
63

Applying Deep Learning to C# Call
Sequence Synthesis

A.E. Chebykin <a.e.chebykin@gmail.com>
I.A. Kirilenko <jake.kirilenko@gmail.com>

Faculty of Mathematics and Mechanics, Saint Petersburg State University
Universitetsky prospekt, 28, Peterhof, St. Petersburg, 198504, Russia

Abstract. Many common programming tasks, like connecting to a database, drawing an image,
or reading from a file, are long implemented in various frameworks and are available via
corresponding Application Programming Interfaces (APIs). However, to use them, a software
engineer must first learn of their existence and then of the correct way to utilize them.
Currently, the Internet seems to be the best and the most common way to gather such
information. Recently, a deep-learning-based solution was proposed in the form of DeepAPI
tool. Given English description of the desired functionality, sequence of Java function calls is
generated. In this paper, we show the way to apply this approach to a different programming
language (C# over Java) that has smaller open code base; we describe techniques used to
achieve results close to the original, as well as techniques that failed to produce an impact.
Finally, we release our dataset, code and trained model to facilitate further research.

Keywords: API; deep learning; code search; RNN; transfer learning.

DOI: 10.15514/ISPRAS-2018-30(3)-5

For citation: Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence
Synthesis. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 63-86. DOI:
10.15514/ISPRAS-2018-30(3)-5

1. Introduction
When writing code, software developers often utilize various libraries via APIs. Since
the problems being solved in this manner are usually similar for most users, their
solutions form stable patterns of API invocations.
API mining is a long-established line of research aimed at extracting these API usage
trends from source code. The importance of the task lies in the fact that generally
developers spend a lot of time trying to learn frameworks’ APIs in order to utilize
them efficiently. A field study has found that developers often struggle to map a task
from problem domain to the terminology of the API [1]. In another survey 67.6% of
respondents identified that learning APIs is hindered by inadequate or absent
resources [2].

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

64

Usually, when facing such problems, developers turn to general web search engines.
However, those are not optimized for programming-related queries and thus tend to
be inefficient [3].
An alternative lies in various approaches based on statistical analysis of source code.
They can provide sequences of API methods that are often used together [4], mine
API specifications in the form of automata [5], synthesize relevant code snippets [6].
Deep API Learning [7] is a recent deep learning-based take on the problem that
reports state-of-the-art results. The authors formulate the problem of providing API
patterns satisfying users’ needs as a translation one. Input language, in which user
describes desired functionality, is English, and the output language is one of API
sequences: API calls are words of the language, ordered sequences of these calls form
sentences. For example, English sentence “generate random int” could be translated
to the language of Java API as “Random.new Random.nextInt”, which corresponds
to the construction of an object of type Random and subsequent call of its nextInt
method.
DeepAPI tool targets exclusively Java programming language and reportedly
performs well. Benefits of the approach come from the usage of deep recurrent neural
networks. Thanks to them, trained model can distinguish synonyms and impact of
word sequence (for example, it can distinguish queries convert string to int and
convert int to string).
However, the authors identify several threats to validity, including possible failure
when extending the approach to other programming languages.
Our main goals are to test this threat, thus appraising generality of the approach, and
to consider possible improvements. We choose C# as a target language due to its
general similarity to Java, aiming to make a first step towards more different — and
therefore challenging — target languages.
However even in our case simple copying of DeepAPI approach leads to bad results,
and constructing well-working model proves to be far from trivial. In this paper, we
describe our experience of extending the proposed approach to C#.
To achieve our goals we collect dataset of 2,886,309 training samples from open
source projects’ code and use it to first train a model with the architecture of DeepAPI
(attaining the result of 10.94 BLEU), and then tune parameters to achieve BLEU
26.26. After that, we introduce data preprocessing, which reduces dataset size to
1,397,597, but improves its quality and increases BLEU metric to 46.99. Finally, we
employ transfer learning on an alternative dataset of method names and achieve the
best results of 50.14 BLEU, which is fairly close to the 54.42 reported by DeepAPI
on Java dataset.
Additionally we ask professional developers to evaluate output of our model on
several queries, which shows that on average our model, DeepAPI#, performs as well
as DeepAPI.

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

65

Our main contributions are:
 reproduction of the DeepAPI experiment with a different dataset;
 modification of the approach via programming-language-independent data

preprocessing which leads to results, comparable to original, despite lack of
data;

 collection of C# dataset of commented methods and publishing of it for the
benefit of the future research in the area;

 employment of transfer learning techniques for additional improvement of
the results. To the best of our knowledge, we are the first to investigate
transfer learning in the area of API mining.

The paper is organized as follows: in section 2 we outline DeepAPI model
architecture. Next, in section 3 collection of the dataset needed for model training is
discussed and additional preprocessing steps are introduced. We describe our
application of transfer learning to the problem in section 4. Technical details of model
training are reported in section 5, which is followed by section 6, where evaluation
results are described. We finish the paper with section 7, where we report work done
on related problems and discuss ways in which existing research differs from ours.

2. DeepAPI model
We borrow general model structure from DeepAPI, which is itself based on recent
advancements in neural machine translation. Here we will provide only an overview,
for details please refer to the original paper [7] and our previous research-in-progress
paper [8].
Since the goal is to generate one sequence of words based on another, the task falls
in the category of Sequence-to-Sequence learning [9]. One of the best architectures
for the task is an Encoder-Decoder network [10].
It consists of two recurrent neural networks (Recurrent neural network is a special
class of neural networks where unit can be connected to itself, thus allowing its state
to serve the role of memory). Encoder network reads input sequence, Decoder
generates output one. The process goes as following.
Encoder reads input word by word, embeds each one in a high-dimensional space and
sequentially updates its hidden state, which by the end of the sentence contains
language-independent idea of the input sentence. This state (also known as context
vector) is then passed to the Decoder, which based on it and the last generated word
generates words one by one until a special end-of-sequence token is outputted.
An example of such model at work can be seen in Fig. 1. In the image states of
networks are rolled out in time, so for example RNN1, RNN2, RNN3 is the RNN state
at time steps 1, 2, 3. Note that Encoder and Decoder consist of different RNNs and
work in different time windows: at first, Encoder RNN makes 3 steps in time and then
Decoder RNN makes 3 steps in time.

