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Abstract. The verification and analysis of distributed systems is a task of utmost importance, 
especially in today’s world where many critical services are completely supported by different 
computer systems. Among the solutions for system modelling and verification, it is particularly 
useful to combine the usage of different analysis techniques. This also allows the application 
of the best formalism or technique to different components of a system. The combination of 
Colored Petri Nets (CPNs) and Automata Theory has proved to be a successful formal 
technique in the modelling and verification of different distributed systems. In this context, this 
paper presents Prosega/CPN (Protocol Sequence Generator and Analyzer), an extension of 
CPN Tools for supporting automata-based analysis and verification. The tool implements 
several operations such as the generation of a minimized deterministic finite-state automaton 
(FSA) from a CPN’s occurrence graph, language generation, and FSA comparison. The 
solution is supported by the Simulator Extensions feature whose development has been driven 
by the need of integrating CPN with other formal methods. Prosega/CPN  is intended to support 
a formal verification methodology of communication protocols; however, it may be used in the 
verification of other systems whose analysis involves the comparison of models at different 
levels of abstraction. For example, business strategy and business processes. An insightful use 
case is provided where Prosega/CPN has been used to analyze part of the IEEE 802.16 MAC 
connection management service specification. 
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1. Introduction 
The verification of distributed systems and the assurance of their correctness is a task 
of utmost importance; specially in today’s world where many critical services are 
completely supported by computer technologies. Among the solutions for system 
modelling and verification, Petri Nets [1] play a major role since its capability of 
graphically visualize systems, and for maintaining the formal rigor, so it allows to 
perform a convenient analysis of the behavioral properties of a system. Thus, the 
formalism of Petri Nets has been extended to other models in order to enrich their 
expressiveness and practicability. Particularly, we consider Coloured Petri Nets 
(CPNs) [2] where data types (colors) may be associated to net elements. CPN Tools 
[3] is a consolidated software tool for editing, simulating, and analyzing CPN models.  
However, when dealing with a higher complexity of the system, it may be useful to 
combine the usage of different analysis techniques. This also allows the application 
of the best formalism or technique to different components of a system. In the context 
of Colored Petri Nets, the last version of CPN Tools includes the Simulator 
Extensions whose development has been driven by the need of integrating CPN with 
other formal methods [4]. In particular, we consider the integration of CPNs and 
Finite-state Automata (FSA) which has been proved to be useful for the validation of 
different protocols and communication systems [5] [6] [7]. 
For instance, given a CPN’s occurrence graph (OG), the arcs through a path in the 
OG may be seen as the sequence of service primitives that a user (i.e. another system 
entity in a higher layer) invokes in order to request some action by a service provider. 
The nodes in the OG may be considered as changes of state in the system due to the 
services invocations. Finally, some nodes of the OG may represent halt states, 
meaning the termination of a specific process. Hence, the OG can be seen as a FSA, 
which can be analyzed using well-known algorithms and theorems. 
There are several tools for building, combining, optimizing, and searching Finite-state 
Automata. However, in order to apply them for analyzing CPNs and occurrence 
graphs, these ones must be converted into FSA specific formats (i.e. see [5] [6]). 
Using several tools may complicate the verification process. 
Thereby, we developed a solution called Prosega/CPN (Protocol Sequence Generator 
and Analyzer). The tool aims to bridge conveniently the formalism of CPNs with 
Finite-state Automata, taking advantage of the Simulator Extensions feature in CPN 
Tools. Thus, the software provides a mechanism for transforming a CPN’s occurrence 
graph into a minimized deterministic FSA as well as other operations for language 
generation and FSA comparison. Prosega/CPN has been conceived to support the 
protocol verification methodology proposed by Billington [8]. However, the tool may 
be useful to support the verification of other systems whose strategy may involve the 
usage of FSAs, or the comparison of models at different levels of abstraction; for 
example, business strategy and business processes. 
The remainder of this paper is structured as follows. Section 2 introduces the literature 
related to our work. Section 3 presents some formal definitions for understanding the 
models managed by Prosega/CPN. Sections 4 and 5 describe the tool functionalities 
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and architecture respectively. Section 6 describes a use case where the tool has been 
used to analyze part of the IEEE 802.16 MAC connection management service 
specification. Finally, Section 7 presents the conclusions. 

