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Abstract. Extracting various valuable medical information from head MRI and CT series is
one of the most important and challenging tasks in the area of medical image analysis. Due to
the lack of automation for many of these tasks, they require meticulous preprocessing from the
medical experts. Nevertheless, some of these problems may have semi-automatic solutions, but
they are still dependent on the person's competence. The main goal of our research project is
to create an instrument that maximizes series processing automation degree. Our project
consists of two parts: a set of algorithms for medical image processing and tools for its results
interpretation. In this paper we present an overview of the best existing approaches in this field,
as well the description of our own algorithms developed for similar tissue segmentation
problems such as eye bony orbit and brain tumor segmentation based on convolutional neural
networks. The investigation of performance of different neural network models for both tasks
as well as neural ensembles applied to brain tumor segmentation is presented. We also
introduce our software named "MISO Tool" which is created specifically for this type of
problems. It allows tissues segmentation using pre-trained neural networks, DICOM pixel data
manipulation and 3D reconstruction of segmented areas.
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1. Introduction

Modern ray diagnosis is at the stage of development, and completely different settings
and methods are required for different organs: x-ray, MRI, CT, ultrasound are
supplemented with invasive contrast methods. Only the doctor can see everything
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necessary for correct diagnosis and subsequent treatment. However, at the heart of all
these methods lie common tasks - the most accurate visualization of the selected zone
and obtaining as much data as possible from the results of the examination. In 3D
methods (CT and MRI), these tasks are essentially the same, despite the differences
in both physical principles and additional settings.

Since the goal of our work is to create a tool that would as accurately as possible
visualize isolated structures from raw data obtained by MRI and CT procedures, then
this complex work can be decomposed into separate logical components. To isolate
complex structures, we formulated the problem of segmentation of tumor processes
in MRI images. MRI better visualizes soft tissue and allows to carry out various
sequences, change the basic settings of the method in a wide range and use contrast
agents. To determine the volume and edge isolation of structures, the problem of
determining the volume of bony orbits on a CT was singled out. In this method the
bone structures have a high contrast, the distance between slices is very small, and
the method itself is widely distributed and takes little time, which allows to study a
large data volume.

From the point of medical informatics those problems are not completely dissimilar
and could be solved in a unified manner. Moreover, creating a single instrument that
may solve all of these challenging tasks autonomously will not only save doctors’
time, but also decrease the amount of errors. To the best of our knowledge, there have
not been introduced any instrument for automatic segmentation of different body
tissues. We came to the conclusion that while the segmentation tasks on different
body parts may seem different, they may also all be derived from a core solution
based on the deep neural networks.

In this work, we explored state-of-the-art solutions based on deep neural networks for
brain tumor segmentation and created an ensemble to see if their performance can be
improved and used not only for the brain segmentation task but also for complicated
head bony structures in general. We use the results of this research as a first step for
creating a convenient and powerful instrument for all medical specialties.

2. Overview

An interest in the possibility of medical images segmentation has increased during
the last decade and many different approaches were explored. However, only a few
researches evolutionized into complete useful tools for medicine. Commonly used
software, that allows semi-automatic segmentation is Brainlab IPlan (commercial
distribution) and ITK-SNAP (open source project). The main feature of IPlan, that
have already been used in several studies [1, 2], is atlas-based segmentation. Atlas is
the described and sketched out by experts shape variations of the ROIs (Region of
Interest). Due to complexity of human body structure, there are many problems about
the accuracy of delineated atlas. ITK-Snap allows segmentation via active contour
evolution method - smooth blow-out of preplaced bubbles into the desired region of
interest [3]. Although many of the tasks have been solved by these instruments, there

184



Mycarsu C.A., Jlomakun A.B., Capracos C.IO., ITonsiBanos JI.K., Monaxos W.B., Ymkosa A.C. Crioco6b
CerMeHTallK MEANIMHCKUX n300paxenuit. Tpyowr UCIT PAH, Tom 30, Bbim. 4, 2018 ., cTp. 183-194

Musatian S.A., Lomakin A.V., Sartasov S. Yu., Popyvanov L.K., Monakhov I.B., Chizhova A.S. Medical Images
Segmentation Operations.. Trudy ISP RAN /Proc. ISP RAS, vol. 30, issue 4, 2018, pp. 183-194

are still many problems that specialists face constantly waiting for improvement.
Segmentation is performed by manual or semi-automatic methods.