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

66

Fig. 1. RNN Encoder-Decoder workflow

The benefits of this model include synonym handling (words used in the similar
contexts get embedded near each other), successful processing of long inputs thanks
to the memorizing ability of the recurrent networks, and finally appreciation of word
sequence impact.
One major downside of such a model is the need for a large amount of sentence pairs
describing the same functionality in two languages (“generate random number”,
“Random.new Random.Next”). Format of the API language description is reported in
the point 3.1.3.
Source of such data can be methods’ documentation comments (that in C# are XML-
based and contain summary section, in which brief description of the method’s
functionality should be supplied) and corresponding API calls made in the method
body. Details of the dataset collection are described in section 3.
There are several improvements of the Encoder-Decoder architecture that were shown
to reliably improve results.

 Using Bidirectional Encoder leads to input being processed twice: in
normal order and in reverse, resulting in 2 context vectors, which are then
concatenated to get final context vector [11].

 Attention mechanism [12] allows decoder to focus on different input words
when generating different output ones.

In the original DeepAPI paper an additional improvement is introduced in the form
of a regularization term punishing generation of the most widespread and therefore
probably problem-irrelevant API calls, such as logging ones. We have not tried such
regularization since its reported impact on BLEU score is minimal. We leave testing
of this enhancement for future research.

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

67

3. Dataset

3.1 Dataset collection
To train the model, we need to gather large amount of pairs (English description of
functionality, API description). One way to do it is to process open source projects,
looking for methods with documentation comments, extracting summary sections and
linearizing interesting parts of ASTs (i.e. API calls). The processing of individual
methods is described in section 3.1.3.
GitHub1 is one of the most popular open source project hostings. Following DeepAPI
authors, we construct our dataset from data published there.
We attempted to augment GitHub data with data from alternative sources. In our
previous paper [8] we proposed using Nuget2 – a repository of compiled C# packages.
However we eventually found out that compared to GitHub it does not provide much
data, and what samples it provides often duplicate ones collected from GitHub. So we
discontinued using Nuget as data source.
There are other sites with published open source projects, for example, Codeplex3 and
SourceForge4. Unfortunately, we found there only a small amount of C# projects,
many of which gradually migrate to GitHub, or have already done so. These hosting
sites also lack search APIs that are essential for the automatic collection of our dataset.
So the potentially small amount of additional data is nontrivial to collect, and
therefore we choose to ignore these alternative sources.
We collect dataset from GitHub in several steps:

1) obtain a list of repositories relevant to us;
2) download these repositories;
3) process them, extracting from methods with documentation comments

these comments, linearized in a special way API calls, types and names of
method parameters.

The architecture overview can be seen in Fig. 2. Let us discuss every step in detail.

3.1.1 Obtaining list of relevant repositories
We are interested in repositories in C# language. Similar to the original paper, we
would like to consider only projects that have at least one star in order to filter unused
or toy projects. Both these requirements can be satisfied when setting specific
parameters of GitHub Search API.

1 github.com
2 nugget.org
3 archive.codeplex.com
4 sourceforge.net

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

68

Fig. 2. Dataset gathering workflow

Using this API via Octokit.rb5 library, we retrieve 140,990 URLs of relevant projects
created from 2012 to 2017. This contrasts to the original paper that reports working
with 442,928 Java repositories. Therefore, we initially have approximately 3 times
less projects to work with. This lack of data can potentially be a significant obstacle
when transferring the approach to other languages with smaller open code bases.
Search API also poses several technical difficulties.
Firstly, it returns no more than 1,000 results for any search request. To go around this
restriction, we set additional parameter limiting repository creation date to a short
span of time, for example, “2016-01-01 .. 2016-01-08”. Every our requests covers 8
days, which we find short enough a period that no more than 1,000 repositories are
created during it.
Secondly, Search API limits number of requests per minute by 30. In order not to
exceed this limit, our script sleeps for 2 seconds after each request.
We store repositories list and the rest of our data in a SQLite database6.

3.1.2 Downloading repositories
Having gathered repository list, we can start cloning them with git. We set clone depth
to 1 to speed up the process.

5 github.com/octokit/octokit.rb
6 sqlite.org

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

69

After download, we search for solution files — special files that encompass source
code files, as well as store project dependencies. We process these files in the next
step.

3.1.3 Extracting data
C# type system is problematic for our purposes compared to Java because of the
implicit type “var” introduced in version 3.0. As a consequence of its existence, code
needs to be compiled in order for the type of a variable to be determined correctly, as
opposed to Java where name of the variable’s type or supertype is evident from its
declaration. This need for compilation limits number of projects we can process.
For compilation and syntax tree processing, we use Roslyn7 — an open source C#
compiler developed by Microsoft. To compile a project we need it to satisfy two
requirements:

1) no manual actions are necessary for its build and compilation;
2) a solution file, encompassing source code files, must exist.

In order to compile more projects, we employ Nuget to restore project dependencies
prior to compilation.
About 80.6% percent of repositories contain solution files, and of those 47.1% could
be compiled.
After compilation, we process projects in the following fashion:

1) find methods with documentation comments;
2) store whole comment and summary section;
3) walk syntax tree of the method body, collecting API call sequence;
4) store method name;
5) store parameter types and names, which we think can potentially provide

valuable information, but are not used in this work.
An example of extracting data from method with documentation comment is provided
in Fig. 3.
We construct API sequence similarly to the original paper. We traverse the tree in the
way an interpreter might traverse it during execution, e.g. depth-first post order,
processing method call’s arguments before processing the call itself, and so on. When
encountering constructor invocation new C(), we add C.new to the API sequence.
When encountering method call o.m() where o is an instance of a class C, we add C.m
to the API sequence. Additionally, when encountering if-else statement, we firstly
process condition expression, then if-branch statements and finally else-branch
statements.
We introduce one additional step to this scheme: when encountering try-with-
resources node, we save the class C of an object being created in the try node and

7 github.com/dotnet/roslyn

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

70

after processing everything inside try branch we add C.Dispose to the API sequence.
While it is easier for a programmer to rely on the language feature of try-with-
resources block to take care of finalization of the resources, this construct is not
always used, and we think that our model should know that certain sequences of API
calls end with finalization call.
Eventually we obtain 2,886,309 pairs of English descriptions and API sequences.
However, this number is not directly comparable to the 7,519,907 methods reported
in the DeepAPI paper. The authors explained to us (in an e-mail) that 7,519,907 is the
amount of data after filtering out-of-vocabulary words, the step which in our
experience removes certain samples entirely, significantly reducing size of the
dataset.
Our preprocessing and the final size of dataset is discussed in the further section.