2. Related work 
Prosega/CPN has been developed within the context of system verification through 
the formalism of Coloured Petri Nets (CPNs) and Finite-state Automata (FSA). The 
tool has been conveniently developed as an extension of CPN Tools [3] since it 
performs several operations on FSAs generated from a CPN model. i.e. the reduction 
of a CPN’s occurrence graph into a FSA. Hence, through the development of 
Prosega/CPN we have been focused in three topics within the literature: 

 Works dealing with the development of extensions for CPN Tools [4] [9] 
[10] [11]. 

 Tools and other solutions for the analysis and manipulation of FSA [12] 
[13] [14] [15] [16]. 

 Works proposing a system verification methodology using CPNs and FSA, 
and the use cases in which it has been applied [5] [6] [7] [8] [17], and other 
scenarios where both formalisms have been used together [18] [19] [20]. 

CPN tools has a history for communicating with external solutions; its architecture 
provides a set of communication primitives for connecting external software to the 
CPN simulator engine. As an initial effort, it was developed Comms/CPN [9], a 
library for Java and C/C++ which makes it possible for CPN Tools to communicate 
based on TCP/IP with external application and processes. The BRITNeY Suite [10] 
is other solution which provides model visualizations in an external tool, and more 
recently Access/CPN [11] that provides a channel to interact with the CPN Tools 
simulator engine from external Java programs. However, while these previous tools 
have made it easy to interact with CPN Tools, they have not made it possible to extend 
the software. Thereby, it was developed the Simulator Extensions [4] feature included 
in the last version of CPN Tools. This component provides a mechanism for adding 
new functionalities within the CPN Tools Graphical User Interface (GUI), thereby 
allowing integrating other related formalisms with CPN models; as a result, it has 
been possible to handle other models in the tool such as low-level Place/Transition 
nets, Declare models, and drawing message sequence charts from model executions 
[4].  
On the other hand, Finite-state Automata (FSA) have been used in a much wider 
spectrum of fields than CPNs; as an important tool for FSA manipulation we highlight 
the FSM Library from AT&T Labs [12] which is a collection of Unix software tools 
for creating and manipulating finite-state machines. Despite the library is quite 
general purpose, it was designed for speech processing applications such as speech 
recognition/synthesis; FSM Library was used as well in previous works regarding the 
verification of communication systems based on CPNs and automata [5] [6]. Some 
of the researchers of the AT&T FSM project developed later an enhanced version 
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called OpenFST [13], which is an open-source alternative that also allows to construct 
finite-state transducers, and it provides a C++ template library. Within the range of 
tool solutions for FSA manipulation, we may also find Foma [14], the FAdo project 
[15] and the specialized pedagogical tool JFLAP [16] among many others. 
Bridging CPNs and FSA may be useful for verification of systems of very high 
complexity. In particular, Billington [8] proposed a CPN and FSA approach for the 
verification communication systems that has proven to be successful; namely, in the 
verification of the Resource Reservation Protocol (RSVP) [5], the Wireless 
Application Protocol (WAP) [6], the Transmission Control Protocol (TCP) [7], and 
the Internet Open Trading Protocol (IOTP) [17], among other cases. Between other 
domains in which both formalisms have been applied together we may find the 
verification of web-services composition [19] [20] or vehicular traffic control systems 
[18], just to mention a few. 

3. Formal Definitions 
This section presents some formal definitions of the models and data structures that 
are manipulated through the functionalities of CPN Tools and Prosega/CPN. In 
particular, it is formulated how it can be derived an occurrence graph (OG) from a 
CPN model, and afterwards is explained how can it be generated a Finite-state 
Automaton (FSA) from a CPN’s occurrence graph. The following formulations are 
based in the work done in [8]. Albeit CPNs are managed in this work; for the formal 
definition it has been rather convenient to generalize the type into a High-level Petri 
Net (i.e. for proving further theorems regarding the relationship between an OG and 
a FSA as described in [8]). Hence, we firstly take the definition of a High-level Petri 
net (HLPN) [21]. 
Definition 1. A High-level Petri Net is a structure of the form 𝐻𝐿𝑃𝑁 =
(𝑃, 𝑇, 𝐷; 𝑇𝑦𝑝𝑒, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡, 𝑚) where:  

