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Abstract. The verification and analysis of distributed systems is a task of utmost importance,
especially in today’s world where many critical services are completely supported by different
computer systems. Among the solutions for system modelling and verification, it is particularly
useful to combine the usage of different analysis techniques. This also allows the application
of the best formalism or technique to different components of a system. The combination of
Colored Petri Nets (CPNs) and Automata Theory has proved to be a successful formal
technique in the modelling and verification of different distributed systems. In this context, this
paper presents Prosega/CPN (Protocol Sequence Generator and Analyzer), an extension of
CPN Tools for supporting automata-based analysis and verification. The tool implements
several operations such as the generation of a minimized deterministic finite-state automaton
(FSA) from a CPN’s occurrence graph, language generation, and FSA comparison. The
solution is supported by the Simulator Extensions feature whose development has been driven
by the need of integrating CPN with other formal methods. Prosega/CPN is intended to support
a formal verification methodology of communication protocols; however, it may be used in the
verification of other systems whose analysis involves the comparison of models at different
levels of abstraction. For example, business strategy and business processes. An insightful use
case is provided where Prosega/CPN has been used to analyze part of the IEEE 802.16 MAC
connection management service specification.
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1. Introduction

The verification of distributed systems and the assurance of their correctness is a task
of utmost importance; specially in today’s world where many critical services are
completely supported by computer technologies. Among the solutions for system
modelling and verification, Petri Nets [1] play a major role since its capability of
graphically visualize systems, and for maintaining the formal rigor, so it allows to
perform a convenient analysis of the behavioral properties of a system. Thus, the
formalism of Petri Nets has been extended to other models in order to enrich their
expressiveness and practicability. Particularly, we consider Coloured Petri Nets
(CPNs) [2] where data types (colors) may be associated to net elements. CPN Tools
[3] is a consolidated software tool for editing, simulating, and analyzing CPN models.
However, when dealing with a higher complexity of the system, it may be useful to
combine the usage of different analysis techniques. This also allows the application
of the best formalism or technique to different components of a system. In the context
of Colored Petri Nets, the last version of CPN Tools includes the Simulator
Extensions whose development has been driven by the need of integrating CPN with
other formal methods [4]. In particular, we consider the integration of CPNs and
Finite-state Automata (FSA) which has been proved to be useful for the validation of
different protocols and communication systems [5] [6] [7].

For instance, given a CPN’s occurrence graph (OG), the arcs through a path in the
OG may be seen as the sequence of service primitives that a user (i.e. another system
entity in a higher layer) invokes in order to request some action by a service provider.
The nodes in the OG may be considered as changes of state in the system due to the
services invocations. Finally, some nodes of the OG may represent halt states,
meaning the termination of a specific process. Hence, the OG can be seen as a FSA,
which can be analyzed using well-known algorithms and theorems.

There are several tools for building, combining, optimizing, and searching Finite-state
Automata. However, in order to apply them for analyzing CPNs and occurrence
graphs, these ones must be converted into FSA specific formats (i.e. see [5] [6]).
Using several tools may complicate the verification process.

Thereby, we developed a solution called Prosega/CPN (Protocol Sequence Generator
and Analyzer). The tool aims to bridge conveniently the formalism of CPNs with
Finite-state Automata, taking advantage of the Simulator Extensions feature in CPN
Tools. Thus, the software provides a mechanism for transforming a CPN’s occurrence
graph into a minimized deterministic FSA as well as other operations for language
generation and FSA comparison. Prosega/CPN has been conceived to support the
protocol verification methodology proposed by Billington [8]. However, the tool may
be useful to support the verification of other systems whose strategy may involve the
usage of FSAs, or the comparison of models at different levels of abstraction; for
example, business strategy and business processes.

The remainder of this paper is structured as follows. Section 2 introduces the literature
related to our work. Section 3 presents some formal definitions for understanding the
models managed by Prosega/CPN. Sections 4 and 5 describe the tool functionalities
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and architecture respectively. Section 6 describes a use case where the tool has been
used to analyze part of the IEEE 802.16 MAC connection management service
specification. Finally, Section 7 presents the conclusions.