Fig. 3. Example of data extraction

3.2 Data preprocessing
Upon inspecting the gathered data we conclude that it can be improved prior to being
used for model training. By introducing following preprocessing steps we aim to
make the training easier and the results consequently better - a notion supported by
our experiments (see section 6).

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

71

3.2.1 Language detection
We consider our model to work with English language as input, however, many
comments are not in it. Therefore, we try to filter out non-English comments using a
language detection package8.
We find, however, that some English sentences are recognized as non-English. In our
opinion, most likely reasons are extreme shortness of sentences used for language
detection and uncommon profession-specific programmers’ vocabulary. We do not
want to decrease dataset size by filtering out comments incorrectly recognized as non-
English, and so we change our filtering approach.
Instead of leaving only sentences recognized as English, we remove ones that are
reported to be in a set of well-recognizable languages (which we deduce by hand
examination) that occur in our dataset most often. Languages, sentences in which we
remove, are Chinese, Korean, Japanese, Russian, German and Polish (reported in the
order of decreasing frequency). As a side note, the reason for good recognition of said
languages probably lies in them having alphabets different from the English one.
Such filtering leads to vocabulary containing mostly English words. It reduces
training size from 2,886,309 pairs to 2,606,424.

3.2.2 Leaving only distinct pairs
The percent of unique pairs is about 86.6%. Note that we consider two pairs distinct
even if English descriptions coincide while API descriptions do not, and vice versa.
We could identify several reasons for occurrence of repetitions:

 auto-generated code and comments (Windows Forms are especially
ubiquitous);

 libraries being copied to the project sources instead of being linked as
dependencies.

This step reduces amount of training instances from 2,606,424 to 2,259,653.

3.2.3 Repetition contraction
In some API sequences an API call is repeated several times in a row. This could
happen as a result of our AST linearization in a situation where, for example, an API
call is made with different parameters in branches of an if-else statement. Since we
do not record call parameters and when linearizing if-else statement save API calls
from both branches, this may lead to an API call repeating twice in the resulting
sequence. End user would not care about such repetitions in the output of the model,
so we remove them before training, leaving only one copy of API call in a row.
This step does not influence amount of data, but rather is intended to improve quality
of the existing training samples

8 github.com/Mimino666/langdetec

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

72

3.2.4 Vocabulary filtering
Similar to the original paper, we create vocabularies of 10,000 most popular words in
each language, and filter out the rest. If after filtering no words are left in either
English description or API one, we remove the pair altogether.
This step reduces training dataset size significantly, from 2,259,653 to 1,397,597.

3.2.5 Stemming
Additionally we experiment with, but eventually discard a preprocessing step of
stemming.
Stemming is the process of reducing inflected words to their bases. We intended to
use it, as is usual, to decrease vocabulary by replacing multiple word forms with the
root.
In our case it fails to provide improvement and instead makes results worse. A
possible explanation may lie in the fact that stemming model was trained on regular
words, not ones specific for software development and therefore works badly with
this unusual vocabulary.
We discuss impact of the preprocessing steps in section 6.
The final size of our dataset is 1,397,597 pairs, which is more than 5 times smaller
than 7,519,907 pairs used for training in the original paper. Even if only preprocessing
from the original paper is used (i.e. vocabulary filtering and nothing else), dataset size
is 1,692,898 (of which 1,434,805 pairs are unique). We consider this a significant
problem that very probably makes achieving comparable results harder and takes a
great toll on the model performance.
For easy reproduction of our research and for conduction of new experiments in the
area, we provide our dataset9, as well as the code used to collect10 and preprocess11 it.

4. Transfer learning for API mining
Broadly speaking, transfer learning is utilizing knowledge gained in one problem to
solve another. It is often used in NLP [13] and neural machine translation, especially
in the contexts where data is scarce [14]. Since our situation is one of lacking data (as
shown by an experiment in section 6), we decided to investigate this idea.

4.1 Alternative dataset
To apply transfer learning to our problem of generating API calls given English
description, we need to train a model for a task that is different, yet very similar.
As already mentioned, the DeepAPI paper proposes method body as a source of API
description of the functionality and method comment as a source of the English one.
But there is another description for a method functionality beside its comment — its

9 kaggle.com/awesomelemon/csharp-commented-methods-github
10 github.com/AwesomeLemon/api-extraction
11 github.com/AwesomeLemon/api-extraction-scripts

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

73

name. Combined with class name, it seems descriptive of the method’s contents.
While not forming proper natural language sentences, these names could provide
crude approximations.
Examples of correspondence between comments and names of the methods are
provided in Table 1. It can be seen that generally tokenized names are very similar to
summary sections of documentation comments. However, this is not always the case.
In the last two examples despite similarity between comment and name, essential
information is missing from the tokenized name. In the first of these samples key
word is “Matches”, without it tokenized method name loses meaning. In the second
one “Dword” is separated to “d” and “word” due to the tokenizing technique. When
we tokenize method name, we assume that naming guidelines are followed and
therefore first letter of the method name and first letters of every word in the name
are capitalized. Here this leads to a wrong division of words and thus vital information
disappears, making description senseless.
However, in most cases method names tokenized in this way are similar to comments
and thus provide relatively good description of method contents.
We start exploration of this alternative dataset by simply training a model on it with
the best parameters and our preprocessing. Results are not very good (model №4 in
Table 2; the table is discussed minutely in section 6).
We conclude that comments indeed seem to be more descriptive of method contents
than method names. But can we utilize this new dataset nonetheless?
Table 1. Comparison between method names and comments