For the brain tumor segmentation problem many different approaches have been
explored and evaluated. There may be formed mainly two classes for these
algorithms: methods, which require training on the dataset in advance and those
which do not. Early works in this area treated a brain tumor segmentation problem as
an anomaly detection problem on the image. Representative works for these
approaches may be [4] and [5]. The main advantage of these works is that the
presented solutions do not need to be trained beforehand, however that makes it
harder to improve the quality of the detection, especially on the smaller tumors.
Another class of approaches is based on the idea of using supervised learning
methods, such as random forests [6] or support vector machines [7]. These models
can learn a powerful set of features and work quite well on the most common cases,
but due to the highly discriminative nature of brain tumors it is hard to detect the
correct feature set and create a good model. As a result, recent approaches on
segmentation refer to the deep neural networks. It is a powerful instrument that has a
capability of extracting new features while training and hence may outperform pre-
defined features sets of the supervised learning methods. The results of these
algorithms may be also used for different kinds of medical images.

We are developing our own tool - Medical Images Segmentation Operations (MISO),
which uses neural networks as a back-end for solving various segmentation tasks in
medicine. In the next sections we overview separately application of neural networks
for brain tumor and bony orbit segmentation as they were trained and used in MISO.

3. Brain Tumor Segmentation

For that task we chose to overview two CNNs (Convolutional Neural Networks) with
different architecture which have proven to be the best in this field: DeepMedic [8] —
11-layers deep, multi-scale, 3D CNN with fully connected conditional random field
and WNet [9] — fully convolutional neural network with anisotropic and dilated
convolution.

3.1 Data

For the experiments we used BraTS 2017 dataset [10, 11], which includes images
from 285 patients of glioblastoma (GBM) and lower grade glioma (LGG). For
acquiring this data each patient (fig. 1) was scanned with native T1, post-contrast T1-
weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery
(Flair). For all patients ground-truth segmentation was provided.
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Fig.1. Original data from BRaTS 2017 dataset: a) T1Gd b) T1 c) Flair d) T2 e) Ground-truth

3.2 Implementation Details

For WNet we used configuration described in the original papers and BRaTS 2017
dataset for training. For DeepMedic we trained two versions of this network on
different datasets and injected some changes into original architecture of this network.
For the first version we introduced the following changes: model was trained only on
T1 and T2 images.

The reason for that change was that these are the most common MRI sequences.
Having a network trained only with this data makes the model available for more
hospitals in future. Also, instead of PReLu non-linearity, introduced in the original
model, we use SELU [12], which improves the performance and time spend on
training. For the second version of DeepMedic we also used SELU, but this network
was trained only on T1 images. We wanted to explore how this network will cope
when having only one source. For all of these three networks we separated initial
dataset into 3 chunks: training (about 80% percent), validation (10%) and test (10%).
The performance of these networks on test data may be seen at Table 1. In the
observed studies, authors were aiming not only to detect the tumor but also to segment
the tumor into three categories: whole tumor, tumor core and enhancing tumor core.
However, in our work we are only interested in the whole tumor detection problem.

Table 1. Individual performance of observed CNNs

Network Dice coefficient
Whet 0.9148
DeepMedic (inputs: T1+T2) 0.8317
DeepMedic (inputs: T1) 0.6725

3.3 Detecting the Percentage of False Negative Segments

The original works analyse the quality of CNN performance based on the Dice and
Hausdorff measurements, which are good for the segmentation problems in general,
but hides the necessary details about misclassifications. For that reason, we explored
the results from work of the considered networks to determine the percentage of false
positives via false negatives results. Our main goal was to examine whether these
methods are more prone to predict false positives then false negatives.
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Since the decisive opinion during the diagnosis and treatment is always on doctor,
our main goal is to indicate if there may be a pathological tissue and get the surgeon’s
attention to this area. Our system is aiming to find all suspicious areas and send them
for reevaluation to medical specialist. Hence, one of the main qualities of this system
that should be optimized first-hand would be not false positive results, but false
negatives, because those when unnoticed may not get the essential medical care and
be a reason for future proliferation of tumor cells. The results of this experiment may
be seen at Table 2.

