейронная сеть; 
обучение с подкреплением. 
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