Full method name Tokenized method name Summary section of
documentation comment

Method name corresponds to comment well
ManagedFusion.
Serialization.
JsonSerializer.Serialize

json serializer
serialize Serializes to JSON

MathNet.Symbolics.
Packages.Standard.
Structures.
ComplexValue.Cosine

complex value
cosine

Trigonometric
Cosine of an angle
in radians

StickyDesk.
Utilities.ResizeBitmap

utilities resize
bitmap

Resizes a bitmap
image

Nini.Config.
IniConfigSource.
RemoveSections

ini config
source remove
sections

Removes all INI
sections that were
removed as configs

Method name corresponds to comment badly
Spark.Parser.
CharGrammar.
StringOf

char grammar
string of

Matches a string of
characters

TagLib.Asf.
DescriptionRecord.
ToDWord

description
record to d
word

Gets the DWORD
value contained in
the current instance.

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

74

4.2 Applying transfer learning for model improvement
We hypothesize that the alternative method names dataset contains valuable
information about correspondence between English words and API calls.
In terms of transfer learning, we can consider both our source task and target task to
be the same, namely to generate API call sequence given English description of it.
The difference lies in the datasets. When training for the source task, we can use the
alternative dataset of pairs (Tokenized method name, API call sequence). Then we
can utilize gained knowledge when training the model for the target task, which
makes use of the original dataset of pairs (Documentation comment summary, API
call sequence).
Therefore, we train a model on the alternative dataset, and then use learned weights
for initializing the model to be trained on the standard dataset, which is a technique
known as pretraining.
In addition, we wonder if we can similarly bootstrap learning without using an
alternative dataset. We perform an experiment by training the model on the comments
dataset and using it for initialization and training on the same dataset.
We evaluate impact of both approaches in section 6.

5. Model training
Per description in section 2, original authors use Encoder-Decoder architecture. As
implementation of RNN they choose GRU [10]. They use 1-layered model with 1,000
hidden units and 120 dimensions for word embedding. To train the model,
GroundHog12 is used.
GroundHog since then has been discontinued, instead we use popular modern
framework OpenNMT [15] that is designed specifically to train neural translation
models.
We start training from the architecture reported in the original paper. After getting
bad results we go on and empirically tune parameters, eventually arriving at following
values. As RNN implementation we use LSTM [16] — a more complex model than
GRU, with on-par performance, which is highly dependent on the problem. In our
task it performs better. We find that 1 layer makes model not complex enough to work
with C#, and since it is known that adding more layers increases model’s learning
ability [17], we introduce additional layers to the total of 3, which impacts results
positively. We leave number of hidden units at 1,000 and word embedding at 120
dimensions.
For training, Stochastic Gradient Descent [18] is used with batch size of 32 and
exponential learning rate decay. We initialize learning rate to be 1.0 and start
multiplying it by 0.7 after every epoch, starting from the sixth one. Every model is
trained for approximately 25 epochs on the server equipped with one Nvidia GTX
1070 GPU.

12 github.com/pascanur/GroundHog

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

75

For model testing we separate 12,000 random pairs of descriptions from the dataset;
the rest is used for training. We publish our trained model for easy reproduction of
the results13.
After training, when translating queries to API sequences we follow original authors
in using beam search [19], a heuristic search algorithm popular in statistical
translation. Instead of generating only the most probable word on every step, we
generate multiple, and then keep only several most probable sequences. This
approach solves the problem of discarding good translation sequences because of
some sub-optimal words.

6. Evaluation

6.1 Metrics
In the area of API mining there are no universally adopted metrics. For better
comparison to the original paper we follow in its steps and calculate BLEU score [20]
for intrinsic evaluation, FRank score [6] and Precision@N for extrinsic one.

6.1.1 BLEU
BLEU is a standard metric used in machine translation to evaluate how closely
generated translation resembles reference one. It does not consider grammar or others
high-level features, instead calculating corrected geometric mean of n-gram precision
on the whole test set [20].
Since we expect the model to generate sequences of API calls similar to the ones
extracted from human-written source code, n-gram approach is applicable to our
situation. The theoretical foundations of the metric stand in our case, despite target
language being language of API calls rather than natural language.
BLEU is reported on the scale from 0 to 100, where higher score corresponds with
bigger similarity between generated and reference sequences.

6.1.2 FRank
FRank metric value is the position of the first relevant result in the ranked list, as
decided by a human evaluator. Such a metric is justified by two facts. Firstly, good
scores of it show that the model has solved exactly the problem we intended for it,
i.e. the problem of translating from English to relevant API calls. It was possible for
the model to learn a target function uninteresting for us, in which case human
evaluators would not find in model output API calls, relevant to the input.
Secondly, it is known that humans scan through ranked results from top to
bottom [21], thus making it a desired trait for a model to rank relevant output higher.

13 public-resources.ml-labs.aws.intellij.net.s3.amazonaws.com/deep-api-sharp/deep-api-
sharp-model.t7

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

76

In our case FRank is measured on the scale from 1 to 10 (since similar to the DeepAPI
paper, our model generates 10 outputs for every query), where lower is better. Where
models fail to provide relevant results, FRank is considered to be 11.

6.1.3 Precision@N
Precision@N measures percentage of the relevant results in the first N outputs
produced by the system. Following DeepAPI, we report Precision@5 and
Precision@10 (note that the term used in the DeepAPI paper is “relevancy ratio N”,
which does not seem to be an established term).
This metric is reported on the scale from 0 to 100, where higher is better.