 𝑃is a finite set of Places; 

 𝑇is a finite set of Transitions such that𝑃 ∩ 𝑇 = ∅ 
 𝐷is a non-empty finite set of non-empty domains where each element of D is 

called a type.  
 𝑇𝑦𝑝𝑒: 𝑃 ∪ 𝑇 → 𝐷is a function used to assign types to places, and to determine 

transition modes.  
 𝑚 ∈ 𝜇𝑃𝐿𝐴𝐶𝐸is a multi-set called the initial marking of the net such that 

𝜇𝑃𝐿𝐴𝐶𝐸is a set of all possible multi-sets of 𝑃𝐿𝐴𝐶𝐸 
 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡: 𝑇𝑀 → 𝜇𝑃𝐿𝐴𝐶𝐸are the pre and post mappings with 

 𝑇𝑀 = {(𝑡, 𝑚)|𝑡 ∈ 𝑇, 𝑚 ∈ 𝑇𝑦𝑝𝑒(𝑡)}the set of transition modes. 
 𝑃𝐿𝐴𝐶𝐸 = {(𝑝, 𝑔)|𝑝 ∈ 𝑃, 𝑔 ∈ 𝑇𝑦𝑝𝑒(𝑝)}the set of elementary 

places. 
For the analysis of a High-level Petri net it is generated an occurrence graph (OG). 
We consider that an OG can be defined as a labelled and rooted directed graph, where 
the nodes of the graph represent markings of the Petri Net, and the directed arcs 
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represent the transition modes (or binding elements [2]) that can occur in all 
executions from the initial marking. On the other hand, the root of the graph refers to 
a node, which is considered as the initial state. In addition, the arcs of an OG may be 
labelled by the transition modes. Thus, we start by defining a labelled and rooted 
directed graph, and then we give the definition of an OG associated to a HLPN. 
Definition 2. A labelled directed graph, with 𝑣as the root node, is a triple 𝐺 =
(𝑉, 𝐿, 𝐸) where: 

 𝑉is a finite set of vertices or nodes;𝑣 ∈ 𝑉represents the root or initial node. 
 𝐿is a set of labels; 
 𝐸 ⊆ 𝑉 × 𝑉is a set of labelled directed edges. 

Definition 3. An occurrence graph of a HLPN with an initial marking𝑣is a labelled and 
rooted directed graph𝑂𝐺 = (𝑉, 𝑇𝑀, 𝐴)where 

 𝑉is a finite set of vertices or nodes reachable from𝑚(the reachability set); 
𝑚 ∈ 𝑉represents the initial marking (root node); 

 𝑇𝑀is the set of transition modes of the HLPN; 

 𝐴 = ቄ(𝑚, 𝑡𝑚, 𝑚′) ∈ 𝑉 × 𝑇𝑀 × 𝑉′|𝑚 →
௧

𝑚′ቅis the set of arcs (directed 

edges) labelled by transition modes. 

Remark. 𝑚 →
𝑡𝑚

𝑚′indicates the ocurrence of a transition mode tm ∈ TM in a 
marking𝑚which results in a new marking𝑚′ 
However, when we are only interested in the transition names, then the arcs of the 
OG are just labelled with such transitions names rather than the transition modes 
(binding elements). For example this is useful when it is just required to understand 
which user observable events (service primitives) may lead from a state of the system 
to another one; instead of transition modes which involve the parameters binded to 
such events. In addition, when we are also interested in the identification of the 
markings for the nodes of the OG, rather than the marking details, we introduce an 
injection 𝐼: [𝑚] → ℕsuch that this function maps the set of reachable markings from 
𝑚(denoted as[𝑚]) into the set of natural numbers. Giving the described abstractions 
for transitions and markings, we consider the definition of an abstract OG. 
Definition 4.  An abstract OG of a HLPN with an initial marking 𝑚 is a labelled and 
rooted directed graph𝑂𝐺 = (𝑉, 𝑇, 𝐴)where 

