Stealth debugging of programs in Qemu
emulator with WinDbg debugger

M.A. Abakumov <mikhail.abakumov@ispras.ru>
P.M. Dovgalyuk <dovgaluk@ispras.ru>
Yaroslav-the-Wise Novgorod State University,
41, Great St. Petersburg st., Velikiiy Novgorod, 173003, Russia

Abstract. When programs are analyzed for the presence of vulnerabilities and malicious code,
there is a need for a quality isolation of the analysis tools. There are two reasons for this. At
first, the program can influence the tool environment. This problem is solved by using the
emulator. At second, the tool environment can influence behavior of the analyzed program. So,
the programmer will think that the program is harmless, but in fact it is not. This problem is
solved by the mechanism of stealth debugging. The WinDbg debugger has the possibility of
connecting to a remote debug service (Kdsrv.exe) in the Windows kernel. Therefore, it is
possible to connect to the guest system running in the QEMU emulator. Interaction between
WinDbg client and server occurs through packets by protocol KDCOM. However, kernel
debugging is possible only with the enabled debugging mode in boot settings. And it reveals
the debugging process. We developed special module of WinDbg debugger for Qemu emulator.
It is an alternative of the remote debugging service in the kernel. Thus, the debugger client tries
to connect to the WinDbg server, but module intercepts all packets, generates all the necessary
information from the Qemu emulator and sends response to the client. Module completely
simulates the behavior of the server, so the client does not notice the spoofing and perfectly
interacts with it. At the same time for debugging there is no need to enable debugging mode in
the kernel. This leads to stealth debugging. Our module supports all features of WinDbg
regarding remote debugging, besides interception of events and exceptions.

Keywords: WinDbg; Qemu; Windows; remote debugging; stealth debugging

DOI: 10.15514/ISPRAS-2018-30(3)-6

For citation: Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu
emulator with WinDbg debugger. Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018. pp.
87-92. DOLI: 10.15514/ISPRAS-2018-30(3)-6

1. Introduction

When performing a dynamic analysis of binary (executable) code, the problem arises
of qualitatively isolating the code and the instrumentation on which this analysis is
performed. The need for isolation is dual. On the one hand, it is necessary to limit the

87

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

impact of the code being studied, since it is able to affect the state of the instrument
machine, which is especially important in the study of malicious software. On the
other hand, analysis tools can indirectly change the behavior of the program being
studied. The most indicative are the situations when errors in working with dynamic
memory and race conditions cease to appear in the debugging mode.

The search for undocumented features in a binary code encounters a similar problem.
Various techniques and techniques are known [1], with the help of which malware
reveals that its execution takes place in a controlled environment, and does not fulfill
its objective functions. To find the debugger to be connected, check the int 3 handler
and hardware debug registers, evaluate the behavior of certain API functions, and
track the progress of the system time.

It is possible to divide potential sources of information, which makes it possible to
identify the fact of working in a controlled environment into three disjoint groups.
The first is the interaction with external, uncontrolled components, the program being
studied, such as remote servers. To the same category, it is necessary to include speed
checks. Successful struggle with such sources allows the mechanism of deterministic
reproduction [2]. If you write the progress of the system in advance, when debugging
and analyzing it during playback, there will be no effect on the guest's state because
all time characteristics are fixed during recording. The second group of sources is the
discrepancy in the behavior of the equipment [3]. The implementation of virtual
equipment in software emulators is not always ideal. Known inaccuracies can be used
to determine the emulator in which the program runs. The third group is the analysis
tools present in the runtime. This kind of facility occurs even when the debugger is
running in conjunction with a virtual machine.

2. Related work

In the Qemu emulator at the moment there is only a module of the GDB debugger,
which allows debugging the kernel of the system, but in itself it has relatively small
functionality and does not have a GUI. You can use IDA Pro Disassembler [4] ore to
connect to the emulator via the GDB interface, but this will not extend the range of
the GDB's features, but will only increase the ease of use. In addition, there is a utility
called Winbagility [5], which allows the debugger WinDbg to connect to the kernel
without debugging mode of the operating system. It is utility for the VirtualBox
emulator and is the intermediary between the debugger and the emulator. There is the
FDP protocol between Winbagility and the emulator - the introspection API for
VirtualBox. It is a minus in this implementation, since the number of provided
functions limits the interface.