6.2 BLEU evaluation
In Table 2 we report results of our experiments in terms of BLEU score. We start
experiments with model architecture reported in the original paper and achieve
surprisingly bad results of 10.94 BLEU, which is significantly worse than 54.42
BLEU reported in the paper. Since Java and C# are fairly similar, we expected
original model to work better. Possible explanation may lie in the size of our dataset,
which is more than 5 times smaller.
Table 2. BLEU scores for various models

№ Parameters Dataset Preprocessing

Transfer
learning

from
model
№

BLEU

Parameter tuning
1 original comments - - 10.94
2 tuned comments - - 26.26

Data preprocessing
3 tuned comments yes - 46.99

Different datasets
4 tuned names yes - 28.57
5 tuned comments (part) yes - 36.63
6 tuned comments and names yes - 44.31

Transfer learning
7 tuned comments yes 3 46.18
8 tuned comments yes 4 50.14

Model with tuned parameters achieves higher BLEU score of 26.26, which is still far
from the original results.

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

77

After introduction of our preprocessing steps a 94% increase in BLEU is obtained,
and the resulting score of 46.99 comes fairly close to the reported performance of the
DeepAPI model.
The best result is achieved by model №8, where we employ transfer learning
techniques and pretrain the model on the alternative dataset of method names.
Additional analysis of transfer learning application is presented in section 6.3.
Model №4 was trained on the alternative dataset of method names (with the size of
1,967,414 pairs) and yielded not outstanding BLEU score of 28.57. So our model
performs worse on the alternative dataset, which is logical, given that descriptions
there are not in grammatically correct English and sometimes do not provide good
descriptions of functionality, as already discussed in section 4.
To measure if number of training instances indeed impacts model result, as we
hypothesized, we try to train the model on 800,000 samples as opposed to the usual
1,397,597. This is the model №5, and it achieves 36.63 BLEU, which is worse than
46.99 achieved under the same parameters, but bigger dataset size. This leads us to
the conclusion that dataset size is vital for model performance.

6.3 Transfer learning evaluation
We ask several questions regarding our application of transfer learning techniques:

1) Does it improve our results?
2) Can we use the model itself for pretraining, without utilizing model trained

on the alternative dataset?
3) Is transfer learning necessary for performance improvement, or are instead

our two datasets so similar that they could be merged and considered as one
big dataset?

We answer these questions with several experiments, and come up with following
answers.

1) Transfer learning leads to the best results achieved by us (model №8 with
BLEU score of 50.14).

2) A model with sub-optimal parameters (which we do not include in the table
in order not to clutter it) is improved by approximately 2.5 BLEU when
pretrained on itself. However, best model is not, as shown by performance
of model №7, that achieves only 46.18 BLEU, which approximately equals
the result of the model №3 used for pretraining. So bootstrapping with the
dataset itself may make sense sometimes, but not always. Presumably, model
№3 was trained so well that there was no room for improvement.

3) We try to merge comments and names in one dataset, which we use for
training model №6. Resulting BLEU score of 44.31 is better than using only
names (28.57 BLEU, model №4), but worse than using only comments
(46.99 BLEU, model №3). Thus we conclude that datasets are fairly different
and should not be used together in a straightforward way.

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

78

6.4 Human evaluation
DeepAPI reports FRank, Precision@5, Precision@10 on two types of queries:
popular ones, that often occur in Bing search log [6], and ones designed to showcase
abilities of the proposed approach, including handling of semantically similar
requests, longer input handling, combination of several tasks.
We would like to address a potential problem in evaluating the model on queries from
the first group. While the DeepAPI paper reports that they do not occur in the training
dataset, it seems unlikely since they were chosen for the perk of being popular, i.e.
widespread, and authors do not mention filtering them out.
We test the hypothesis that such popular queries occur in the dataset by searching for
them in ours. In our training data most of these popular inputs occur multiple times
as exact matches. For example, “copy file” occurs 14 times, “reverse string” occurs 7
times, “execute sql statement” occurs 14 times. We conduct this search after filtering
out non-unique pairs, so for these occurrences API calls do not coincide; however,
they are very similar. Therefore, we believe that testing on such inputs makes little
sense, because it essentially means testing on the training set, which speaks only about
the model’s ability to memorize. That is expected from any model, and consequently
is not very interesting.
However, to show that our model is capable of that, we test on 5 of these queries (the
first 5 queries in Table 3).
However, more interesting is the inspection of the model’s ability to generalize, i.e.
use gained knowledge to work with novel data. The model should be able to handle
combined or semantically similar requests that are not included in the training data.
We evaluate our model on 4 new queries, constructed for this exact purpose, and one
such query from the DeepAPI paper. Since DeepAPI paper does not report results on
4 new queries, we used online demo of the tool14 to generate corresponding
sequences.
To avoid conflict of interest, we ask 5 professional developers to evaluate extrinsic
metrics for our model. Since the correspondence between query and model output is
viewed differently by every developer and is up to debate, we consider relevant only
those answers that were marked as relevant by at least 2 developers.
In the Table 3 we report results of extrinsic evaluation. In general our model performs
approximately the same as the original, which, having established importance of data
and our lack of it, we consider an achievement.

Table 3. Extrinsic model evaluation

Query
DeepAPI DeepAPI#

DeepAPI# output
FRank P@5 P@10 FRank P@5 P@10

convert int to
string 2 40 90 1 80 50 CultureInfo.InvariantCulture

Int64.ToString

14 211.249.63.55

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

79

convert string
to int 1 100 100 3 40 60 Int32.TryParse

get current
time 10 10 10 1 60 40 DateTime.Now

get files in
folder 3 40 50 1 80 90 DirectoryInfo.GetFiles

FileInfo.Name List.Add

generate md5
hash code 1 100 100 1 80 60

MD5.Create Encoding.GetBytes
MD5.ComputeHash
Byte[].Length StringBuilder.Append
StringBuilder.ToString

copy a file
and save it to
a destination

path

1 100 100 2 40 40 File.Exists String.Equals File.Exists
IO.File.Copy

create socket
and then send

text
1 100 90 3 20 10

AddressFamily.InterNetwork
SocketType.Stream
ProtocolType.Tcp Socket.Connect
Encoding.GetBytes Socket.Send
SocketShutdown.Both
Socket.Shutdown Socket.Close