 𝑉 = {𝐼(𝑚)|𝑚 ∈ [𝑚]} is the set of nodes; 
 𝐼(𝑚) ∈ 𝑉 represents the root or initial node. 
 𝑇is the set of transitions of the HLPN ; 

 𝐴 = ൜൫𝐼(𝑚), 𝑡, 𝐼(𝑚′)൯ ∈ 𝑉 × 𝑇 × 𝑉′|𝑚 →
(௧,)∈்ெ

𝑚′ൠ is the set of arcs 

labelled by transition. 
We point out that the abstract occurrence graph OG defined above is finite. i.e. It has 
a finite number of states. Indeed this is an important fact when dealing with real 
scenarios. This means that the corresponding Petri Net must be a bounded net [1], and 
hence a preliminary boundedness analysis on the Petri Net is performed. Finally, it is 
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presented a mapping from an abstract OG (Definition 4) into a Finite-state Automaton 
FSA. We define a function Prim: T ∪→ SP  {ε} that maps each transition of the 
HLPN to either an identifier name (i.e. an user observable event or service primitive 
name), or to an epsilon (i.e. an empty move); SP is the set of identifiers (for the user 
observable events or service primitive names) for the system that we are describing. 
Definition 5. A Given an abstract occurrence graph𝑂𝐺 = (𝑉, 𝑇, 𝐴)it is derived the 
corresponding Finite-state Automaton𝐹𝑆𝐴 = (𝑉, 𝑆𝑃, 𝐴ௌ, 𝑣, 𝐹)where 

 𝑉is the set of nodes of the abstract OG (the states of the FSA); 
 𝑆𝑃is the set of identifiers (for the user observable events or service primitive 

names) of the system of interest (the alphabet of FSA); 
 𝐴ௌ = {(𝑣, 𝑃𝑟𝑖𝑚(𝑡), 𝑣′)|(𝑣, 𝑡, 𝑣′) ∈ 𝐴}is the set of transitions labelled by 

elements of SP or epsilons (the transition relation of the FSA);  
 𝑣corresponds to the abstract initial marking (initial state of the FSA). 
 𝐹 ⊆ 𝑉the set of final (acceptance) states. 

Prosega/CPN performs the conversion of an OG as described in Definition 4 into a 
FSA as described in Definition 5. Moreover, this mapping between OG and the FSA 
allows the tool conveniently manage the generation of the language and the 
comparison between other FSAs. 

4. Functionalities 
Prosega/CPN is an extension in CPN Tools. Thus, the user interacts with the 
application using a Graphical User Interface (GUI) through a tool palette added to 
CPN Tools (see fig. 1) - available under the Tool box entry [3]. The tool supports the 
generation of a minimized deterministic Finite-state Automaton (FSA) derived from 
the CPN’s occurrence graph, the language generation, and the comparison between 
two different FSAs. We proceed to explain these functionalities in detail. 

 

Fig. 1. Tool palette of Prosega/CPN 

4.1 FSA Generation 
Once the occurrence graph (OG) from a CPN model is generated using the CPN Tools 
simulator [3], its associated Finite-state Automaton (FSA) can be generated and 
reduced using the RUN tool (see Fig. 1). To this aim, the following steps are 
performed: getting the transitions, and dead markings of the OG, assigning identifiers 
to transitions (i.e. constructing the mapping Prim defined in Section 3), reducing the 
FSA, and displaying the results. Here, we consider the structure of an abstract OG 
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where the nodes are identified by numbers, which represent the markings and the arcs 
are just labelled with the transitions rather than the binding elements (see Definition 
4). 
Firstly, the tool communicates with the CPN Tools simulator in order to obtain all the 
transitions and the dead markings (see Section 5). The user interacts with the 
Prosega/CPN GUI to assign identifiers (corresponding to user observable events or 
service primitive names) to the model transitions (i.e. mapping elements from a set 
SP). The character 0 is considered as an epsilon (ε). Hence, any transition assigned 
with 0 is considered an epsilon transition (or empty move). Then, the user chooses 
the set of terminal states F for the FSA. which may include nodes representing the 
dead markings or other nodes in the OG. Thereby, it is obtained a FSA in line with 
Definition 5. 