2. Related work

Prosega/CPN has been developed within the context of system verification through
the formalism of Coloured Petri Nets (CPNs) and Finite-state Automata (FSA). The
tool has been conveniently developed as an extension of CPN Tools [3] since it
performs several operations on FSAs generated from a CPN model. i.e. the reduction
of a CPN’s occurrence graph into a FSA. Hence, through the development of
Prosega/CPN we have been focused in three topics within the literature:

e Works dealing with the development of extensions for CPN Tools [4] [9]
[10][11].

e Tools and other solutions for the analysis and manipulation of FSA [12]
[13][14] [15][16].

e Works proposing a system verification methodology using CPNs and FSA,
and the use cases in which it has been applied [5] [6] [7] [8] [17], and other
scenarios where both formalisms have been used together [18] [19] [20].

CPN tools has a history for communicating with external solutions; its architecture
provides a set of communication primitives for connecting external software to the
CPN simulator engine. As an initial effort, it was developed Comms/CPN [9], a
library for Java and C/C++ which makes it possible for CPN Tools to communicate
based on TCP/IP with external application and processes. The BRITNeY Suite [10]
is other solution which provides model visualizations in an external tool, and more
recently Access/CPN [11] that provides a channel to interact with the CPN Tools
simulator engine from external Java programs. However, while these previous tools
have made it easy to interact with CPN Tools, they have not made it possible to extend
the software. Thereby, it was developed the Simulator Extensions [4] feature included
in the last version of CPN Tools. This component provides a mechanism for adding
new functionalities within the CPN Tools Graphical User Interface (GUI), thereby
allowing integrating other related formalisms with CPN models; as a result, it has
been possible to handle other models in the tool such as low-level Place/Transition
nets, Declare models, and drawing message sequence charts from model executions
[4].

On the other hand, Finite-state Automata (FSA) have been used in a much wider
spectrum of fields than CPNs; as an important tool for FSA manipulation we highlight
the FSM Library from AT&T Labs [12] which is a collection of Unix software tools
for creating and manipulating finite-state machines. Despite the library is quite
general purpose, it was designed for speech processing applications such as speech
recognition/synthesis; FSM Library was used as well in previous works regarding the
verification of communication systems based on CPNs and automata [5] [6]. Some
of the researchers of the AT&T FSM project developed later an enhanced version
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called OpenFST [13], which is an open-source alternative that also allows to construct
finite-state transducers, and it provides a C++ template library. Within the range of
tool solutions for FSA manipulation, we may also find Foma [14], the FAdo project
[15] and the specialized pedagogical tool JFLAP [16] among many others.

Bridging CPNs and FSA may be useful for verification of systems of very high
complexity. In particular, Billington [8] proposed a CPN and FSA approach for the
verification communication systems that has proven to be successful; namely, in the
verification of the Resource Reservation Protocol (RSVP) [5], the Wireless
Application Protocol (WAP) [6], the Transmission Control Protocol (TCP) [7], and
the Internet Open Trading Protocol (IOTP) [17], among other cases. Between other
domains in which both formalisms have been applied together we may find the
verification of web-services composition [19] [20] or vehicular traffic control systems
[18], just to mention a few.

3. Formal Definitions

This section presents some formal definitions of the models and data structures that
are manipulated through the functionalities of CPN Tools and Prosega/CPN. In
particular, it is formulated how it can be derived an occurrence graph (OG) from a
CPN model, and afterwards is explained how can it be generated a Finite-state
Automaton (FSA) from a CPN’s occurrence graph. The following formulations are
based in the work done in [8]. Albeit CPNs are managed in this work; for the formal
definition it has been rather convenient to generalize the type into a High-level Petri
Net (i.e. for proving further theorems regarding the relationship between an OG and
a FSA as described in [8]). Hence, we firstly take the definition of a High-level Petri
net (HLPN) [21].
Definition 1. 4 High-level Petri Net is a structure of the form HLPN =
(P,T,D; Type, Pre, Post, m,) where:
o Pis a finite set of Places;
o Tis a finite set of Transitions such thatP N T = @
e Dis a non-empty finite set of non-empty domains where each element of D is
called a type.
o Type:P UT — Dis a function used to assign types to places, and to determine
transition modes.
o my € uPLACEis a multi-set called the initial marking of the net such that
UPLACETis a set of all possible multi-sets of PLACE
e Pre,Post:TM — uPLACEare the pre and post mappings with
o TM = {(t,m)|t € T,m € Type(t)}the set of transition modes.
e PLACE ={(p,g)|p € P, g € Type(p)}the set of elementary
places.
For the analysis of a High-level Petri net it is generated an occurrence graph (OGQG).
We consider that an OG can be defined as a labelled and rooted directed graph, where
the nodes of the graph represent markings of the Petri Net, and the directed arcs
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represent the tranmsition modes (or binding elements [2]) that can occur in all
executions from the initial marking. On the other hand, the root of the graph refers to
a node, which is considered as the initial state. In addition, the arcs of an OG may be
labelled by the transition modes. Thus, we start by defining a labelled and rooted
directed graph, and then we give the definition of an OG associated to a HLPN.
Definition 2. 4 labelled directed graph, with vyas the root node, is a triple G =
(V,L,E) where:

o Vis a finite set of vertices or nodes; vy € Vrepresents the root or initial node.

e Lis a set of labels;

o [E CV X Visasetof labelled directed edges.
Definition 3. An occurrence graph of a HLPN with an initial markingvyis a labelled and
rooted directed graphOG = (V,TM, A)where

o Vis a finite set of vertices or nodes reachable fromm(the reachability set);

mg € Vrepresents the initial marking (root node);
e TMis the set of transition modes of the HLPN;

t
o A= {(m, tm,m') EVXTM xV'|m =5 m'}is the set of arcs (directed
edges) labelled by transition modes.

Remark. m = m'indicates the ocurrence of a transition mode tm U TM in a
markingmwhich results in a new markingm'
However, when we are only interested in the transition names, then the arcs of the
OG are just labelled with such transitions names rather than the transition modes
(binding elements). For example this is useful when it is just required to understand
which user observable events (service primitives) may lead from a state of the system
to another one; instead of transition modes which involve the parameters binded to
such events. In addition, when we are also interested in the identification of the
markings for the nodes of the OG, rather than the marking details, we introduce an
injection I: [my] — Nsuch that this function maps the set of reachable markings from
mg(denoted as[m,]) into the set of natural numbers. Giving the described abstractions
for transitions and markings, we consider the definition of an abstract OG.
Definition 4. An abstract OG of a HLPN with an initial marking my is a labelled and
rooted directed graphOG = (V, T, A)where

o V ={I(m)|m € [mg]}is the set of nodes;

o I(my) €V represents the root or initial node.

o Tis the set of transitions of the HLPN ;

(t,m)ETM

o A= {(I(m), t,l(m')) EVXTXV'Im - m'} is the set of arcs

labelled by transition.

We point out that the abstract occurrence graph OG defined above is finite. i.e. It has
a finite number of states. Indeed this is an important fact when dealing with real
scenarios. This means that the corresponding Petri Net must be a bounded net [1], and
hence a preliminary boundedness analysis on the Petri Net is performed. Finally, it is
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presented a mapping from an abstract OG (Definition 4) into a Finite-state Automaton
FSA. We define a function Prim: T — SP v {e} that maps each transition of the
HLPN to either an identifier name (i.e. an user observable event or service primitive
name), or to an epsilon (i.e. an empty move); SP is the set of identifiers (for the user
observable events or service primitive names) for the system that we are describing.
Definition 5. 4 Given an abstract occurrence graphOG = (V, T, A)it is derived the
corresponding Finite-state AutomatonFSA = (V,SP, Asp, vy, F)where
o Vis the set of nodes of the abstract OG (the states of the FSA),
o SPis the set of identifiers (for the user observable events or service primitive
names) of the system of interest (the alphabet of FSA),
o Agp ={(v, Prim(t),v")|(v,t,v") € A}is the set of transitions labelled by
elements of SP or epsilons (the transition relation of the FSA),
e yycorresponds to the abstract initial marking (initial state of the FSA).
o F C Vthe set of final (acceptance) states.
Prosega/CPN performs the conversion of an OG as described in Definition 4 into a
FSA as described in Definition 5. Moreover, this mapping between OG and the FSA
allows the tool conveniently manage the generation of the language and the
comparison between other FSAs.

4. Functionalities

Prosega/CPN is an extension in CPN Tools. Thus, the user interacts with the
application using a Graphical User Interface (GUI) through a tool palette added to
CPN Tools (see fig. 1) - available under the Tool box entry [3]. The tool supports the
generation of a minimized deterministic Finite-state Automaton (FSA) derived from
the CPN’s occurrence graph, the language generation, and the comparison between
two different FSAs. We proceed to explain these functionalities in detail.

