Configurable system call tracer in QEMU
emulator

A.V. Ivanov <alexey.ivanov@ispras.ru>
P.M. Dovgaluk <pavel.dovgaluk@ispras.ru>
V.A. Makarov <vladimir.makarov@jispras.ru>
Yaroslav-the-Wise Novgorod State University,
41, Great St. Petersburg st., Velikiiy Novgorod, 173003, Russia

Abstract. Sometimes programmers face the task of analyzing the work of a compiled program.
To do this, there are many different tools for debugging and tracing written programs. One of
these tools is the analysis of the application through system calls. With a detailed study of the
mechanism of system calls, you can find a lot of nuances that you have to deal with when
developing a program analyzer using system calls. This paper discusses the implementation of
a tracer that allows you to analyze programs based on system calls. In addition, the paper
describes the problems that I had to face in its design and development. Now there are a lot of
different operating systems and for each operating system must be developed its own approach
to implementing the debugger. The same problem arises with the architecture of the processor,
under which the operating system is running. For each architecture, the analyzer must change
its behavior and adjust to it. As a solution to this problem, the paper proposes to describe the
operating system model, which we analyze. The model description is a configuration file that
can be changed depending on the needs of the operating systems. When a system call is detected
the plugin collects the information downloaded from the configuration file. In a configuration
file, arguments are expressions, so we need to implement a parser that needs to recognize input
expressions and calculate their values. After calculating the values of all expressions, the tracer
formalizes the collected data and outputs it to the log file.

Keywords: QEMU; configurable system calls; debugging; plugin; system calls; tracing.
DOI: 10.15514/ISPRAS-2018-30(3)-7

For citation: Ivanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in
QEMU emulator. Trudy ISP RAN/Proc. ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30,
issue 3, 2018, pp. 93-98. DOIL: 10.15514/ISPRAS-2018-30(3)-7

1. Introduction

Sometimes programmers face the task of analyzing the work of a compiled program
to find its flaws, defects, and even search for malicious code in it. To analyze the
work of such applications, we have to study their binary code or try to decompile the
code, which is a laborious task. In order to simplify the analysis of applications, we
can use the system calls of this application. System calls provide an essential interface

93

Ivanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

between a program and the operating system. It is possible to track which system calls
the application makes, and draw conclusions about the behavior of the program. This
method allows us to debug the application without delving into the level of
instructions and architecture features, thereby reducing the time required to find the
problem.

Debugging applications using system tracing can be done inside the operating system,
but still a number of problems arise:

e strong dependence of the debugger on the operating system;
e impossibility to run several debuggers at the same time;
e inaccessibility to the privileged execution;

e necessity to secure the operating system when analyzing programs that
have harmful effects.
To solve these problems, we can use the virtual machine tools. In this way, we can
debug applications in a wide range of different operating systems running under
different processor architectures.

2. Approach and uniqueness

To date, several debuggers allow us to trace an application using system calls. All
these debuggers have a drawback - they do not provide enough portability of the
debugger within different operating systems and processor architectures. We offer a
new approach to implementing the debugger through system calls, by loading all the
information necessary for tracing from the configuration file. The configuration files
will allow us to easily configure and change the parameters needed for debugging,
and to simplify the addition of support for new operating systems and architectures
without recompiling the program and learning the debugger code.

It was decided to implement the debugger under the virtual machine QEMU [1], using
the plugin mechanism. QEMU is an open source virtual machine that emulates the
hardware of various platforms. This virtual machine supports the emulation of a large
number of processor architectures such as x86, PowerPC, ARM, MIPS, SPARC,
m68k. In addition, this simulator supports the launch of a large number of different
operating systems.

Now, there is a plugin mechanism for QEMU implemented by ISP RAS [2], which
allows us to connect developed plugins to a virtual machine during its both startup
and operation. The implementation of the plugin mechanism enables each additional
translation of the instruction to be substituted by an additional code for execution,
when this instruction is called. This mechanism is suitable for debugging through
system calls, so it was decided to use it.

In addition, various mechanisms of the system call play an important role. The
classical way of implementation is the use of interrupts. With the help of interrupts,
control is transferred to the kernel of the operating system, with the application having

94

HWBanoB A.B., losramok I1.M., Makapos B.A. Kondpurypupyemblii TpacCHpOBIIHK CHCTEMHBIX BBI30BOB B SMYJISATOpE
QEMU. Tpyow: UCII PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 93-98

to enter the number of the system call and the necessary arguments into the
corresponding registers of the processor.