Table 2. Number of false positive via false negative in the final segmentation

Network mean (False positive / mean (False negative /
ground truth) ground truth)
Whet 0.0863 0.0830
DeepMedic (inputs: T1+T2) 0.2330 0.1170
DeepMedic (inputs: T1) 0.4690 0.2455

3.4 Neural Network Ensembles

We wanted to detect whether the general performance of these three networks can be
improved, when they are used together. So, we proposed the idea of forming the
neural networks ensemble [13] out of them. We implemented the following voting
scheme: for each voxel we determine each individual result for every neural network,
based on their already pre-trained models, and then we qualify a voxel as part of the
tumor if and only if the majority of networks classify it as tumor, otherwise it is
considered to be a healthy matter. The results of this experiment may be seen at
Table 3.

Table 3. The performance of neural network ensemble. The results of combining networks
together differently
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CNN 1 CNN 2 CNN 3 Dice coefficient
Wnet DeepMedic - 0.8861
(inputs: T1 + T2)
DeepMedic DeepMedic - 0.7657
(inputs: T1+T2) (inputs: T1)
DeepMedic Wnet - 0.7941
(inputs: T1)
DeepMedic DeepMedic Wnet 0.8823
(inputs: T1+T2) (inputs: T1)
DeepMedic DeepMedic Whnet 0.8823
(inputs: T1+T2) (inputs: T1)

4. Bony Orbit Segmentation

4.1 Methods

Our approach consists of two steps. First of all, image classification was presented,
dividing initial dataset into two groups: «contains orbit» and «does not contain orbit».
The next step is to segment the orbit in the images marked by the classifier in the
previous stage. In this paper first step is described in details, whereas the second step
is introduced briefly as it is the subject of further research.

4.2 Data Collection

Raw CT scans was presented by faculty of Medicine of Saint Petersburg State
University. Using Toshiba Scanner as instrument and Helical image acquisition as
main method, 5 series were made and anonymized. The initial image dimensions were
512%512, using short (2-byte number) to represent radiation intense with Grayscale
Standard display function. Orbits occupy less than 1/4 of the image, so we reduced
the original size from 512*512 to 256*256 in order to decrease computation
complexity (fig. 2 b). Slices with orbit was labeled and some of them was manually
segmented by expert (fig. 2 c). Total amount of data: 601 sinus + 80 head CT images
were marked as «contains orbit» and 1414 were marked as «doesn’t contain orbit».
150 images were segmented.

@ ®) (© @

Fig. 2. Data for bony orbit segmentation: a) Initial image b) cropped image c) segmented by
expert d) extracted mask (label for cropped image)

4.3 Model Choosing

To achieve best classification performance of 1st CNN, some important parameters
like number of layers and convolutional kernel size must be chosen. So, several kernel
sizes and layers number have been evaluated for classification accuracy. The
quantitative assessments are shown in Table 4. As a result, the model used for training
consisted of eight layers, out of which four were convolutional layers and four were
fully connected layers. The output of last fully-connected layer has been fed to a
sigmoid function, as it is a standard neural network classification layer [14]. The
initial images were cropped and compressed in order to reduce training time. Hence,
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network accepts grayscale images of dimension 128 x 128 as inputs. The first layer
filters input with 32 kernels of size 5 * 5.