 

Fig. 2. Intial Prosega/CPN in terface where the user can assign Ids to transitions and enter 
terminal states 

For instance, fig. 2 shows the Prosega/CPN interface which supports the described 
operation. In particular, it is defined a FSA given a CPN’s occurrence graph extracted 
from the use case in Section 6. The user assigns identifiers for the CPN transitions. 
For example, the identifier 1 to the transition MACCrtConnReq, which is in the CPN 
model page CreatConnection. Later, the user chooses the following nodes of the OG 
as terminal states: 1, 7, 8, 13, 26, 27, 31, 48 (some are not displayed in the figure due 
to window size limitation). Afterwards, the modelled FSA is reduced by following 
the algorithm described in [22], which consists in performing the following 
operations over a FSA: 

 removal of epsilon transitions (remove empties); 
 removal of non-determinism (determinization); 
 reduction by identifying and merging equivalent states (minimization). 

The algorithm produces as output a reduced deterministic FSA with a minimal 
number of states that is equivalent to the input automata. Finally, an interface showing 
the results of the FSA reduction is displayed to the user as shown in fig. 3. 

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and 
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128 

114 

 

Fig. 3. Interface showing the results of the FSA reduction process 

 The interface shows general information about the reduced FSA (FSA Info), such as 
initial state and number of arcs, which may be relevant for the FSA analysis. It also 
includes a graphical representation of the FSA (FSA Image Preview), and the 
established mapping between the identification numbers/names assigned by the user 
and the transition names, which may be useful for debugging and verification of the 
model. 

4.2 Language generation 
The language accepted by a FSA can be generated by using either the LANG tool in 
Fig. 1 or the Generate Language button in Fig. 3. The interface shown in Fig. 4 is 
displayed to the user after it clicks on the LANG tool. Then the user can choose both 
the FSA, in plain text or in the compiled format [13], for which the language will be 
generated and the corresponding symbol table file—for mapping the arc inscriptions 
with the symbols selected by the user.  

 

Fig. 4. Language generation interface 
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The language generator module generates the language L of the FSA by extension; if 
L is finite, the whole sequences are printed; otherwise a subset of the language, L’ ⊆ 
L is generated, as illustrated in fig. 5. In particular, L’ is a set of symbol sequences 
whose symbols belong to  different arcs in the FSA. Notice that some arcs of the FSA 
may be labelled with the same symbol. However, in the generation of each sequence, 
each arc of the FSA is visited just once. 
Indeed, for generating each sequence accepted by the automaton it was developed an 
algorithm based on iterative Depth-first Search (DFS), which was implemented in the 
language generator component of Prosega/CPN (as mentioned in Section 5). This 
component performs DFS between the initial state of the FSA, to each of the halt 
states. Hence, the symbols of the arcs visited through the path from the initial state to 
a specific halt state are printed, thereby representing a sequence accepted by the 
automaton. In addition, this module supports a generator of random sequences of the 
language symbols, as shown in Fig. 6, which may be useful when the language is 
infinite. For example, in Fig. 5 and 6, we can see the following sequence of language 
symbols: 1, 5 which corresponds to the sequence of actions (transitions): 
MACCrtConnReq, MACCrtConnCf2 (as shown in the interface in fig. 4, where the 
user assigned an Id (language symbol) to each transition). 

 

Fig. 5. Interface showing part of the language accepted by the FSA of Fig. 3 

In particular, for generating each random sequence it is computed a random walk in 
the FSA from the initial state to any of the halt states. Whenever a halt state is visited, 
the walk will be terminated with a probability p/100 s.t 0 < p ≤ 100, and the sequence 
of symbols, which were collected throughout the visited path will be printed. Thus, 
in the Generate Random interface (fig. 6), the user can manipulate the average size of 
the randomly generated sequences of language symbols by entering the halt-rate 
parameter value p. Therefore, if the value p is close to 0, the number of language 
symbols in each sequence may be big, while if p is close to 100, then the number of 
language symbols in each sequence may be small, thereby determining the length of 
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each sequence. i.e. since the halt-rate parameter value in fig. 6 is 55, in that case the 
sizes of the sequences are medium. 