Net
Simulation Prosega/CPN
State space

Style RUN ‘ LANG | DIFF | IN-

FO

View
Prosega/CPN
Development

Fig. 1. Tool palette of Prosega/CPN

4.1 FSA Generation

Once the occurrence graph (OG) from a CPN model is generated using the CPN Tools
simulator [3], its associated Finite-state Automaton (FSA) can be generated and
reduced using the RUN tool (see Fig. 1). To this aim, the following steps are
performed: getting the transitions, and dead markings of the OG, assigning identifiers
to transitions (i.e. constructing the mapping Prim defined in Section 3), reducing the
FSA, and displaying the results. Here, we consider the structure of an abstract OG
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where the nodes are identified by numbers, which represent the markings and the arcs
are just labelled with the transitions rather than the binding elements (see Definition
4).

Firstly, the tool communicates with the CPN Tools simulator in order to obtain all the
transitions and the dead markings (see Section 5). The user interacts with the
Prosega/CPN GUI to assign identifiers (corresponding to user observable events or
service primitive names) to the model transitions (i.e. mapping elements from a set
SP). The character 0 is considered as an epsilon (g). Hence, any transition assigned
with 0 is considered an epsilon transition (or empty move). Then, the user chooses
the set of terminal states F for the FSA. which may include nodes representing the
dead markings or other nodes in the OG. Thereby, it is obtained a FSA in line with
Definition 5.

|/ Prosega/CPN ol @
Minimized Deterministic FSA Generation

Please enter an identifier (1d) for each transition listed. Also, you may enter the terminal states. Otherwise, you may want
toimport identifiers and terminal states using the Import buttons.

Arc Identifiers Terminal States Options
# | Page Transition Id # | State Consider dead-markings as part of &
12 CreatConnecti.. MACCAConnA.. 0 i | i the list of terminal states:

13 CreatConnecti.. MACCHConnCf 4 g ;s
14 CreatConnecti.. MACCrConn. 5 Arc's id pattern: (@) int () 6-letter string
15 CreatConnecti.. MACCHConn.. 6 7131
16 CreatConnecti.. MACCHConnl.. 2 8 147
17 CreatConnact MACCHCANN 1 ¥ 9 48 ¥
{ Clear Add Remove
import | Identifiers.tt Import | Terminal_States txt

Submit Cancel |

Fig. 2. Intial Prosega/CPN in terface where the user can assign Ids to transitions and enter
terminal states

For instance, fig. 2 shows the Prosega/CPN interface which supports the described
operation. In particular, it is defined a FSA given a CPN’s occurrence graph extracted
from the use case in Section 6. The user assigns identifiers for the CPN transitions.
For example, the identifier 1 to the transition MACCrtConnReq, which is in the CPN
model page CreatConnection. Later, the user chooses the following nodes of the OG
as terminal states: 1, 7, 8, 13, 26, 27, 31, 48 (some are not displayed in the figure due
to window size limitation). Afterwards, the modelled FSA is reduced by following
the algorithm described in [22], which consists in performing the following
operations over a FSA:

o removal of epsilon transitions (remove empties);

e removal of non-determinism (determinization);

¢ reduction by identifying and merging equivalent states (minimization).
The algorithm produces as output a reduced deterministic FSA with a minimal
number of states that is equivalent to the input automata. Finally, an interface showing
the results of the FSA reduction is displayed to the user as shown in fig. 3.
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2| Prosega/CPN f=l®
FSADisplay and Language Generation

‘The resulting minimized deterministic FSAis shown below.

FSAlnfo FSAImage Preview Identifiers.

Information Value
fstype vector i
arctype standard
input symbol table  none
output symbol table none
#of states 11
#ofarcs 17
initial state 6
# of final states 2
#of inputioutput ep... 0
0
[

Page Transition 14
ChangeConnecti.. ConnfiRejected 10 i
ChangeConnecti.. MACChgConnCf 10
ChangeConnecti.. MACChgConnCf2 10
ChangeConnecti.. MACChgConnind
ChangeConnecti.. MACChgConnR.
ChangeConnecti.. MACChgConnReq
ChangeConnecti.. MACChgConnR.
ChangeConnecti.. MACChgConnRsp
ChangeConnecti.. MACChgConnR.
# ofinput epsilons 10 CreatConnection  ConnfrRejected
#.of orput spslions 11 CreatConnection  MACCHConnCf
f Sacceashiosiajit 12 CreatConnection  MACCrtConnCf2