As it could be seen from experiments, rectified linear unit (ReLU) [15] nonlinearity
applied to the outputs of all convolutional layers gives best result compared with other
activation functions. The (n+1)th convolutional layer takes the output of nth as input
processed by ReLU nonlinearity and max pooling layer respectively and process it
with Fn + 1 filters. Filters configuration are shown in Table IV. All fully connected
layers have equal number of neurons i.e., 256. For the Second CNN the U-net
architecture [16] was chosen, as it has already proven its suitability for segmentation
in general. Several layer sequences were evaluated to find most fitting model. In order
to reduce bias and increase universality, 2 dropout layers with dropout rate equals to
0.2 were added.

Table 4. Quantitative assessments of different CNN configurations

Neurons in each Ist CVL* kernel Filters model val.acc.
FCLs*
3200 11 32-64-128-128 0.725
256 11 32-64-128-128 0.9964
3200 7 32-64-128-128 0.7821
512 7 32-64-128-128 0.9782
512 7 64-64-128-256 0.9295
512 11 32-64-128-128 0.9964
256 7 32-64-128-128 0.8214
FCL — fully-connected layers, CVL — convolutional layer, val. acc. — accuracy on validation
dataset

4.4 Training Details

Classification CNN was implemented, trained and evaluated using Python 3.6 as
programming language on NVIDIA GTX740M GPU with CUDA Toolkit 9.0 and
CuDNN 7.0.5. Keras 2.1.*(version was continuously updated during development)
was chosen as neural networks framework, working on top of Tensorflow 1.5*. We
have trained and evaluated CNNs on a range different filter models (number of filters
in each convolutional layer), kernel sizes and neuron amount in fully-connected
layers. Also experiments with dropout layer [17] were performed.

4.5 Output Image Visualization

After segmentation has been performed, series of marked images are converted to
voxel grid using initial DICOM metadata in order to create 3D model using Marching
cubes algorithm by means of MISO Tool and The Visualization Toolkit library.
Result is presented in fig. 3.
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Fig. 3. Rendered bony eye orbit using marching cubes algorithm

4.6 Experimental Results
4.6.1 Images cropping

As the main purpose of our work is to create an instrument, that could be run on our
servers from multiple clients, in order to deliver the best performance to the customers
and lessen waiting time, computation complexity must be decreased as much as
possible. To achieve that goal, it was decided to perform experiments with cropped
and resized images. When the image was reduced to less than 7/28*/28, we were
unable to achieve the required accuracy. The best result under the condition "accuracy
> (.95" showed the approach in which a piece of 256*256 was cut out of the image,
which subsequently was compressed to 128. Because of high similarity of head
position in CT scans, it was not necessary to move the cropping window.

Fig. 4. Different cropping window positions and sizes were examined

4.6.2 Performance

For the 1st CNN we used different kernels from 3 to 11 pixels, different CNN model
configurations, activation functions and a suitable epoch number to illustrate which
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one of these properties support CNN to get the highest level of performance. Data
was split between train and validation in proportion 4:1. Our model performs best
after 115 training epochs - validation accuracy 99% and then stabilizes. Dropout
layers with dropout rate lower than 0.4 doesn’t impact the accuracy significantly, and
more than 0.4 fails the accuracy to ~85%, so it was decided to exclude dropout layers
from final model. Worth noticing the fact that models with 512 neurons in each FCL
showed approximately same result as a model with 256 neurons, but it takes up to 1.4
times more computation time, so 256 was chosen as less resource-consuming.

5. Conclusion

In this paper, the first step for the medical segmentation system was introduced. Based
on the existing CNN solutions we demonstrated that they may be easily adapted for
the segmentation tasks on different medical images. Also, in this work has been
shown that these segmentations may be used for creating 3D models and volume
estimation. Based on the obtained results, the target tool model was developed using
C# 7.0 as programming language and .NET 4.7 as framework.