For many RISC processors, this method is the only one; however, the CISC
architecture has additional methods. The two mechanisms developed by AMD and
Intel are independent of each other, but, in fact, perform the same functions. These
are SYSCALL / SYSRET or SYSENTER / SYSEXIT statements. They allow us to
transfer control to the operating system without interrupts.

Each operating system supports values returned from the system call, which are
passed as reference types when the system call handler is called. During the execution
of the system call, the service procedure records the required values if necessary by
the available links, after which the system call is exited.

One of the main tasks that we had to face was the task of supporting the plugin of
different operating systems and processor architectures. The solution to this problem
was the interface with the configuration file. The configuration file makes the
debugger more flexible and customizable. With its help, we can disconnect a certain
mechanism of system calls from the trace or disable unnecessary system calls. In
addition, such a mechanism makes it easier to add support for new operating systems
and processor architectures.

To implement the interface with the configuration file, it was necessary to study a
wide range of different operating systems and processor architectures. After gathering
the necessary information, we can determine the information necessary for
debugging: what type of system call is supported by SYSCALL / SYSRET or
SYSENTER / SYSEXIT and their opcodes; location of system call arguments; a list
of system calls, with the name of each system call, its code, and the list of arguments.
Thus, by developing an interface for debugger and configuration file interfacing, we
can add support for operating systems without going into the debugger code.

When implementing the debugger interaction interface with the configuration file, it
became necessary to recognize the various expressions read from the file. For this
task, we used the generator of the bison parser and developed the corresponding
grammar [3].

3. Background and related work

Now, there are several debuggers to solve existing problems. Nitro [4] allows us to
trace system calls, but it works only under Intel x86 architecture. Another debugger
— Panda [5], can also trace system calls, supporting such operating systems as Linux,
Windows 7, Windows XP and two architectures of the i386 processor and ARM. The
description of all system calls is found in the code of this debugger, because of which
this approach makes it difficult to add support for new operating systems and
processor architectures, and worsens the flexibility in configuring the plugin, since
the system debugger settings mechanism is not provided.

95

Ivanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

4. Conclusion and discussion

Based on the results of the work done, the plugin was developed in the QEMU virtual
machine, with which we can trace and debug an application using system calls. As
input to the plugin, the configuration file corresponding to the operating system
running in the QEMU virtual machine and corresponding to the selected processor
architecture is used.

The structure of the configuration file consists of 4 parts. The first part provides
information about the operating system, its name and bit capacity. The second part is
responsible for the supported mechanisms of system calls. The next part contains the
location of the system call arguments. The last part includes a list of all available
system calls and service information about the arguments of the system calls.

Because of the plugin’s work, a log file containing all the system calls that the plugin
has intercepted is created. Each system call displays detailed information: the name
and value of each system call argument, the number of the thread of execution from
which this system call was made and the value that returned the system call after
execution. Fig. 1 presents a small fragment of the output file that was created by the
implementation of the plugin launched in the windows XP operating system and the

1386 processor architecture.

Bx3e84000 entr: Bx114: NtWriteRequestData
Bx3e84000 exit: ©Ox114: NtWriteRequestData
return: @x@
0x3e84000 entr: ©Oxcd: NtReplyWaitReceivePortEx
Ox3e84000 entr: Ox112: NtWriteFile
arg 0: 8x2ad HANDLE FileHandle)

{
arg 1: 6x@ (HANDLE Event)
arg 2: ox@ (PIO_APC_ROUTINE ApcRoutine)
arg 3: 6x@ { PVOID ApcContext)
arg 4: 6x8ffed8 (PIO_STATUS BLOCK IoStatusBlock)
arg 5: 8x9059f8 { PVOID Buffer)
arg 6: 6xbc { ULONG Length)
arg 7: ex8ffée@ (PLARGE INTEGER ByteOffset)
arg 8: 6x0 { PULONG Key)