@@~ oW |

AnoosnOoNND®

#of coaccessitle .. 11 13 CreatConnection  MACCHConnCIR.
#of connected stat... 11 — J7¥s| || 14 CreatConnecion MACCHConnind
#of connectedco.. 1 15 CreatConnection  MACCriConnReq
#of strongly conn .. 1 16 CreatConnection  MACCAConnReq2 1
input matcher yes v (ECrenimagaRifiRCanersta Lanigidal il Export EEAW) 17 CreatConnection  MACCriConnRsp 3
18 CreafConnedion  MACCriConnRsn2 3 ¥
ext |

Fig. 3. Interface showing the results of the FSA reduction process

The interface shows general information about the reduced FSA (FSA Info), such as

initial state and number of arcs, which may be relevant for the FSA analysis. It also
includes a graphical representation of the FSA (FSA Image Preview), and the
established mapping between the identification numbers/names assigned by the user
and the transition names, which may be useful for debugging and verification of the
model.

4.2 Language generation

The language accepted by a FSA can be generated by using either the LANG tool in
Fig. 1 or the Generate Language button in Fig. 3. The interface shown in Fig. 4 is
displayed to the user after it clicks on the LANG tool. Then the user can choose both
the FSA, in plain text or in the compiled format [13], for which the language will be
generated and the corresponding symbol table file—for mapping the arc inscriptions
with the symbols selected by the user.

|| Prosega/CPN e & =4
FSA Language Generation

Please import both the FSA and the corresponding symbol
table file.

FSA Files Format

O plain-text (.bd)

® compiled binary (fst)

FSA File
FSA: | Import | No Selected File.
Symbols Table File

Import | No Selected File.

Fig. 4. Language generation interface

114



Kappackens X. C., Mopainec A., Buutanons M. E. Prosega/CPN: pacumperne CPN Tools jist aBTOMaTHOTO aHanu3a u
cucteMsl posepku. Tpyowt UCIT PAH, Tom 30, BbiIL 4, 2018 ., ctp. 107-128

The language generator module generates the language L of the FSA by extension; if
L is finite, the whole sequences are printed; otherwise a subset of the language, L’ [
L is generated, as illustrated in fig. 5. In particular, L’ is a set of symbol sequences
whose symbols belong to different arcs in the FSA. Notice that some arcs of the FSA
may be labelled with the same symbol. However, in the generation of each sequence,
each arc of the FSA is visited just once.

Indeed, for generating each sequence accepted by the automaton it was developed an
algorithm based on iterative Depth-first Search (DFS), which was implemented in the
language generator component of Prosega/CPN (as mentioned in Section 5). This
component performs DFS between the initial state of the FSA, to each of the halt
states. Hence, the symbols of the arcs visited through the path from the initial state to
a specific halt state are printed, thereby representing a sequence accepted by the
automaton. In addition, this module supports a generator of random sequences of the
language symbols, as shown in Fig. 6, which may be useful when the language is
infinite. For example, in Fig. 5 and 6, we can see the following sequence of language
symbols: 1, 5 which corresponds to the sequence of actions (transitions):
MACCrtConnReq, MACCrtConnCf2 (as shown in the interface in fig. 4, where the
user assigned an Id (language symbol) to each transition).

|4 Prosega/CPN. | = o)

| Generate Language | Generate Random

Itanguage Is Infinite only some languages symbol sequences will be shown
Otherwise, the whole language is dispiayed

output

86

15

1236
12347891011121314
1234710112134
123411121314

6->4

1234

123478910
12347891011121316
1234789101115
1234710
123471011121316

Generate Language | | ExportLanguage | | Clear |

Fig. 5. Interface showing part of the language accepted by the FSA of Fig. 3

In particular, for generating each random sequence it is computed a random walk in
the FSA from the initial state to any of the halt states. Whenever a halt state is visited,
the walk will be terminated with a probability p/100 s.t 0 <p < 100, and the sequence
of symbols, which were collected throughout the visited path will be printed. Thus,
in the Generate Random interface (fig. 6), the user can manipulate the average size of
the randomly generated sequences of language symbols by entering the halt-rate
parameter value p. Therefore, if the value p is close to 0, the number of language
symbols in each sequence may be big, while if p is close to 100, then the number of
language symbols in each sequence may be small, thereby determining the length of
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each sequence. i.e. since the halt-rate parameter value in fig. 6 is 55, in that case the
sizes of the sequences are medium.