write text
using socket - 0 0 1 100 100 ASCIIEncoding.GetBytes

Socket.Send

connect to
database and

execute
statement

1 80 50 6 0 30

IDbConnection.Open
IDbConnection.CreateCommand
IDbCommand.CommandText
IDbCommand.ExecuteScalar
Convert.ToInt32
Exception.ToString
Console.WriteLine
IDbConnection.Close

download
from url and
save image

3 20 20 1 60 50
String.IsNullOrEmpty
WebClient.DownloadFile

Average
scores 3.4 59 61 2.0 56 52

Our model produces slightly less amount of relevant outputs (as shown by
Precision@N scores), but ranks these outputs slightly higher (as shown by FRank).
Good performance on the first 5 queries demonstrate that our model is capable or
memorizing correct answers, and outputs to the second 5 queries show that it can
manage long requests, that require performing several action, as well as semantically
similar requests.
However, both models are not very stable to slight semantic variations in the input.
For example, query “create socket and then send text” is understood very well by

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

80

DeepAPI, while DeepAPI# produces low amount of relevant answers, and on the
contrary, query “write text using socket” perplexes DeepAPI, that generates no
socket-related calls in the top 10 results, while DeepAPI# generates only relevant
output.
Additionally it should be noted that while models’ outputs are not directly comparable
due to different target languages, both models should still be able to correctly answer
queries we are testing them on, since these tasks are fairly common and programming-
language-independent.

6.5 Limitations
As already discussed in the previous section, our model can be inconsistent and
sensitive to query wording. While DeepAPI# is capable of understanding
synonymous queries and generating similar relevant output, it does not generate
exactly the same sequences.
In addition, our model is data-hungry. While we do not artificially limit our
vocabulary with standard C# library, as DeepAPI does with Java and JDK, we still
observe that the model cannot take into account APIs with low amount of usages. It
can work with extremely popular Math.NET and Json.NET, but not with many other
frameworks, even though their APIs are included in the model dictionary. It remains
an open problem for the further research to find ways to make model less data-hungry,
or to fine-tune it for use of specific not very popular libraries.

7. Related work

7.1 API usage pattern mining
This group of projects is primarily concerned with extracting common usages of the
library. The first algorithm to mine API patterns was MAPO [22]. It starts with
clustering API sequences, then for every cluster finds API calls that are the most
frequent there and passes those to an API usage recommender, that ranks API calls
according to their similarity to the code context.
UP-Miner [23] improves upon MAPO by using API call sequence n-grams as a
clustering metric and an additional clustering step. A near parameter-free approach
PAM [4] significantly outperforms both MAPO and UP-Miner, introducing a
probability model constructed in the form of a joint probability distribution over API
calls observed in code and the underlying unobserved API patterns, used by
developer. Acharya et al. [24] extract API patterns as partial orders, and unfortunately
do not compare results to those of previous approaches.
The differences of these projects from our work are twofold. Firstly, these models do
not allow user to specify their exact needs (MAPO and UP-Miner take API call as
input, but an API call can be utilized in more than one scenario, therefore using it as
input can be ambiguous; PAM and framework of Acharya et al. do not ask for input).
This leads to the output containing many samples irrelevant to user, while not

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

81

guaranteeing to provide those he was wishing for. Secondly, to use such models one
needs to know beforehand which API calls (in case of MAPO and UP-Miner) or
libraries (in case of PAM and framework of Acharya et al.) he is interested in. Our
approach allows for recommendation of APIs to use, as well as the specifics of the
usage.

7.2 Generating source code from natural language
Code generation based on natural language input is one of the holy grails of Computer
Science. It could be seen as a more promising alternative to our problem: after all,
rather than generate API call sequence and leave it to the software developer to write
code utilizing it, it would be better to just generate code in the first place.
However, current research in the area seems to be far from this dream. It mostly
focuses on Domain Specific Languages [25], [26], which are simpler than general-
purpose programming languages and have by definition limited usage domain.
Recent developments in generating code in general-purpose languages include works
by Ling et al. [27] and Yin et al. [28]. The first paper proposes a novel approach of
Latent Predictor Networks that allows for better copying of relevant key words from
input to output. The second paper introduces a special version of Encoder-Decoder
model, where Decoder is tailored to generate syntax trees as opposed to sequences.
The main difference between these works and ours lies in the datasets. Ling et al. and
Yin et al. report results on two datasets: code of Hearthstone cards and annotated
Django code (Ling et al. also report results on the dataset of code of Magic the
Gathering cards, but this dataset is semantically very similar to the Hearthstone one).
The target code for the Hearthstone dataset is rather homogenous and limited to small
subset of the wide variety that is the Python language, thus resembling code in DSL
more than code in general-purpose language. And while Django dataset covers
various usage scenarious, it contains impractically sesquipedalian natural language
descriptions of every line of code. For example description of the line “for i in
range(0, len(result)):” is “for every i in range of integers from 0 to length of
result, not included”. The generation of code from descriptions several times longer
than itself seems impractical.
Our dataset, on the other hand, contains wide variety of API usages, described by
reasonably long sentences like “Serializes to JSON”, which resemble real queries
written by programmers in order to look up interesting APIs.

7.3 Deep neural machine translation and source code
Deep API Learning paper [7] itself was published in 2016, is widely cited, but little
work has followed from it. The authors went on to successfully apply the neural
machine translation approach to code migration between Java and C# [29], which
shows that the proposed architecture can model both languages of API sequences
well.

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

82

Lin et al. [30] similarly to us apply the Encoder-Decoder approach to a different target
language, specifically Bash. They succeed, but it should be noted that their research
problem is a simpler one in terms of target language used, since only 17 commands
were selected from Bash. Together with command flags, types of open-vocabulary
constants and logical connectives (&&, ||, parentheses) total output dictionary size
does not exceed 300. To contrast that, our work is concerned with the same API
dictionary size as original paper, which is 10,000 and therefore requires vastly bigger
dataset and more complex model.