0x3e84000 exit: Ox112: NtWriteFile
return: 6x@
Bx3e84000 entr: Ox74: NtOpenFile
arg 0: 8xBffécd PHANDLE FileHandle)
arg 1l: oxleelee ACCESS MASK DesiredAccess)
arg 2: oxeffese POBJECT ATTRIBUTES ObjectAttributes)
arg 3: ox8ffead PIO_STATUS_BLOCK IoStatusBlock
arg 4: 8x7 ULONG ShareAccess)
arg 5: 08x204020 ULONG OpenOptions)
0x3eB84000 exit: Ox74: NtOpenFile

return: 8x@
Ox3e84000 entr: Oxed: NtSetInformationFile
arg 8: 8x3lc (HANDLE FileHandle)
arg 1: exaffead { PID_STATUS BLOCK IoStatusBlock
arg 2: 8x8ffes58 (PVOID FileInformation
arg 3: ex28 (ULONG Length)
arg 4: Bxd (FILE_INFORMATION CLASS FileInformationClass)

0x3e84000 exit: 0Oxed: NtSetInformationFile
return: Bx@
0x3e84000 entr: ©x19: NtClose
arg 8: 8x3lc (HANDLE Handle)
0x3e84000 exit: Ox19: NtClose
return: 6x@

Fig. 1. Part of the output file of the plugin

Upon the information gathered in the log file, we can analyze the operation of the
debugged application running inside the virtual machine. The operating system load

96

HWBanoB A.B., losramok I1.M., Makapos B.A. Kondpurypupyemblii TpacCHpOBIIHK CHCTEMHBIX BBI30BOB B SMYJISATOpE
QEMU. Tpyow: UCII PAH, 2018, Tom 30, Beim. 3, 2018 1., cTp. 93-98

time when using the developed plugin is increased 20% slowdown compared to the
time of the operating system loading without this plugin.

Acknowledgments

The work was supported by the Russian Foundation of Basic Research (research grant
18-07-00900 A)

References

[1]. F. Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

[2]. Vasiliev L.A., Fursova N.I., Dovgaluk P.M., Klimushenkova M.A., Makarov V.A.
Modules for instrumenting the executable code in QEMU. Problemy informacionnoj
bezopasnosti. Komp'juternye sistemy [Journal of Information Security Problems.
Computer Systems], no. 4, 2015, pp. 195-203 (in Russian).

[3]. GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4]. Nitro [HTML] (http://nitro.pfoh.net/index.html)

[5]. Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-
re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

KoHdurypupyembliii TpaccMpoBLUMK CUCTEMHbIX BbI3OBOB
B amynsitope QEMU

A.B. Hsanos <alexey.ivanov@ispras.ru>
1I.M. JJoseaniox <pavel.dovgaluk@jispras.ru>
B.A. Makapoe <vladimir.makarov@ispras.ru>
Hoeszopoockuil eocyoapcmeennsiti uncmumym umenu Apociasea Myopoeo,
173003, Poccus, e. Benuxuti Hogeopoo, yn. b. Cankm-Ilemepbypackas, 0. 41

AnHoTanus. Pa3paboTunky mporpaMM 4acTo CTAIKUBAIOTCS C IPoOIeMoil aHanmm3a paboTh
Pa3IMYHBIX TPUIOKEHUH. [IIs 3TOTO CyIecTBYeT OONBIIOe MHOKECTBO PAa3IMYHBIX CPEACTB
OTJAAKH, OTCIEKHUBAHUS, TPACCHPOBKH HAIMCAHHBIX HporpamMM. OIHHM M3 TaKUX CPEICTB
SIBJISICTCS aHAJIM3 PAOOThI IIPHIIOKEHUS Yepe3 CUCTEMHBIE BBI30BBI. [Ipy 1eTaabHOM H3ydeHUH
MEXaHM3Ma CHCTEMHBIX BBI30BOB, MOXKHO OOHApYXHTh OOJIBIIOE KOJHYECTBO HIOAHCOB, C
KOTOPBIMHM ~ NIPUXOJMMUTCS CTOJNKHYThCA IpH pa3pabOTKe aHAIM3aTopa IpOrpaMM ¢
UCIIOJIB30BAHMEM CHCTEMHBIX BBI30OBOB. B cTaTbe paccMarpuBaeTcs peailu3anus
TPAcCHpPOBIIHKA, KOTOPBIA MO3BOJISCT AHAIM3UPOBATH NMPOrPAMMBI Ha OCHOBE CHUCTEMHBIX
BBI30BOB, M IPOOJIEMBI, ¢ KOTOPBIMH IMPHIIIOCH CTOJKHYTHCS IIPU €0 MPOSKTHPOBAHUH H
paspaborke. Ha naHHBIE MOMEHT CYIIECTBYET OOJBIIOE KOJHYECTBO Pa3IHYHbIX
OIIEPAllMOHHBIX CHCTEM M JUIS Ka)KIOH OIepalMOHHOM CHCTEMBI JOJDKEH OBITh pa3paboTaH
CBOH IOJXOJ B peayM3aliy OTIaguuKa. Takas e ImpoOiaeMa BO3SHUKAET M C apXUTEKTYPOH
Iporeccopa, 1oJ KOTOPOH 3amyllieHa ONneparuoHHas cucrema. [l Kak[oi apXUTEKTypbl,
aHaJNN3aTop IOJDKESH MEHSTh CBOE ITOBE/ICHNE M OICTPanBaThCs 1oj He€. B kauecTBe perueHus
JaHHOM TpoOJIeMbl, B CTaThe IPEUIaraeTcsi OIMCATh MOJENb OINEPALHUOHHOH CHCTEMBI,
KOTOPYI0 Mbl aHaynuzupyeM. OnHcaHHe MOJENU HPEICTaBIsAeT COO00H KOH(UIYpaLMOHHBIH
(aiin, KOTOpPBEIA MOXET OBITh W3MEHEH B 3aBHCHMOCTH OT MOTPEOHOCTEH ONEeparMOHHBIX