3. WinDbg

The WinDbg debugger is one of the most advanced debuggers for Windows operating
systems. WinDbg is claimed by developers, because it extracts symbolic information
from applications and libraries, displays the contents of internal Windows data

88



AbaxymoB M.A., Jlosramok ILM. CkpbITast oTnazika nporpamMm otaagankoM WinDbg B amynstope Qemu. 7pyos:
UCII PAH, tom 30, Beim. 3, 2018 1, cTp. 87-92

structures, performs remote debugging of a physical or virtual machine. WinDbg can
be used for debugging user applications, device drivers, the operating system itself in
kernel mode, to analyze memory dumps in kernel mode created after the so-called
Blue Screen of Death, which occurs when an error is issued. It can also be used for
debugging custom mode crash dumps. WinDbg supports several debugging modes:
debugging the local process, debugging the kernel, and remote debugging.

Target applications can easily detects local debugging process. Remote debugging
requires enabled debugging mode in kernel. In this mode kernel uses the debugging
server (KdSrv.exe) for interacting with remotely client. But It is also reveals system
control (Fig. 1).

QEMU

Windows BN WinDbg
CPU+RAM kernel <: v Client

Fig. 1. Direct kernel debugging

4., Stealth debugging

We developed a mechanism for stealth debugging for the QEMU emulator, which
allows WinDbg to be remotely connected. The mechanism is an analysis module built
into the emulator, and turns out to be an external tool in relation to the guest system.
The needs of the KdSrv service in the kernel of the debugging system is not required
- the analysis module itself extracts the necessary data from the system and transfers
it to the remote client debugger (Fig. 2). The programs running in the guest system
cannot track the presence of the connected debugger through functions such as
IsDebuggerPresent or through the state of the hardware registers.

One way to remotely kernel debugging using the WinDbg debugger is to debug
through the COM port. Interaction between the computers takes place via a private
KDCOM protocol, the specification of which has been restored. One of the computers
in this case is represented by a virtual machine. The second is an instrumental
computer with Windows OS where this machine is started. Running WinDbg client
connects to the emulator via a named pipe, through which the COM-port of the virtual
machine is forwarded.

The developed module for the emulator fully implements the KDCOM protocol,
within the framework of the restored specification, so the debugger WinDbg interacts
with it, as with the debugging module of the Windows kernel, without

89

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

noticing the substitution. It should be noted that the use of the QEMU emulator as a
runtime opens the possibility of debugging during deterministic playback of the
virtual machine. The recorded scenarios can be debugged many times in the emulator,
which would not be possible if the Windows debug module running inside the guest
system were used.

QEMU
CPU + RAM
<
L WinDbg WinDbg
I module Client
Windows >
kernel
>

Fig. 2. Kernel debugging through the special module

5. Results and contributons

The developed module supports almost all features of WinDbg regarding remote
debugging, besides interception of events and exceptions. It is open source project
placed in: github.com/ispras/qemu/tree/windbg. The official community recognized
the module as useful. In addition, patches have already been prepared for inclusion in
the official repository.

6. Acknowledment

The work was supported by the Ministry of Education and Science of Russia, research
project No. 2.6146.2017/8.9.

References

[1]. Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, 2014, pp. 447- 458.

[2]. P. Dovgalyuk. Deterministic Replay of System's Execution with Multi-target QEMU
Simulator for Dynamic Analysis and Reverse Debugging. In Proceedings of the 2012 16th
European Conference on Software Maintenance and Reengineering, 2012, pp. 553-556.

90



AbakymoB M.A., Jlopramok [1.M. CkpsITast oTi1a/1ka mporpamMm omiagaukom WinDbg B smynstope Qemu. Tpyos:
UCII PAH, tom 30, Beim. 3, 2018 1, cTp. 87-92

[3]. Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: how to automatically generate procedures to detect CPU emulators. In
Proceedings of the 3rd USENIX conference on Offensive technologies (WOOT'09). 2009.

[4]. IDA ProDisassembler. Available at: https://www.hex-
rays.com/products/ida/index.shtml, accessed 19.06.2018.

[5]. Winbagility. Available at: https://winbagility.github.io/, accessed 19.06.2018.

CkpbiTaa otnagka nporpamm otnagymkom WinDbg B
amynatope Qemu

M.A. Abaxymos <mikhail.abakumov@ispras.ru>
II.M. Jloseantox <dovgaluk@ispras.ru>
Hoeszopoockuii ecocyoapcmeennsiti ynusepcumem umeru Apociasa Myopoeo,
173003, Poccus, Beaukuii Hoséeopoo, bonvwas Canxm-Ilemepbypeckas, 0. 41