22/ Prosega/CPN =5 on |
Generate Language | Generate Random

Rand mbol nces will be shown.

Use the halt-rate parameter to manipulate the average size of the sequences of
language symbols. It must be setto avalue between 0 and 100. If the value is close to 0
the sizes of the sequences may be big while ifitis close to 100 the size of the sequences may be small.

output _

1234710
1234
1234
12341115
15
15
1234111213167891078910710111511121316
v

1234111213167891078910710111511121316

55 halt-rate p (0 p < 100) defauit 100

Generate Random | | Delete | | Clear | | ExportOutput

| Ext

Fig. 6. Interface showing some randomly generated sequences of language symbols

|£] Prosega/CPN o | ® =
Resulting Difference FSA
The resulting difference FSA s shown below.

Difference FSA Image Preview

| Openimage | | Generate Language | | ExportFsa |

| Bt

Fig 7. The interface shows the resulting difference FSA given two automata as parameters

4.3 FSA Difference

The user can use the DIFF tool to calculate the difference between two automata, F
A and F B. This functionality, whose output interface is illustrated in fig. 7, generates
a new automaton F C which only accepts the sequence of symbols accepted by the
first automaton F A , and that are not accepted by the second one F B . In particular,
F B must be an epsilon-free, deterministic finite automaton. This is useful to
understand the sequences of languages symbols in which may differ two models; in
this sense, as seen in fig. 7, this functionality allows to generating the language of F
C for getting such sequences in which may differ two models.

116



Kappackens X. C., Mopainec A., Buutanons M. E. Prosega/CPN: pacumperne CPN Tools jist aBTOMaTHOTO aHanu3a u
cucteMsl posepku. Tpyowt UCIT PAH, Tom 30, BbiIL 4, 2018 ., ctp. 107-128

Carrasquel J.C., Morales A., Villapol M.E. Prosega/CPN: An extension of CPN Tools for Automata-based Analysis and
System Verification. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 107-128

5. Architecture

Prosega/CPN is implemented in Java programing language, so we use the new feature
in CPN Tools 4 called Simulator Extensions [4] to add the software functionalities.
Fig. 8 shows the software architecture, which illustrates the relation ship among all
the components of our tool, CPN Tools and the third-party components.
Communication between the CPN Tools GUI and the simulator, and between the
simulator and the Simulator Extensions is supported by the BIS (Boolean - Integer -
String) protocol. Each protocol message is encoded using a number of booleans,
integers, and strings as explained in [23]. In order to facilitate the development of
Prosega/CPN we use some third-party libraries, which implement many of the
functions to manage and display the automata.

In particular, we utilize OpenFST [13] [24] for FSA reduction and FSA difference,
and Graphviz [25] for drawing the automata. On the other hand, we wrote the code
for language generation (fsm2language) in C programming language [26]. The
fsm2language implements the procedures for language generation and the
computation of random sequences accepted by a FSA that were described in Section
4. The bridge between the fsm2language component and the Prosega/CPN tool is
supported by JNI (Java Native Interface), which enables a Java program to call native
libraries written in C/C++ programming language.

CPN Tools fsm2language

OpenFST
BIS BIS
Gul b Smulator ] Smutor Ll | prosega/cPN ||
extensions

Fig. 8. Prosega/CPN Architecture

6. Use Case

The IEEE 802.16 standard [27] is responsible for specifying and describing the air
interface of Broadband Wireless Access Systems (BWA), and point-multipoint
fixed/mobile wireless metropolitan area network. The standard is limited to the
description of the Medium Access Control (MAC) and physical (PHY) layers. In
overall, IEEE 802.16 provides great benefits for providing mass broadband wireless
connectivity, allowing user mobility, mesh-mode network support, and even has been
thought as an alternative for Internet-of-Things deployments. However, due to its
inherent complexity, there are several parts of the specification that turn out to be
ambiguous, difficult to understand and imprecise. In this context, Morales et al. [28]
[29] has contributed establishing a formal model for a module of IEEE 802.16. In
particular, it developed a formal verification of the MAC connection management
service specification. To this aim, the Prosega/CPN tool has been used in conjunction
with the Billington’s protocol verification methodology [8]. Fig. 9 illustrates the steps
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of the methodology; we proceed to explain such steps, and how they have been
applied within our use case using CPN Tools and Prosega/CPN.