As the development is still in the very beginning, there is no purpose for service
hosting, although it is considered as the only possible option for the further
development, so for now MISO (Medical Images Segmentation Operations) tool has
been prototyped as a classic desktop application with CNN results visualization
abilities (fig. 5)

| @ MISG tool - [u] x ‘

Fig. 5. MISO tool interface
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AHHoTamsi. V3Bedenne pa3nuuHoil 3HaunMoi MeauiuHckoit nadopmanuu uz KT u MPT
CHHMKOB — 3TO OJJHA U3 HauOoJiee BAXKHBIX M TPYIHBIX 33134 B chepe aHAIN3a MEeIUIIMHCKIX
n3obpaxkennit. Hemocrarox aBTOMaTH3aMM B OTHX 3aJadaX CTaHOBUTCS INPHIMHOI
HEOOXOIUMOCTH CKpYITYJIe3HOH 00pa0OTKM HAaHHBIX JKCIIEPTOM, YTO BEIET K BO3MOXKHOCTH
OLIMOOK, CBSI3aHHBIX C YeNIoBeUecKuM (akTopoM. HecMOTps Ha TO, YTO HEKOTOPHIE U3 METOJIOB
pelreHuss 3aad MOTYT OBITh II0JlyaBTOMAaTHYECKMMH, OHM BCE €IIe ONUPAIOTCS Ha
yeJoBeyecKre KomreTeHuun. OCHOBHON LENMbI0 HAIIUX HCCIEIOBAHUN SBIAETCS CO3JaHHE
MHCTPYMEHTa, KOTOPBI MaKCHUMM3UpPYeT ypOBEHb aBTOMATH3aLUM B 3ajJadax oOpaboOTKu
MEJMIIMHCKUX CHUMKOB. Haml mpoekT cocToMT U3 AByX uacTei: HabOp aJropuTMOB IS
00pabOTKM CHHMKOB, a TaKKe HWHCTPYMEHTHI JUIi HHTEPIPETHPOBAHUS M BU3yalHM3aIluU
pe3ynabTaToB. B maHHOM cTaThe MBI IpeacTaBisieM 0030p JIydIINX CYIIECTBYIOMNX PELICHHI B
9TOi 001aCTH, a TAaKKe ONHCAHNE COOCTBEHHBIX aJITOPUTMOB JUTS aKTYaJIbHBIX IIPOOJIEM, TAKIX
KaK CErMCHTAalUs KOCTHBIX IJIa3HBIX OPOUT M OIyXOJIEH MO3ra, HCIIONb3Ysl CBEPTOUHBIC
HelipoHHble cetu. llpencraBineHo ucciienoBanue 3(PQEKTHBHOCTH pa3IHIHBIX MOJEINCH
HEHpOHHBIX MozeNed npu KiaccuUKAUUM M CErMEHTAlMH Ul 00eMX 3ajad, a Takxke
CPaBHUTENBHBIA aHANM3 PA3IMYHBIX HEHPOHHBIX aHcaMmOiel, MPHUMEHSIEMBIX K 3ajaue
BBIIETICHUST OITyXOJIEH TOJOBHOTO MO3ra Ha MEAMIMHCKHX CHHMKaX. Takxke NpencTaBlIeHO
Hamle nporpammHoe obOecneyenue nox HasBanueM «MISO Tool», koTopoe cozmanHo
CIIEIMAIBHO IS TOZOOHOTO poJia 3a/1a4 M IO3BOJISIET BBIIOJIHATH CETMEHTUPOBAHNE TKaHell ¢
HCTIONIB30BaHUEM IIPE/IBApUTEIILHO OOYUCHHBIX ITOCTaBIAeMbIX BMecTe ¢ I1O HEHpOHHBIX
ceTeil, NPOW3BOAUTH pAJVIUYHBIE MAHUNYISOUM C MUKCEIbHBIMU JaHHbIMH DICOM-
n300paxeHus, a TakxkKe NorydaTh 3D-peKOHCTPYKLUS CErMEHTHPOBAaHHBIX 00IacTeH.

KnroueBble cioBa: riay0okue HEHpOHHbIE CETH; CBEPTOUHBIC HEHPOHHBIE CETH; OIYXOJHU
MO3r'a; KOCTHBIE TTIa3HBIE OPOUTHI; MEAUIIMHCKHE N300pasKeHUS.
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