 

Fig. 6. Interface showing some randomly generated sequences of language symbols 

 

Fig 7. The interface shows the resulting difference FSA given two automata as parameters 

4.3 FSA Difference 
The user can use the DIFF tool to calculate the difference between two automata, F 
A and F B. This functionality, whose output interface is illustrated in fig. 7, generates 
a new automaton F C which only accepts the sequence of symbols accepted by the 
first automaton F A , and that are not accepted by the second one F B . In particular, 
F B must be an epsilon-free, deterministic finite automaton. This is useful to 
understand the sequences of languages symbols in which may differ two models; in 
this sense, as seen in fig. 7, this functionality allows to generating the language of F 
C for getting such sequences in which may differ two models. 
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5. Architecture 
Prosega/CPN is implemented in Java programing language, so we use the new feature 
in CPN Tools 4 called Simulator Extensions [4] to add the software functionalities. 
Fig. 8 shows the software architecture, which illustrates the relation ship among all 
the components of our tool, CPN Tools and the third-party components. 
Communication between the CPN Tools GUI and the simulator, and between the 
simulator and the Simulator Extensions is supported by the BIS (Boolean - Integer - 
String) protocol. Each protocol message is encoded using a number of booleans, 
integers, and strings as explained in [23]. In order to facilitate the development of 
Prosega/CPN we use some third-party libraries, which implement many of the 
functions to manage and display the automata.  
In particular, we utilize OpenFST [13] [24] for FSA reduction and FSA difference, 
and Graphviz [25] for drawing the automata. On the other hand, we wrote the code 
for language generation (fsm2language) in C programming language [26]. The 
fsm2language implements the procedures for language generation and the 
computation of random sequences accepted by a FSA that were described in Section 
4. The bridge between the fsm2language component and the Prosega/CPN tool is 
supported by JNI (Java Native Interface), which enables a Java program to call native 
libraries written in C/C++ programming language. 

 

Fig. 8.  Prosega/CPN Architecture 

6. Use Case 
The IEEE 802.16 standard [27] is responsible for specifying and describing the air 
interface of Broadband Wireless Access Systems (BWA), and point-multipoint 
fixed/mobile wireless metropolitan area network. The standard is limited to the 
description of the Medium Access Control (MAC) and physical (PHY) layers. In 
overall, IEEE 802.16 provides great benefits for providing mass broadband wireless 
connectivity, allowing user mobility, mesh-mode network support, and even has been 
thought as an alternative for Internet-of-Things deployments. However, due to its 
inherent complexity, there are several parts of the specification that turn out to be 
ambiguous, difficult to understand and imprecise. In this context, Morales et al. [28] 
[29] has contributed establishing a formal model for a module of IEEE 802.16. In 
particular, it developed a formal verification of the MAC connection management 
service specification. To this aim, the Prosega/CPN tool has been used in conjunction 
with the Billington’s protocol verification methodology [8]. Fig. 9 illustrates the steps 
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of the methodology; we proceed to explain such steps, and how they have been 
applied within our use case using CPN Tools and Prosega/CPN. 

 

Fig. 9. Steps within the protocol verification methodology proposed in [8]. 

6.1 Service Definition 
In fig. 9, the dashed box in the left represents the first step which consists in modelling 
the service specification of the system, and to define the services that it aims to 
provide (either to a higher layer or to another system entity). In the scenario of the 
IEEE 802.16 MAC layer, the service specification consists in a set of service 
primitives that the MAC sub-layer, responsible for connection management 
procedures, provides to the sub-layer on top of it. Each of these primitives correspond 
to one of the following procedures: The establishment of a connection between 
communication peers, the connection maintenance (i.e. management of the dynamic 
network resources) and the termination of the connection by any of the 
communication peers. 