97

Ivanov A.V., Dovgaluk P.M., Makarov V.A. Configurable system call tracer in QEMU emulator. Trudy ISP RAN/Proc.
ISP RAS, Trudy ISP RAN/Proc. ISP RAS, vol. 30, issue 3, 2018, pp. 93-98

cucteM. [Ipn oOHapyKeHHN CHCTEMHOTO BBI30Ba, B €r0 00pabOTUHK MepealoTcs apryMeHTh
M BCS COIYTCTByIOIass HWH(pOpManus, 3arpyKeHHas W3 KOH(QHIYypalHOHHOro daiina.
W3nayanpHo, B KOH(purypauuoHHoM ¢aiiie, Bce aprymMeHThl MpPEACTaBISIOT CcOOOM
BBIPQ)KEHHUSI, MOTOMY BO3HHKAET HEOOXOAMMOCTh TAaKKE PEalN30BaTh CHHTAKCHYECKHH
aHaNIM3aTop, KOTOPOMY HEOOXOAMMO pPACIO3HATh BXOJAHBIE BBIPAXKEHMS M IOCUYUTATh HX
3HadyeHus. [locime mpocuéra 3HAYEHUH BCEX BBIPAKEHUH, TPACCHPOBIIUK (opMamu3yeT
coOpaHHbIE JaHHBIC U BEIBOJHT HX B JIOT (haii.

KnroueBbie ciaoBa: QEMU; xoHdurypupyemble CHCTEMHBIE BBI3OBBI, HACTpanBaeMbIe
CHUCTEMHBbIC BBI30BBI; OTJIAAKA; OTJIAJUUK; IUIArMH; CUCTEMHbIE BBI3OBBI; TPACCUPOBKA;
TPacCUPOBIIUK.

DOI: 10.15514/ISPRAS-2018-30(3)-7

Jas nurupoBanms: VeanoB A.B., [osramok I1.M., Makapo B.A. Kondurypupyemsrit
TPaCCHPOBIIMK CHCTEMHBIX BEI30BOB B amyJisitope QEMU. Tpyzast UCIT PAH, Towm 30, BBIm. 3,
2018 r., cTp. 93-98 (ma anrmmiickom s3eike). DOL: 10.15514/ISPRAS-2018-30(3)-7

Cnucok nutepatypbl

[1]. F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, 2005.

[2]. BacuiseB U.A., ®@ypcosa H.U., dosramok [1.M., Knumymenkosa M.A., Makapos B.A.
Mopgynu [MHCTPYMEHTHPOBAHUS HCIONHAEMOro koza B cumyisatope QEMU.
IIpobnemsr nadopmanmonHo OezomnacHocTu. KommbroTepHble cuctemsl, no, 4, 2015r.,
crp. 195-203

[3]. GNU Bison [HTML] (https://www.gnu.org/software/bison/)

[4]. Nitro. [HTML] (http://nitro.pfoh.net/index.html)

[5]. Panda. Plugin: syscalls2. [HTML] (https://github.com/panda-
re/panda/blob/master/panda/plugins/syscalls2/USAGE.md)

98