8. Conclusion
In this paper, we applied deep learning approach for recommendation of C# API calls,
removing one of the threats to the validity of the paper that originally proposed this
approach for Java. To achieve this goal, we collected massive dataset, introduced
several data preprocessing steps, and finally employed transfer learning techniques.
Extending DeepAPI approach turned out to be nontrivial even for a similar language.
Nonetheless, its main idea of modelling API sequences with RNN Encoder-Decoder
stands.
Data preprocessing steps, suggested by us, are not dependent on C# and should
therefore be applicable to any programming language, thus they should make
extending the approach even to very different languages much easier.
By releasing data, code and trained model we hope to allow for repeatability of the
experiments and to inspire further research in the area.

Acknowledgment
The authors would like to thank JetBrains Research15 for providing a GPU-equipped
server for fast machine learning models training, as well as for the Young Researcher
stipend granted to our team. Additionally we would like to thank Kirsanov Alexander
and other friendly developers from the JetBrains ReSharper team for their input in
evaluating FRank and Precision@N metrics.

References
[1]. M. P. Robillard and R. Deline. A field study of api learning obstacles. Empirical Software

Engineering, vol. 16, no. 6, 2011, pp. 703–732.
[2]. M. P. Robillard. What makes apis hard to learn? Answers from developers. IEEE software,

vol. 26, no. 6, 2009, pp, 27-34.
[3]. J. Stylos and B. A. Myers. Mica: A web-search tool for finding api components and

examples. In Proc. of the IEEE Symposium on Visual Languages and Human-Centric
Computing, 2006, pp. 195–202.

[4]. J. Fowkes and C. Sutton. Parameter-free probabilistic api mining across github. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 254–265.

15 research.jetbrains.org

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

83

[5]. S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions, IEEE Transactions on Software Engineering, vol. 34, no. 5,
2008, pp. 651–666.

[6]. M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean-code search
and idiomatic snippet synthesis, In Proc. of the IEEE/ACM 38th International Conference
on Software Engineering (ICSE), 2016, pp. 357–367.

[7]. X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 631–642.

[8]. A. Chebykin, M. Kita, and I. Kirilenko. Deepapi#: Clr/c# call sequence synthesis from
text query. In Proceedings of the Second Conference on Software Engineering and
Information Management, vol. 1864. CEUR-WS.org, 2017, pp. 6–11. (in Russian)
[Online]. Available: http://ceur-ws.org/Vol-1864/paper 5.pdf

[9]. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, 2014, pp. 3104–3112.

[10]. K. Cho, B. Van Merri¨ enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation, arXiv preprint arXiv:1406.1078, 2014.

[11]. M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, vol. 45, no. 11, 1997, pp. 2673–2681.

[12]. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[13]. P. H. Calais Guerra, A. Veloso, W. Meira Jr, and V. Almeida. From bias to opinion: a
transfer-learning approach to real-time sentiment analysis. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2011,
pp. 150–158.

[14]. B. Zoph, D. Yuret, J. May, and K. Knight. Transfer learning for low-resource neural
machine translation. arXiv preprint arXiv:1604.02201, 2016.

[15]. G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source toolkit
for neural machine translation. arXiv preprint arXiv:1701.02810, 2017.

[16]. F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction
with lstm. Neural Computation, vol. 12, issue 10, 2000, pp. 2451-2471

[17]. A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In Proceedings of the IEEE international conference on Acoustics, speech and
signal processing, 2013, pp. 6645–6649.

[18]. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, vol. 23, 1952, pp. 462–466.

[19]. P. Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In Proceedings of the Conference of the Association for Machine Translation in
the Americas, 2004, pp. 115–124.

[20]. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, 2002, pp. 311–318.

[21]. L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in www
search. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, 2004, pp. 478–479.

[22]. T. Xie and J. Pei. Mapo: Mining api usages from open source repositories. In Proceedings
of the 2006 international workshop on mining software repositories, 2006, pp. 54–57.

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

84

[23]. J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and high-
coverage api usage patterns from source code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 319–328.

[24]. M. Allamanis and C. Sutton. Mining idioms from source code. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2014, pp. 472–483.

[25]. A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. Roy. Program
synthesis using natural language. In Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 345–356.

[26]. S. Gulwani and M. Marron. Nlyze: Interactive programming by natural language for
spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, 2014, pp. 803–814.

[27]. W. Ling, E. Grefenstette, K. M. Hermann, T. Koˇ cisk` y, A. Senior, F. Wang, and P.
Blunsom. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744, 2016.

[28]. P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

[29]. X. Gu, H. Zhang, D. Zhang, and S. Kim. Deepam: Migrate apis with multi-modal
sequence to sequence learning. arXiv preprint arXiv:1704.07734, 2017.

[30]. X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst. Program synthesis from natural
language using recurrent neural networks. Technical Report UW-CSE-17-03-01,
University of Washington, Department of Computer Science and Engineering, 2017.

Применение глубокого машинного обучения к синтезу
цепочки вызовов C#

А.Е. Чебыкин <a.e.chebykin@gmail.com>
Я.А. Кириленко <jake.kirilenko@gmail.com>
Математико-механический факультет,

Санкт-Петербургский государственный университет
Университетский пр., дом 28, Санкт-Петербург, 198504, Россия

Аннотация. Большая часть стандартных для программирования задач — например,
соединение с базой данных, отображение картинки, чтение файла — давно реализована
в различных библиотеках и доступна через соответствующие Application Programming
Interfaces (APIs). Однако чтобы воспользоваться ими, разработчик должен сначала
узнать, что они существуют, а затем — как правильно с ними работать. В настоящее
время Интернет кажется наилучшим и самым популярным источником подобной
информации. Недавно был предложен другой подход, основанный на глубоком
машинном обучении и реализованный в виде инструмента под названием DeepAPI. По
описанию желаемой функциональности на английском языке он генерирует цепочку
вызовов Java функций. В данной статье мы показываем, как подход может быть
перенесен на другой язык программирования (C# вместо Java), на котором доступно
меньше открытого кода; мы описываем техники, позволившие достичь результата,
близкого к оригинальному, а также техники, которые не улучшили производительность.