6.2 Service CPN and OG 
Using CPN Tools, it is created the CPN model of the service specification. fig. 10 
presents the CPN main page which shows a top view of the model [2]. This top 
module is linked with the pages that model the service primitives that correspond to 
the establishment, maintenance, and termination of a connection through the 
transitions CreatConnection, ChangeConnection, and TerminateConnection 
respectively. Each of these pages of the model can be checked in [28]. Afterwards, it 
is generated the CPN’s occurrence graph (OG), shown in fig. 11, which is the input 
for the FSA reduction feature of Prosega/CPN. 
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Fig. 10. CPN model representing the hierarchical view for the processes of creation, change 
and termination of connections between peer MAC entities in the IEEE 802.16 service 

specification 

6.3 FSA Reduction 
Once the service OG is generated, it is modelled as a FSA in line with Definitions 4 
and 5. To this aim, it is used the RUN tool of Prosega/CPN for converting the OG 
into a FSA (as presented in fig. 2). For each transition of the CPN model, it is assigned 
a number value which represents the associated service primitive identifier (Id) 
(resembling the function Prim described in Section 3). Transitions that are considered 
as empty moves (or internal events) are labelled with 0 (epsilon transitions). Later, 
there are assigned the terminal states. The assignation performed between all the 
model transitions and the service primitive identifiers as well as the decision of the 
terminal states can be fully checked in [28]. Afterwards, the FSA is minimized 
following the procedure explained in Section 4. Fig. 12 presents the minimized 
deterministic FSA (exported from the output/analysis interface of the RUN tool 
previously presented in Fig. 3. 

Table. 1. Service primitivies on the IEEE 802.16 MAC Layer and their corresponding 
identification number [22] 

Service Primitive Id 

MAC_CREAT_CONNECTION.Request 1 

MAC_CREAT_CONNECTION.Indication 2 

MAC_CREAT_CONNECTION.Response 3 

MAC_CREAT_CONNECTION.Confirmation 4, 5, 6 

MAC_CHANGE_CONNECTION.Request 7 

MAC_CHANGE_CONNECTION.Indication 8 

MAC_CHANGE_CONNECTION.Response 9 

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and 
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128 

120 

MAC_CHANGE_CONNECTION.Confirmation 10 

MAC_TERMINATE_CONNECTION.Request 11 

MAC_TERMINATE_CONNECTION.Indication 12 

MAC_TERMINATE_CONNECTION.Response 13 

MAC_TERMINATE_CONNECTION.Confirmation 14, 15, 16 

 

Fig. 11. OG of the CPN model representing the IEEE 802.16 MAC connection management 
service specification. 
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Fig. 12. Minimized deterministic FSA generated from the OG illustrated in fig. 11 

6.4 Language Generation 
The service language (the set of sequences of service primitives) is generated using 
Prosega/CPN as explained in Section 4 —utilizing FSA minimization (RUN tool) and 
FSA language generation (LANG tool). Fig. 5 presented some sequences that are 
accepted by the FSA. In addition, Table. 1 shows the identifier selected for each 
primitive service [28]. For example, the sequence of language symbols 1, 2, 3, 4, 7, 
8, 9, 10 represent the service primitives invoked by the protocol entity in top of the 
MAC for the successful establishment and maintenance (change of a communication 
resource) of the connection. In overall, the minimized FSA generated by 
Prosega/CPN provides a compact description of the possible sequences of service 
primitives, and allows to remove complexity from the model, which allows the 
language to present a clear specification of the service that the system provides. 

6.5 Further Steps 
The second part of the methodology (dashed box in the right of Fig. 9) concerns to 
the modelling of the protocol, and its comparison against the service specification 
through language equivalence. These further steps are still in progress within the 
research work [28]. The modelling of the protocol consists in constructing the CPN 
model, which describes the protocol procedures which are performed when a service 
primitive is invoked by a higher entity of the system. Later, it is generated the OG 
associated to this CPN model. On the one hand, behavioral properties of the protocol 
may be analyzed through the OG. On the other hand, the OG may be reduced into a 
minimized deterministic FSA. i.e. using again the RUN tool of Prosega/CPN.  
Then, the FSA of the service specification may be compared with the FSA of the 
protocol. i.e. using the DIFF function of Prosega/CPN – see fig. 7. Finally, the 
language of the difference FSA may be generated in order to determine language 
equivalence between the service and the protocol. Thus, we can determine the 
sequences of service primitives, which are in the protocol specification but are not in 
the service specification. It is important to know if the service specification meets the 
protocol specification, since it is not desirable to have a service requirement from the 
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service user which cannot be met by the protocol. In addition, it may not be wanted a 
service provided by the protocol which actually it is never required by the user. 