AnHoranmsa. [Ipyn anamm3e nporpaMM Ha HajlM4HMe YS3BHMOCTEH M BpPEIOHOCHOTO KOZa
OBIBAIOT CHTyalliM, B KOTOPBIX BO3HMKAeT HEOOXOJUMOCTb Ka4eCTBEHHOH W30JISIHN
HHCTPYMEHTOB aHAJIN3a. JTOMY €CTb JBE IPHUYHHBI. Bo-nepBrIX, aHanm3npyemast mporpaMmma
MOXET BIMATh HA MHCTPYMEHTAJIBHYIO Cpely. DTa mpobieMa penraeTcsi MCIOJIb30BaHUEM
aMyJisiTopa. Bo-BTOpBIX, HMHCTPYMEHTHI aHaiuM3a MOTYT BIHMATH Ha Iporpammy. Tak,
MIPOrPaMMHCT MOXET TOyMaTh, YTO IporpaMma 6e30MacHa, X0Ts Ha CaMOM JIEJIE 3TO MOXKET
OBbITH He Tak. JTa MpodiieMa MOXKET OBbITh pelleHa MEXaHU3MOM CKPBITOH oTianku. OTiaaduk
WinDbg nmMeeT GyHKIHIO TOAKIIOUEHHUS K yAaIeHHOMY oTiaanouHomy cepeepy (Kdsrv.exe),
3amymieHHoMy B siape Windows. [ToaToMy ecThb BO3MOXKHOCTBH MOJKITIOYHTHCS K TOCTEBOM
cucreme, 3anyueHHoi B smyisitope QEMU. KineHnT B3auMoJeiicTByeT ¢ cepBepoM uepes
nakeTsl 110 nporokoiry KDCOM. OpHako OTJIaXXHMBATh SIAPO MOXKHO JIMIIb C BKIFOYEHHBIM
PeKMMOM OTJAaAKM B HAcTpOWKax 3allyCKa, YTO pacKpbIBaeT IIPOIECC OTIAAKU. MEl
paspaboTany crenuaibHblii MoMydb omiaaurka WinDbg mnst QEMU, koTopslii siBisieTcs
abTEPHATUBOM yJaJeHHOMY OTJIa0OYHOMY CEpPBHCY B siipe. Moy MepexBaThIBAET MAKEThI
Y B3aUMOJCHUCTBUH KIMEHTa oTiaaqurka WinDbg ¢ cepBepoM, caMOCTOSITEIbHO TeHEPHPYET
BCIO HEOOXOIMMYIO OTJIAIOYHYI0 HH(POPMAIIHIO, UCIIONB3Ys BO3ZMOXKHOCTH 3MyJsiTopa Qemu,
W OTIPABISET OTBET KIMEHTY. MOIyNb MONHOCTBIO SMYIHPYET IOBEACHHE OTIAJ0YHOTO
cepBepa, MOITOMY KJIMEHT Ha 3aMedaeT IOAMEHBI U YCIEIIHO B3auMOJICHCTBYeT ¢ HUM. [lpu
9TOM OTHAaJaeT HeoOXOAUMOCTh B OTJIAJOYHOM peXuMe siapa. TeM caMbIM IPOHUCXOIUT
cKkpbITast oTaazka. [Ipu ucrosp30BaHuH MOTYIIsl paboToCIOCOOHBI Bce Bo3mMoxkHOocTH WinDbg,
KOTOpBIE OH MPEJICTABIIseT I yNAJCHHOH OTJIaiKM, KpOMe IiepexBata COOBITHH H
HCKJIIOYCHUI.

Kurouesble ciioBa: WinDbg; Qemu; Windows; ynaneHHas oTianka; CKpbITas OTJIaAKa
DOI: 10.15514/ISPRAS-2018-30(3)-6

Jnsi murupoBanmsi: AGakymoB M.A., Jlosramox II.M. Ckpeltas oTianka HporpaMm
otnamquukom WinDbg B amymsitope Qemu. Tpynst UCIT PAH, Ttom 30, Beim. 3, 2018 r., cTp.
87-92 (na anrnuiickom s3bike). DOI: 10.15514/ISPRAS-2018-30(3)-6

91

Abakumov M.A., Dovgalyuk P.M. Stealth debugging of programs in Qemu emulator with WinDbg debugger. Trudy ISP
RAN /Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 87-92

Cnucok nutepatypbl

[1]. Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, 2014, pp. 447- 458.

[2]. P. Dovgalyuk. Deterministic Replay of System's Execution with Multi-target QEMU
Simulator for Dynamic Analysis and Reverse Debugging. In Proceedings of the 2012 16th
European Conference on Software Maintenance and Reengineering, 2012, pp. 553-556.

[3]. Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A
fistful of red-pills: how to automatically generate procedures to detect CPU emulators. In
Proceedings of the 3rd USENIX conference on Offensive technologies (WOOT'09). 2009.

[4]. IDA Pro Disassembler. Pexxum nocrtyna: https://www.hex-
rays.com/products/ida/index.shtml, gata o6pamenus 19.06.2018.

[5]. Winbagility. Pesxxum noctyma: https://winbagility.github.io/, naTa odpamienus 19.06.2018.

92