Verification against service specification Verification of general properties

I Protocol Definition I
Protocol CPN |

I
v
Ioe of the Protocol CPN ]

Fig. 9. Steps within the protocol verification methodology proposed in [8].

6.1 Service Definition

In fig. 9, the dashed box in the left represents the first step which consists in modelling
the service specification of the system, and to define the services that it aims to
provide (either to a higher layer or to another system entity). In the scenario of the
IEEE 802.16 MAC layer, the service specification consists in a set of service
primitives that the MAC sub-layer, responsible for connection management
procedures, provides to the sub-layer on top of it. Each of these primitives correspond
to one of the following procedures: The establishment of a connection between
communication peers, the connection maintenance (i.e. management of the dynamic
network resources) and the termination of the connection by any of the
communication peers.

6.2 Service CPN and OG

Using CPN Tools, it is created the CPN model of the service specification. fig. 10
presents the CPN main page which shows a top view of the model [2]. This top
module is linked with the pages that model the service primitives that correspond to
the establishment, maintenance, and termination of a connection through the
transitions  CreatConnection, ChangeConnection, and TerminateConnection
respectively. Each of these pages of the model can be checked in [28]. Afterwards, it
is generated the CPN’s occurrence graph (OG), shown in fig. 11, which is the input
for the FSA reduction feature of Prosega/CPN.
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Fig. 10. CPN model representing the hierarchical view for the processes of creation, change
and termination of connections between peer MAC entities in the IEEE 802.16 service
specification

6.3 FSA Reduction

Once the service OG is generated, it is modelled as a FSA in line with Definitions 4
and 5. To this aim, it is used the RUN tool of Prosega/CPN for converting the OG
into a FSA (as presented in fig. 2). For each transition of the CPN model, it is assigned
a number value which represents the associated service primitive identifier (Id)
(resembling the function Prim described in Section 3). Transitions that are considered
as empty moves (or internal events) are labelled with 0 (epsilon transitions). Later,
there are assigned the terminal states. The assignation performed between all the
model transitions and the service primitive identifiers as well as the decision of the
terminal states can be fully checked in [28]. Afterwards, the FSA is minimized
following the procedure explained in Section 4. Fig. 12 presents the minimized
deterministic FSA (exported from the output/analysis interface of the RUN tool
previously presented in Fig. 3.

Table. 1. Service primitivies on the IEEE 802.16 MAC Layer and their corresponding
identification number [22]

Service Primitive Id
MAC_CREAT CONNECTION.Request

MAC CREAT CONNECTION.Indication
IMAC_CREAT CONNECTION.Response
MAC_CREAT CONNECTION.Confirmation 4,5,6
MAC_CHANGE_CONNECTION.Request

MAC CHANGE CONNECTION.Indication
MAC_CHANGE_CONNECTION.Response
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MAC_CHANGE_CONNECTION.Confirmation 10
MAC_TERMINATE_CONNECTION.Request 11
MAC_TERMINATE CONNECTION.Indication 12
MAC_TERMINATE CONNECTION.Response 13
MAC TERMINATE CONNECTION.Confirmation 14, 15, 16

\

Fig. 11. OG of the CPN model representing the IEEE 802.16 MAC connection management
service specification.
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Fig. 12. Minimized deterministic FSA generated from the OG illustrated in fig. 11

6.4 Language Generation

The service language (the set of sequences of service primitives) is generated using
Prosega/CPN as explained in Section 4 —utilizing FSA minimization (RUN tool) and
FSA language generation (LANG tool). Fig. 5 presented some sequences that are
accepted by the FSA. In addition, Table. 1 shows the identifier selected for each
primitive service [28]. For example, the sequence of language symbols 1, 2, 3, 4, 7,
8, 9, 10 represent the service primitives invoked by the protocol entity in top of the
MAC for the successful establishment and maintenance (change of a communication
resource) of the connection. In overall, the minimized FSA generated by
Prosega/CPN provides a compact description of the possible sequences of service
primitives, and allows to remove complexity from the model, which allows the
language to present a clear specification of the service that the system provides.