7. Conclusion 
This work has presented Prosega/CPN. The tool is an extension of CPN Tools for 
supporting several operations for FSA-based analysis and system verification. The 
tool provides a feature for generating a minimized deterministic Finite-state 
Automaton (FSA) from a CPN’s occurrence graph (OG). It includes as well 
operations for language generation, and for automata comparison. These 
functionalities are supported taking advantage of consolidated third-party 
components such as OpenFST and Graphviz. In addition, we developed a module for 
language generation.  
Prosega/CPN has been integrated within the CPN Tools GUI using the Simulation 
Extensions (new feature in the last version of CPN Tools) component whose 
development has been driven by the demand of many research works to suitably 
integrate Colored Petri Nets with other formalisms [4]. In particular, the integration 
between CPNs and FSA was not existing within CPN Tools, and the application of 
this multi-formalism strategy has shown its merits in many published papers, 
specially from the domain of protocol verification.  
Furthermore, other works may be benefited from this FSA-based verification; for 
example, as presented in our use case, the analysis of an equivalent reduced FSA 
provides a compact and clear description of the possible user observable events 
(service primitive calls) rather than to deal with the analysis of the OG, thereby 
allowing to reduce the time complexity when it may be required to check the 
behavioral properties of the system through the FSA.  
As future work, the tool will keep providing support within the further steps of the 
formal verification work of the IEEE 802.16 standard, regarding to the MAC 
connection management procedures. On the other hand, as another further direction 
for the tool enhancement, the tool has been thought to be tested in other domains; 
indeed, as it has been stated, Prosega/CPN can be used in other cases where FSA may 
be required, and within the verification of other systems whose analysis may involve 
the comparison of models at different levels of abstraction.  
This future work on other use cases will be able to keep maturing the tool. i.e. 
integrating new operations/features for automata manipulation, and testing the tool 
performance in terms of scalability, among other key facts. In addition, it has been 
considered to keep exploiting more capabilities offered by the Simulator Extensions 
channel; for example, to be able draw and manually edit a FSA in the CPN Tools 
canvas, instead of only using the Graphviz support for automata drawing. 
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Аннотация. Верификация и анализ распределенных систем являются чрезвычайно 
важными задачами, особенно сейчас, когда многие компьютерные системы реализуют 
критически важные сервисы. Для моделирования и верификации систем полезно 
сочетать разные методы анализа. В частности, это позволяет применять тот формализм 
и ту технику анализа, которые лучше подходят для того или иного компонента системы. 
Комбинация из раскрашенных сетей Петри (CPN, Coloured Petri Nets) и конечных 
автоматов представляет собой успешную формальную методику моделирования и 
верификации распределенных систем. В связи с этим в данной статье рассматривается 
инструмент Prosega/CPN (Protocol Sequence Generator and Analyzer), расширение CPN 
Tools для поддержки автоматного анализа и верификации. Инструмент реализует 
несколько функций, таких как генерация минимизированного детерминированного 
конечного автомата из графа достижимости (occurrence graph) раскрашенной сети 
Петри, генерация языка и сопоставление конечных автоматов. Это решение 
поддерживается функцией Simulator Extensions, развитие которой обусловлено 
необходимостью интеграции раскрашенных сетей Петри с другими формализмами. 
Инструмент предназначен для поддержки формальной методологии верификации 
коммуникационных протоколов; однако он может использоваться для верификации 
других систем, анализ которых включает сравнение моделей на разных уровнях 
абстракции, например, бизнес-стратегий и бизнес-процессов. В статье приведен 
подробный пример, в котором инструмент Prosega/CPN используется для анализа части 
спецификации службы управления соединениями MAC IEEE 802.16. 

Ключевые слова: формальные методы; раскрашенные сети Петри; CPN Tools; 
конечные автоматы; верификация протоколов. 
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