Чебыкин А.Е., Кириленко Я.А, Применение глубокого машинного обучения к синтезу цепочки вызовов C#.
Труды ИСП РАН, том 30, вып. 3, 2018 г., стр. 63-86

85

Наконец, чтобы облегчить будущие исследования в области, мы публикуем наши набор
данных, код и обученную модель.
Ключевые слова: API; глубокое обучение; поиск кода; рекуррентная нейронная сеть;
обучение с подкреплением.

DOI: 10.15514/ISPRAS-2018-30(3)-5

Для цитирования: Чебыкин А.Е., Кириленко Я.А. Применение глубокого машинного
обучения к синтезу цепочки вызовов C#. Труды ИСП РАН, том 30, вып. 3, 2018 г., стр.
63-86 (на английском языке). DOI: 10.15514/ISPRAS-2018-30(3)-5

Список литературы
[1]. M. P. Robillard and R. Deline. A field study of api learning obstacles. Empirical Software

Engineering, vol. 16, no. 6, 2011, pp. 703–732.
[2]. M. P. Robillard. What makes apis hard to learn? Answers from developers. IEEE software,

vol. 26, no. 6, 2009, pp, 27-34.
[3]. J. Stylos and B. A. Myers. Mica: A web-search tool for finding api components and

examples. In Proc. of the IEEE Symposium on Visual Languages and Human-Centric
Computing, 2006, pp. 195–202.

[4]. J. Fowkes and C. Sutton. Parameter-free probabilistic api mining across github. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 254–265.

[5]. S. Shoham, E. Yahav, S. J. Fink, and M. Pistoia. Static specification mining using
automata-based abstractions, IEEE Transactions on Software Engineering, vol. 34, no. 5,
2008, pp. 651–666.

[6]. M. Raghothaman, Y. Wei, and Y. Hamadi. Swim: Synthesizing what i mean-code search
and idiomatic snippet synthesis, In Proc. of the IEEE/ACM 38th International Conference
on Software Engineering (ICSE), 2016, pp. 357–367.

[7]. X. Gu, H. Zhang, D. Zhang, and S. Kim. Deep api learning In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2016, pp. 631–642.

[8]. A. Chebykin, M. Kita, and I. Kirilenko. Deepapi#: Clr/c# call sequence synthesis from
text query. In Proceedings of the Second Conference on Software Engineering and
Information Management, vol. 1864. CEUR-WS.org, 2017, pp. 6–11. (in Russian)
[Online]. Режим доступа: http://ceur-ws.org/Vol-1864/paper 5.pdf

[9]. I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, 2014, pp. 3104–3112.

[10]. K. Cho, B. Van Merri¨ enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation, arXiv preprint arXiv:1406.1078, 2014.

[11]. M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, vol. 45, no. 11, 1997, pp. 2673–2681.

[12]. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

[13]. P. H. Calais Guerra, A. Veloso, W. Meira Jr, and V. Almeida. From bias to opinion: a
transfer-learning approach to real-time sentiment analysis. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2011,
pp. 150–158.

Chebykin A.E., Kirilenko I.A. Applying Deep Learning to C# Call Sequence Synthesis. Trudy ISP RAN /Proc. ISP RAS,
vol. 30, issue 3, 2018, pp. 63-86

86

[14]. B. Zoph, D. Yuret, J. May, and K. Knight. Transfer learning for low-resource neural
machine translation. arXiv preprint arXiv:1604.02201, 2016.

[15]. G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush. Opennmt: Open-source toolkit
for neural machine translation. arXiv preprint arXiv:1701.02810, 2017.

[16]. F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction
with lstm. Neural Computation, vol. 12, issue 10, 2000, pp. 2451-2471

[17]. A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In Proceedings of the IEEE international conference on Acoustics, speech and
signal processing, 2013, pp. 6645–6649.

[18]. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
The Annals of Mathematical Statistics, vol. 23, 1952, pp. 462–466.

[19]. P. Koehn. Pharaoh: a beam search decoder for phrase-based statistical machine translation
models. In Proceedings of the Conference of the Association for Machine Translation in
the Americas, 2004, pp. 115–124.

[20]. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics, 2002, pp. 311–318.

[21]. L. A. Granka, T. Joachims, and G. Gay. Eye-tracking analysis of user behavior in www
search. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, 2004, pp. 478–479.

[22]. T. Xie and J. Pei. Mapo: Mining api usages from open source repositories. In Proceedings
of the 2006 international workshop on mining software repositories, 2006, pp. 54–57.

[23]. J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining succinct and high-
coverage api usage patterns from source code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, 2013, pp. 319–328.

[24]. M. Allamanis and C. Sutton. Mining idioms from source code. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
2014, pp. 472–483.

[25]. A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron, S. Roy. Program
synthesis using natural language. In Proceedings of the 38th International Conference on
Software Engineering, 2016, pp. 345–356.

[26]. S. Gulwani and M. Marron. Nlyze: Interactive programming by natural language for
spreadsheet data analysis and manipulation. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, 2014, pp. 803–814.

[27]. W. Ling, E. Grefenstette, K. M. Hermann, T. Koˇ cisk` y, A. Senior, F. Wang, and P.
Blunsom. Latent predictor networks for code generation. arXiv preprint
arXiv:1603.06744, 2016.

[28]. P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696, 2017.

[29]. X. Gu, H. Zhang, D. Zhang, and S. Kim. Deepam: Migrate apis with multi-modal
sequence to sequence learning. arXiv preprint arXiv:1704.07734, 2017.

[30]. X. V. Lin, C. Wang, D. Pang, K. Vu, and M. D. Ernst. Program synthesis from natural
language using recurrent neural networks. Technical Report UW-CSE-17-03-01,
University of Washington, Department of Computer Science and Engineering, 2017.