6.5 Further Steps

The second part of the methodology (dashed box in the right of Fig. 9) concerns to
the modelling of the protocol, and its comparison against the service specification
through language equivalence. These further steps are still in progress within the
research work [28]. The modelling of the protocol consists in constructing the CPN
model, which describes the protocol procedures which are performed when a service
primitive is invoked by a higher entity of the system. Later, it is generated the OG
associated to this CPN model. On the one hand, behavioral properties of the protocol
may be analyzed through the OG. On the other hand, the OG may be reduced into a
minimized deterministic FSA. i.e. using again the RUN tool of Prosega/CPN.

Then, the FSA of the service specification may be compared with the FSA of the
protocol. i.e. using the DIFF function of Prosega/CPN — see fig. 7. Finally, the
language of the difference FSA may be generated in order to determine language
equivalence between the service and the protocol. Thus, we can determine the
sequences of service primitives, which are in the protocol specification but are not in
the service specification. It is important to know if the service specification meets the
protocol specification, since it is not desirable to have a service requirement from the
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service user which cannot be met by the protocol. In addition, it may not be wanted a
service provided by the protocol which actually it is never required by the user.

7. Conclusion

This work has presented Prosega/CPN. The tool is an extension of CPN Tools for
supporting several operations for FSA-based analysis and system verification. The
tool provides a feature for generating a minimized deterministic Finite-state
Automaton (FSA) from a CPN’s occurrence graph (OG). It includes as well
operations for language generation, and for automata comparison. These
functionalities are supported taking advantage of consolidated third-party
components such as OpenFST and Graphviz. In addition, we developed a module for
language generation.

Prosega/CPN has been integrated within the CPN Tools GUI using the Simulation
Extensions (new feature in the last version of CPN Tools) component whose
development has been driven by the demand of many research works to suitably
integrate Colored Petri Nets with other formalisms [4]. In particular, the integration
between CPNs and FSA was not existing within CPN Tools, and the application of
this multi-formalism strategy has shown its merits in many published papers,
specially from the domain of protocol verification.

Furthermore, other works may be benefited from this FSA-based verification; for
example, as presented in our use case, the analysis of an equivalent reduced FSA
provides a compact and clear description of the possible user observable events
(service primitive calls) rather than to deal with the analysis of the OG, thereby
allowing to reduce the time complexity when it may be required to check the
behavioral properties of the system through the FSA.

As future work, the tool will keep providing support within the further steps of the
formal verification work of the IEEE 802.16 standard, regarding to the MAC
connection management procedures. On the other hand, as another further direction
for the tool enhancement, the tool has been thought to be tested in other domains;
indeed, as it has been stated, Prosega/CPN can be used in other cases where FSA may
be required, and within the verification of other systems whose analysis may involve
the comparison of models at different levels of abstraction.

This future work on other use cases will be able to keep maturing the tool. i.e.
integrating new operations/features for automata manipulation, and testing the tool
performance in terms of scalability, among other key facts. In addition, it has been
considered to keep exploiting more capabilities offered by the Simulator Extensions
channel; for example, to be able draw and manually edit a FSA in the CPN Tools
canvas, instead of only using the Graphviz support for automata drawing.
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' Pumcruii ynusepcumem Jla Canuenya, omoen KOMRbIOMepHOU, KOHMPOIbHOU U
ynpasienueckou undicenepuu, yi. Apuocmo 23, . Pum, 00185, Hmanus
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AHHoTamms. Bepuduxanus u aHamu3 pacrpeleNeHHBIX CHCTEM SBIAIOTCS Upe3BBIUAIHO
BaKHBIMU 33/1auaMH, 0COOEHHO ceifuac, KOrjila MHOTHE KOMITbIOTEPHBIE CUCTEMBI PEATNU3YIOT
KPUTHUYECKH BaKHBIE CepBUCHL. JiIs MOAENMPOBaHMS M BEpU(DHUKALUM CHUCTEM IIOJIE3HO
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U Ty TEXHHUKY aHaJII3a, KOTOPBIE JIy4Ille MOAXOASAT ISl TOTO HJIM HHOTO KOMITOHEHTa CHCTEMEL.
Kombunamus u3 packpamennabix cereid I[letpu (CPN, Coloured Petri Nets) m koHEYHBIX
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